The University of Nagoya School of Mathematical Sciences G30 Calculus 1, Fall 2012-2013 **FINAL EXAM** Time allowed ONE Hour and THIRTY minutes

Exercise 1. Approximate the functions sin(x) and ln(x + 1) by the Taylor polynomial with degree 3 at x = 1.

Sol: $sin(x) \approx x - \frac{x^3}{6}$ by the Taylor polynomial of order 3 around 0. Then $sin(1) \approx \frac{5}{6}$. $ln(x+1) \approx x - \frac{x^2}{2} + \frac{x^3}{3}$. Then $ln2 \approx 1 - \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$.

Exercise 2. Does $x_n = \sqrt{n^2 + n} - n$ tend to a finite limit as $n \to \infty$? If so, calculate its limit.

Sol: Yes.

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \sqrt{n^2 + n} - n = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n} = 1/2.$$

Exercise 3. Show that the equation

$$2^x - x \ln 2 - 2 = 0$$

has exactly one root in the interval [1, 2]. (Hint: to show that there is not more than one root, use the Mean Value Theorem)

Sol: Let $f(x) = 2^x - x \ln 2 - 2$, then f(x) is continuous on [1, 2] and differentiable on (1, 2). Since $f(1) = -\ln 2 < 0$ and $f(2) = 2 - 2\ln 2 > 0$. Applying the Intermediate Value Theorem, there exists at least one root in [1, 2]. If there exist a and b in [1, 2] with $a \neq b$ such that f(a) =f(b) = 0. Then by Mean Value Theorem, there exists $c \in (a, b)$ such that f'(c) = 0. But $f'(x) = 2^x \ln 2 - \ln 2 > 0$ for all $x \in (1, 2)$. So the equation has exactly one root in [1, 2].

Exercise 4. Evaluate the following integrals:

(a) $\int_0^1 e^{\sqrt{x}} dx$ (b) $\int \frac{1}{x \ln(x)} dx$ Sol:

(a) Let
$$\sqrt{x} = t$$
, then $\int_0^1 e^{\sqrt{x}} dx = \int_0^1 e^t dt^2 = 2 \int_0^1 t e^t dt = 2 \int_0^1 t de^t = 2t e^t |_0^1 - 2 \int_0^1 e^t dt = 2e - 2e^t |_0^1 = 2.$
(b) Let $\ln x = t$, then $\int \frac{1}{1 + e^t} dx = \int \frac{1}{1 + e^t} d\ln x = \int \frac{1}{4} dt = \ln |t| + C = 1$

(b) Let
$$\ln x = t$$
, then $\int \frac{1}{x \ln x} dx = \int \frac{1}{\ln x} d\ln x = \int \frac{1}{t} dt = \ln |t| + C = \ln(|\ln x|) + C$, where C is constant.

Exercise 5. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

(a)
$$I = \int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$

(b)
$$I = \int_0^1 \frac{\ln x}{\sqrt{x}} dx$$

Sol:

(a) Let
$$x = \sin t$$
, then $\int_{u}^{1} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{\arcsin u}^{\pi/2} \frac{1}{\sqrt{1-\sin^{2}t}} d\sin t = \int_{\arcsin u}^{\pi/2} \frac{1}{\cos t} d\sin t = \int_{\arcsin u}^{\pi/2} dt = t |_{\arcsin u}^{\pi/2} = \pi/2 - \arcsin u$. Since

$$\lim_{u \to 0} \int_{u}^{1} \frac{1}{\sqrt{1-x^{2}}} dx = \lim_{u \to 0} \pi/2 - \arcsin u = \pi/2.$$
Thus *L* is composited and *L* = $\pi/2$.

Thus I is convergent and $I = \pi/2$.

(b) Let
$$\sqrt{x} = t$$
, then $\int_{u}^{1} \frac{\ln x}{\sqrt{x}} dx = \int_{\sqrt{u}}^{1} \frac{\ln t^{2}}{t} dt^{2} = \int_{\sqrt{u}}^{1} 4 \ln t dt = -2\sqrt{u} \ln u - 4 + 4\sqrt{u}$. Using L'Hospital'l rule, we can obtain

$$\lim_{u \to 0} -2\sqrt{u} \ln u = 0.$$

Thus

$$I = \lim_{u \to 0} \int_{u}^{1} \frac{\ln x}{\sqrt{x}} dx = \lim_{u \to 0} -2\sqrt{u} \ln u - 4 + 4\sqrt{u} = -4.$$

So I is convergent.