Inverse Matrices

For basic definitions on inverse matrices see Bretscher, chapter 2.
Problem 1 Determine if the matrix A is invertible. If it is find the inverse A^{-1}.
(a) $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{cc}1 & -2 \\ -3 & 6\end{array}\right]$
(c) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(d) $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 3 & -6 \\ -3 & -5 & 8\end{array}\right]$
(e) $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 5 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$
(f) $A=\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$

Problem 2 Using your results from Problem 1, solve the matrix equation $A X=B$, where
(a) $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(b) $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 4 & -6\end{array}\right]$
(d) $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 3 & -6 \\ -3 & -5 & 8\end{array}\right], B=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$
(e) $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 3 & -6 \\ -3 & -5 & 8\end{array}\right], B=\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & -2 & -1 \\ 0 & 1 & 1\end{array}\right]$
(f) $A=\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{c}2 \\ 1 \\ -2 \\ -3\end{array}\right]$

Problem 3 Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be any 2×2-matrix. Show that
(a) A is invertible if and only if $a d-b c \neq 0$.
(b) If A is invertible then

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Problem 4 Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Calculate
(a) A^{4},
(b) $I_{4}+A+A^{2}+A^{3}$,
(c) $\left(I_{4}-A\right)\left(I_{4}+A+A^{2}+A^{3}\right)$.

What is the inverse of $I_{4}-A$?

