ASSESSED COURSEWORK 2

Mathematics Tutorial I
Nagoya University
G30 Program, Fall 2012
Deadline: November 27, 14:45
Solutions should contain detailed arguments for all statements made. Each problem gives a maximum of 5 points. Hand in at the start of the tutorial class on November 27.

Exercise 1. Find $d^{2} y / d x^{2}$ in terms of x and y, if $2 x^{3}-3 y^{2}=8$.
Solution: Differentiate(i.e. apply $\frac{d}{d x}$ to) both sides, and we will get

$$
\begin{equation*}
6 x^{2}-6 y \cdot \frac{d y}{d x}=0 \tag{*}
\end{equation*}
$$

which means

$$
\frac{d y}{d x}=\frac{x^{2}}{y}
$$

Differentiate $\left({ }^{*}\right)$ again, and then we know

$$
12 x-6\left(\frac{d y}{d x} \cdot \frac{d y}{d x}+y \cdot \frac{d^{2} y}{d x^{2}}\right)=0
$$

Therefore,

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{y}\left(2 x-\frac{x^{4}}{y^{2}}\right)
$$

Exercise 2. Find all θ such that $0 \leq \theta<2 \pi$ and

$$
\cos ^{2} \theta=\sin ^{2} \theta
$$

Solution: There are two cases: 1. $\cos \theta=\sin \theta$ and 2. $\cos \theta=-\sin \theta$.
For case 1: $\tan \theta=1(0 \leq \theta<2 \pi)$, therefore

$$
\theta=\frac{\pi}{4} \text { or } \frac{5 \pi}{4}
$$

For case 2: $\tan \theta=-1(0 \leq \theta<2 \pi)$, therefore

$$
\theta=\frac{3 \pi}{4} \text { or } \frac{7 \pi}{4}
$$

So, that's all:

$$
\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
$$

Exercise 3.

(a) Find the derivative of $(\cos x)^{4}$.
(b) Find the derivative of $\sin \left(x^{2}+1\right)$.
(c) Find all real numbers a such that the function $f(x)=\cos (a x)$ satisfies

$$
\begin{equation*}
f^{\prime \prime}(x)+4 f(x)=0 \tag{*}
\end{equation*}
$$

for all $x \in \mathbb{R}$.

Solution:

(a)

$$
\frac{d}{d x}\left((\cos x)^{4}\right)=4(\cos x)^{3} \cdot(-\sin x)=-4(\cos x)^{3} \cdot \sin x
$$

(b)

$$
\frac{d}{d x}\left(\sin \left(x^{2}+1\right)\right)=\cos \left(x^{2}+1\right) \cdot \frac{d}{d x}\left(x^{2}+1\right)=\cos \left(x^{2}+1\right) \cdot 2 x .
$$

(c)

$$
f^{\prime}(x)=-\sin (a x) \cdot a .
$$

Then differentiate both sides:

$$
f^{\prime \prime}(x)=-\cos (a x) \cdot a^{2}
$$

Substitute it into the above equation $\left(^{*}\right)$, and we will get

$$
0=-\cos (a x) \cdot a^{2}+4 \cdot \cos (a x)=\cos (a x) \cdot\left(4-a^{2}\right) .
$$

Note that this equation holds for all $x \in \mathbb{R}$, which means $a=2$ or -2 .

Exercise 4. Solve the equation

$$
\ln (x)-\ln (x-1)=1
$$

Solution:

$$
\ln (x)-\ln (x-1)=\ln \frac{x}{x-1}=1
$$

Take the exponential to both sides, we know

$$
e^{\left(\ln \frac{x}{x-1}\right)}=\frac{x}{x-1}=e .
$$

Therefore, we get

$$
x=\frac{e}{e-1} .
$$

Exercise 5. Using L'Hospital's rule, prove that

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e
$$

Démonstration:

First, it is obvious that

$$
(1+x)^{\frac{1}{x}}=\left(e^{\ln (1+x)}\right)^{\frac{1}{x}}=e^{\frac{1}{x} \cdot \ln (1+x)}=e^{\frac{\ln (1+x)}{x}}
$$

And we know, by L'Hospital's rule, since it is $\frac{0}{0}$-type,

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0} \frac{1}{1+x}=1
$$

Therefore,

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=\lim _{x \rightarrow 0} e^{\frac{\ln (1+x)}{x}}=e^{\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}}=e .
$$

