ASSESSED COURSEWORK 3

Mathematics Tutorial I

Nagoya University
G30 Program, Fall 2012
Deadline: December 18, 14:45
Solutions should contain detailed arguments for all statements made. Each problem gives a maximum of 5 points. Hand in at the start of the tutorial class on December 18.

Exercise 1. Solve the matrix equation $A X=B$, where
(a) $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 2 & 3\end{array}\right], B=\left[\begin{array}{cc}3 & 0 \\ -1 & -2 \\ 8 & 1\end{array}\right]$.
(b) $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 1 & 1\end{array}\right], B=\left[\begin{array}{cc}-1 & 1 \\ 1 & -4\end{array}\right]$.

Exercise 2. Let

$$
A=\left[\begin{array}{ccc}
4 & 3 & -1 \\
3 & 0 & 1 \\
-1 & -2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & -3 \\
4 & 0 & 4 \\
2 & 2 & 6
\end{array}\right]
$$

(a) Find A^{-1}.
(b) Solve the equation $A X=B$.

Exercise 3. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 1 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 0 & 1 \\
-2 & 5 & 2
\end{array}\right] \text { and } C=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Solve the matrix equation $(X A+B)^{-1}=C$.

Exercise 4.

1. Derive the formula $\frac{d y}{d x}=\frac{1}{1+x^{2}}$ for the derivative of $y=\tan ^{-1} x$ by differentiating both sides of the equivalent equation $\tan y=x$.
2. Show that both functions $f(x)=\sin ^{-1} \frac{1}{\sqrt{x^{2}+1}}$ and $g(x)=\tan ^{-1}\left(\frac{1}{x}\right)$ have the same derivative.

Exercise 5. Prove that

$$
\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) .
$$

