Matrix Multiplication

For basic definitions in matrix algebra see Bretscher, chapter 2.
Problem 1 Calculate the matrix products
(a) $\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$
(b) $\left[\begin{array}{ccc}-1 & 1 & 3 \\ 1 & 0 & 2 \\ 1 & 1 & 3\end{array}\right]\left[\begin{array}{ccc}3 & 2 & 1 \\ 1 & 0 & -4 \\ 0 & -1 & 3\end{array}\right]$
(c) $\left[\begin{array}{cc}2 & 5 \\ 2 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{cc}5 & 2 \\ -2 & 3\end{array}\right]$
(d) $\left[\begin{array}{ll}2 & 5 \\ 5 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & -2 \\ 2 & 0 & 3\end{array}\right]$
(e) $\left[\begin{array}{cc}3 & 2 \\ 1 & -2 \\ 3 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ccc}-1 & 1 & 1 \\ 2 & 3 & 0\end{array}\right]$
(f) $\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right]$

Problem 2 Solve the matrix equation $A X=B$, where
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right], B=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1 \\ 1 & -4\end{array}\right]$
(c) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], B=\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & 2 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$

Problem 3 Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 2\end{array}\right]$. Recall that $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(a) Solve the equation

$$
A X=I_{3} .
$$

(b) Solve the equation

$$
A Y=B
$$

(c) Calculate $X B$ and compare with Y. Can you explain what you find?

Problem 4 Let A be an $n \times n$-matrix of rank n.
(a) Show that there is a unique $n \times n$-matrix B such that $A B=I_{n}$.
(b) Show that B has rank n. (Hint: it is enough to show that $B \vec{x}=\overrightarrow{0}$ only has the solution $\vec{x}=\overrightarrow{0}$).
(c) Show that $A B=I_{n}$ and $B A=I_{n}$. (Hint: for the second statement consider the matrix equation $B X=I_{n}$).

