Comments on Calculus I: Precise Definition of a Limit

Prof. Shobatake

One first year student asked me about the $\delta-\varepsilon$ argument in the last remedial lecture. I didn't have time to examine this problem with her. Now I would like to write down some comments about this. This is one of the most difficult concepts in Calculus I.
Definition of a Limit says that
Suppose that $f(x)$ is defined for all x in an open interval containing a (but not necessarily at $x=a$). Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for all $\varepsilon>0$, there exits $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { if } \quad 0<|x-a|<\delta
$$

Comment:

Although this definition says that for all $\varepsilon>0$, there exits $\delta>0$ such that $|f(x)-L|<\varepsilon$ if $0<|x-a|<\delta$, in many cases it is sufficient to prove this for a preset number of $\varepsilon>0$.

Example 1: Let

$$
\begin{equation*}
f(x)=2 x+3 \tag{1-1}
\end{equation*}
$$

prove that

$$
\begin{equation*}
\lim _{x \rightarrow 1} f(x)=5 \tag{1-2}
\end{equation*}
$$

using the precise definition of a limit. Solution

Step 1: For simplicity’s sake, suppose that

$$
\begin{equation*}
0<\varepsilon<0.1 . \tag{1-3}
\end{equation*}
$$

(In this case it turns out that we don't have to limit the range of ε. You will see later.)

We want to obtain δ as a function of ε such that

$$
\begin{equation*}
|f(x)-5|<\varepsilon . \tag{1-4}
\end{equation*}
$$

And

$$
\begin{equation*}
0<|x-1|<\delta \tag{1-5}
\end{equation*}
$$

Step 2: From (1-1) and (1-4) we get

$$
\begin{align*}
& |2 x+3-5|<\varepsilon \tag{1-6}\\
& |2 x-2|<\varepsilon \\
& |2(x-1)|<\varepsilon
\end{align*}
$$

We finally get

$$
\begin{equation*}
|x-1|<\varepsilon / 2 \tag{1-7}
\end{equation*}
$$

$\therefore \delta=\varepsilon / 2$
QED

Comment: In this case the functional form is a first order equation of x, a δ value is very easily obtained.
However the next case is a little bit more complicated.

Example 2: Let

$$
\begin{equation*}
f(x)=2 x^{2}-3 \tag{2-1}
\end{equation*}
$$

prove that

$$
\begin{equation*}
\lim _{x \rightarrow 1} f(x)=-1 \tag{2-2}
\end{equation*}
$$

using the precise definition of a limit.

Solution:

Step 1: For simplicity's sake, suppose that

$$
\begin{equation*}
0<\varepsilon<1 \tag{2-3}
\end{equation*}
$$

We want to obtain δ as a function of ε such that

$$
\begin{equation*}
|f(x)-(-1)|<\varepsilon . \tag{2-4}
\end{equation*}
$$

and

$$
\begin{equation*}
0<|x-1|<\delta \tag{2-5}
\end{equation*}
$$

From (2-1) and (2-4) we get

$$
\begin{align*}
& \left|2 x^{2}-3+1\right|<\varepsilon \tag{2-6}\\
& \left|2 x^{2}-2\right|<\varepsilon \\
& \left|\left(x^{2}-1\right)\right|<\varepsilon / 2 \tag{2-7}
\end{align*}
$$

Case 1: $x^{2}-1 \geq 0$,
that is, $x \geq 1$ or $x \leq-1$,
(2-7) gives us

$$
\begin{equation*}
0 \leq x^{2}-1<\varepsilon / 2 \tag{2-9}
\end{equation*}
$$

Considering the inequality (2-8), we obtain

$$
\begin{equation*}
1 \leq x^{2}<1+\varepsilon / 2 \tag{2-10}
\end{equation*}
$$

By taking the square roots of all terms (assuming $x>0$)

$$
\begin{equation*}
1 \leq x<\sqrt{1+\varepsilon / 2} \tag{2-11}
\end{equation*}
$$

By subtracting 1 from all terms, we get

$$
\begin{align*}
& 0 \leq x-1<\sqrt{1+\varepsilon / 2}-1 \tag{2-12}\\
& 0 \leq x-1<\frac{(\sqrt{1+\varepsilon / 2}-1)(\sqrt{1+\varepsilon / 2}+1)}{\sqrt{1+\varepsilon / 2}+1} \tag{2-13}\\
& 0 \leq x-1<\frac{\varepsilon / 2}{\sqrt{1+\varepsilon / 2}+1} \tag{2-14}
\end{align*}
$$

Case 1: $x^{2}-1<0$,
that is,

$$
\begin{equation*}
-1<x<1 \tag{2-16}
\end{equation*}
$$

then

$$
\begin{equation*}
0<1-x^{2}<\varepsilon / 2 \tag{2-17}
\end{equation*}
$$

and this leads to

$$
\begin{equation*}
-\varepsilon / 2<x^{2}-1<0 \tag{2-18}
\end{equation*}
$$

Considering (2-15), (2-18) will lead to

$$
\begin{equation*}
-\varepsilon / 2<x^{2}-1<0 \tag{2-19}
\end{equation*}
$$

Adding 1 to all three terms, we get

$$
\begin{equation*}
1-\varepsilon / 2<x^{2}<1 \tag{2-20}
\end{equation*}
$$

This gives us two inequalities

$$
\begin{equation*}
\sqrt{1-\varepsilon / 2}<x<1 \tag{2-21}
\end{equation*}
$$

for $x>0$ and

$$
\begin{equation*}
-\sqrt{1-\varepsilon / 2}>x>-1 \tag{2-22}
\end{equation*}
$$

for $x<0$.
If we subtract 1 from both terms in (2-21)

$$
\begin{equation*}
\sqrt{1-\varepsilon / 2}-1<x-1<0 \tag{2-23}
\end{equation*}
$$

$$
\begin{equation*}
\frac{(\sqrt{1-\varepsilon / 2}-1)(\sqrt{1-\varepsilon / 2}+1)}{\sqrt{1-\varepsilon / 2}+1}<x-1<0 \tag{2-24}
\end{equation*}
$$

This is simplified as

$$
\begin{equation*}
\frac{-\varepsilon / 2}{\sqrt{1-\varepsilon / 2}+1}<x-1<0 \tag{2-15}
\end{equation*}
$$

We have the following inequality

$$
\begin{equation*}
\sqrt{1-\varepsilon / 2}+1<\sqrt{1+\varepsilon / 2}+1 \tag{2-25}
\end{equation*}
$$

and the reciprocal values satisfy the inequality

$$
\begin{equation*}
\frac{1}{\sqrt{1-\varepsilon / 2}+1}>\frac{1}{\sqrt{1+\varepsilon / 2}+1} \tag{2-26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\varepsilon}{2 \sqrt{1-\varepsilon / 2}+1}>\frac{\varepsilon}{2 \sqrt{1+\varepsilon / 2}+1} \tag{2-27}
\end{equation*}
$$

In order to determine a δ value, we take the right hand term in (2-16). The inequality relation of (2-13) will become

$$
\begin{equation*}
\frac{-\varepsilon / 2}{\sqrt{1+\varepsilon / 2}+1}<x-1<\frac{\varepsilon / 2}{\sqrt{1+\varepsilon / 2}+1} \tag{2-28}
\end{equation*}
$$

This gives us

$$
\begin{equation*}
|x-1|<\frac{\varepsilon / 2}{\sqrt{1+\varepsilon / 2}+1}=\delta \tag{2-29}
\end{equation*}
$$

QED

Comment: If ε is a very small positive number, δ is approximately equal to $\varepsilon / 4$.

QED

Example 3: Let

$$
\begin{equation*}
f(x)=1 /(x+3) \tag{3-1}
\end{equation*}
$$

prove that

$$
\begin{equation*}
\lim _{x \rightarrow 1} f(x)=1 / 4 \tag{3-2}
\end{equation*}
$$

using the precise definition of a limit.

Solution:

Step 1:

$$
\begin{equation*}
\left|\frac{1}{x+3}-\frac{1}{4}\right|<\varepsilon \tag{3-3}
\end{equation*}
$$

$$
\begin{align*}
& -\varepsilon<\frac{1}{x+3}-\frac{1}{4}<\varepsilon \tag{3-4}\\
& -\varepsilon+\frac{1}{4}<\frac{1}{x+3}<\varepsilon+\frac{1}{4} \tag{3-5}
\end{align*}
$$

Since we are interested in the limit near $x=1, x+1>0$.

$$
\begin{equation*}
-\varepsilon+\frac{1}{4}<\frac{1}{x+3}<\varepsilon+\frac{1}{4} \tag{3-6}
\end{equation*}
$$

We consider

$$
\begin{equation*}
0<\varepsilon<1 / 4 \tag{3-7}
\end{equation*}
$$

By taking the reciprocals of all terms

$$
\begin{equation*}
1 /\left(-\varepsilon+\frac{1}{4}\right)>x+3>1 /\left(\varepsilon+\frac{1}{4}\right) \tag{3-8}
\end{equation*}
$$

Step 2: By subtracting 4 from all terms

$$
\begin{align*}
& \frac{4}{1-4 \varepsilon}-4>(x-1)>\frac{4}{1+4 \varepsilon}-4 \tag{3-9}\\
& \frac{4-4+16 \varepsilon}{1-4 \varepsilon}>(x-1)>\frac{4-4-16 \varepsilon}{1+4 \varepsilon} \tag{3-10}\\
& \frac{16 \varepsilon}{1-4 \varepsilon}>(x-1)>\frac{-16 \varepsilon}{1+4 \varepsilon} \tag{3-11}
\end{align*}
$$

Since $\frac{16 \varepsilon}{1-4 \varepsilon}>\frac{16 \varepsilon}{1+4 \varepsilon}$, in order to define the narrower region, we choose $\frac{16 \varepsilon}{1+4 \varepsilon}$ rather than $\frac{16 \varepsilon}{1-4 \varepsilon}$.

Then we obtain the final condition determining δ :

$$
\begin{equation*}
|x-1|<\frac{16 \varepsilon}{1+4 \varepsilon}=\delta \tag{3-12}
\end{equation*}
$$

QED
Comment: For very small , δ becomes approximately equal to 16ε.

Example 4: Let

$$
\begin{equation*}
f(x)=1 / x \tag{4-1}
\end{equation*}
$$

prove that
$\lim _{x \rightarrow 0.01} f(x)=100$
using the precise definition of a limit.

Solution

Step 1: For simplicity's sake, suppose that

$$
\begin{equation*}
0<\varepsilon<10 . \tag{4-3}
\end{equation*}
$$

We want to obtain δ as a function of any value ε such that

$$
\begin{equation*}
|f(x)-100|<\varepsilon \tag{4-4}
\end{equation*}
$$

and

$$
\begin{equation*}
|x-0.01|<\delta \tag{4-5}
\end{equation*}
$$

An explicit inequality for (4-4) is

$$
\begin{equation*}
\left|\frac{1}{x}-100\right|<\varepsilon \tag{4-6}
\end{equation*}
$$

This gives us

$$
\begin{equation*}
-\varepsilon<\frac{1}{x}-100<\varepsilon \tag{4-7}
\end{equation*}
$$

By adding 100 for all terms, we get

$$
\begin{equation*}
100-\varepsilon<\frac{1}{x}<100+\varepsilon \tag{4-8}
\end{equation*}
$$

The reciprocal of these terms give us the inequality relation

$$
\begin{equation*}
\frac{1}{100-\varepsilon}>x>\frac{1}{100+\varepsilon} \tag{4-9}
\end{equation*}
$$

Step 2:

By subtracting $0.01=1 / 100$ from all of the terms in inequality (4-9)

$$
\left.\begin{array}{rl}
\frac{1}{100-\varepsilon}-1 / 100 & >(x-0.01)
\end{array}>\frac{1}{100+\varepsilon}-1 / 100\right) ~=\frac{100-100+\varepsilon}{100(100-\varepsilon)}>(x-0.01)>\frac{100-100-\varepsilon}{100(100+\varepsilon)}
$$

The simplified form is

$$
\begin{equation*}
\frac{\varepsilon}{100(100-\varepsilon)}>(x-0.01)>\frac{-\varepsilon}{100(100+\varepsilon)} \tag{4-12}
\end{equation*}
$$

Because $(100-\varepsilon)<(100+\varepsilon)$, then $1 /(100-\varepsilon)>1 /(100+\varepsilon)$. Thus we obtain

$$
\begin{equation*}
\frac{\varepsilon}{100(100-\varepsilon)}>\frac{\varepsilon}{100(100+\varepsilon)} \tag{4-13}
\end{equation*}
$$

and

$$
\frac{\varepsilon}{100(100-\varepsilon)}>\frac{\varepsilon}{100(100+\varepsilon)}>(x-0.01)>\frac{-\varepsilon}{100(100+\varepsilon)}
$$

$\frac{\varepsilon}{100(100+\varepsilon)}>(x-0.01)>\frac{-\varepsilon}{100(100+\varepsilon)}$
Step 3:
From (4-15) the corresponding inequality to (4-3) is

$$
\begin{equation*}
|x-0.01|>\frac{\varepsilon}{100(100+\varepsilon)}=\delta \tag{4-16}
\end{equation*}
$$

QED
Comment: For a very small ε, δ will be approximately equal to $\varepsilon / 100^{2}$.

Example 5: Let

$$
\begin{equation*}
f(x)=x^{3}+2 x+1 \tag{5-1}
\end{equation*}
$$

prove that

$$
\begin{equation*}
\lim _{x \rightarrow 1} f(x)=4 \tag{5-2}
\end{equation*}
$$

using the precise definition of a limit.

Solution

Step 1: We want to obtain δ as a function of any value such that

$$
\begin{equation*}
|f(x)-4|<\varepsilon \tag{5-3}
\end{equation*}
$$

and

$$
\begin{equation*}
|x-1|<\delta \tag{5-4}
\end{equation*}
$$

An explicit inequality for (5-3) is

$$
\begin{align*}
& \left|\left(x^{3}+2 x+1\right)-4\right|<\varepsilon \tag{5-5}\\
& \left|\left(x^{3}+2 x-3\right)\right|<\varepsilon
\end{align*}
$$

Factoring the cubic function, (note that since $f(1)=4$, the cubic formula $f(x)-4$ should give us a factor $(x-1)$.

$$
\begin{aligned}
& x^{3}+2 x-3=(x-1)\left(x^{2}+x+3\right) \\
& \left|(x-1)\left(x^{2}+x+3\right)\right|<\varepsilon
\end{aligned}
$$

For all x the term $\left(x^{2}+x+3\right)$ is always positive and this term is minimum of $11 / 4$ at $x=-1 / 2$.

For $x>0 \quad\left(x^{2}+x+3\right)>3$.
From (5-7) we get

$$
\begin{equation*}
-\varepsilon<(x-1)\left(x^{2}+x+3\right)<\varepsilon \tag{5-7}
\end{equation*}
$$

By dividing all terms by the positive term $\left(x^{2}+x+3\right)$

$$
\begin{equation*}
-\frac{\varepsilon}{\left(x^{2}+x+3\right)}<(x-1)<\frac{\varepsilon}{x^{2}+x+3} \tag{5-8}
\end{equation*}
$$

By adding 1 to all of the terms in this inequality, we get

$$
\begin{equation*}
1-\frac{\varepsilon}{\left(x^{2}+x+3\right)}<x<1+\frac{\varepsilon}{x^{2}+x+3} \tag{5-9}
\end{equation*}
$$

From this we obtain the range of x as

$$
\begin{equation*}
1-\frac{\varepsilon}{\left(x^{2}+x+3\right)}<x<1+\frac{\varepsilon}{x^{2}+x+3} \tag{5-10}
\end{equation*}
$$

Thus the maximum range will be

$$
\begin{equation*}
1-\frac{\varepsilon}{3}<x<1+\frac{\varepsilon}{3} \tag{5-11}
\end{equation*}
$$

If even ε is as large as 1 then x ranges as

$$
\begin{equation*}
\frac{2}{3}<x<\frac{4}{3} \tag{5-12}
\end{equation*}
$$

If ε is as large as 0.1 then x ranges as

$$
\begin{equation*}
1-0.0333<x<1.0333 \tag{5-13}
\end{equation*}
$$

The term $\frac{\varepsilon}{x^{2}+x+3}$ decreases with $x>0$.
Therefore the term for $x=4 / 3$

$$
\begin{equation*}
\frac{\varepsilon}{x^{2}+x+3}=\frac{\varepsilon}{16 / 9+4 / 3+3}=\frac{9 \varepsilon}{55} \tag{5-20}
\end{equation*}
$$

is small enough to satisfy (5-8). Thus we obtain

$$
\begin{align*}
& -\frac{9 \varepsilon}{55}<(x-1)<\frac{9 \varepsilon}{55} \tag{5-21}\\
& 0<|x-1|<\frac{9 \varepsilon}{55}=\delta \tag{5-22}
\end{align*}
$$

QED

Comments:

If the functional form is simple it is rather easy to determine a δ value. However the situation is much more complicated when the inequality relation is hard to solve.

If the function $f(x)$ is a continuous function at $\mathrm{x}=a$,
$\lim _{x \rightarrow a} f(x)=L=f(a)$.
You will learn later the definition of a derivative $f^{\prime}(a)$, that is, the derivative of a function f at a number $x=a$, is
$f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
if this limit exists. For a sufficiently small number δ
$>0,|x-a|=\delta, \varepsilon$ will be determined which satisfies,
$|f(x)-f(a)|=\varepsilon$
then we can have an approximate relation that

$$
\left|f^{\prime}(a)\right| \approx \frac{\varepsilon}{\delta}
$$

which gives $\delta \approx \frac{\varepsilon}{\left|f^{\prime}(a)\right|}$
or

$$
\frac{\delta}{\varepsilon} \approx \frac{1}{\left|f^{\prime}(a)\right|}
$$

In all Examples shown above, you will see that the ratio δ / ε approaches $\left|\frac{1}{f^{\prime}(a)}\right|$ for small ε.

