The University of Nagoya
 School of Mathematical Sciences
 G30 Calculus 1, Fall 2012-2013
 FINAL EXAM
 Time allowed ONE Hour and THIRTY minutes

Exercise 1. Approximate the functions $\sin (x)$ and $\ln (x+1)$ by the Taylor polynomial with degree 3 at $x=1$.

Sol: $\sin (x) \approx x-\frac{x^{3}}{6}$ by the Taylor polynomial of order 3 around 0 . Then $\sin (1) \approx \frac{5}{6}$.

$$
\ln (x+1) \approx x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \text {. Then } \ln 2 \approx 1-\frac{1}{2}+\frac{1}{3}=\frac{5}{6} .
$$

Exercise 2. Does $x_{n}=\sqrt{n^{2}+n}-n$ tend to a finite limit as $n \rightarrow \infty$? If so, calculate its limit.

Sol: Yes.

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+n}+n}=1 / 2
$$

Exercise 3. Show that the equation

$$
2^{x}-x \ln 2-2=0
$$

has exactly one root in the interval $[1,2]$. (Hint: to show that there is not more than one root, use the Mean Value Theorem)

Sol: Let $f(x)=2^{x}-x \ln 2-2$, then $f(x)$ is continuous on [1,2] and differentiable on $(1,2)$. Since $f(1)=-\ln 2<0$ and $f(2)=2-2 \ln 2>0$. Applying the Intermediate Value Theorem, there exists at least one root in $[1,2]$. If there exist a and b in $[1,2]$ with $a \neq b$ such that $f(a)=$ $f(b)=0$. Then by Mean Value Theorem, there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$. But $f^{\prime}(x)=2^{x} \ln 2-\ln 2>0$ for all $x \in(1,2)$. So the equation has exactly one root in [1, 2].

Exercise 4. Evaluate the following integrals:
(a) $\int_{0}^{1} e^{\sqrt{x}} d x$
(b) $\int \frac{1}{x \ln (x)} d x$

Sol:
(a) Let $\sqrt{x}=t$, then $\int_{0}^{1} e^{\sqrt{x}} d x=\int_{0}^{1} e^{t} d t^{2}=2 \int_{0}^{1} t e^{t} d t=2 \int_{0}^{1} t d e^{t}=$ $\left.2 t e^{t}\right|_{0} ^{1}-2 \int_{0}^{1} e^{t} d t=2 e-\left.2 e^{t}\right|_{0} ^{1}=2$.
(b) Let $\ln x=t$, then $\int \frac{1}{x \ln x} d x=\int \frac{1}{\ln x} d \ln x=\int \frac{1}{t} d t=\ln |t|+C=$ $\ln (|\ln x|)+C$, where C is constant.

Exercise 5. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
(a) $I=\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$
(b) $I=\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$

Sol:
(a) Let $x=\sin t$, then $\int_{u}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\int_{\arcsin u}^{\pi / 2} \frac{1}{\sqrt{1-\sin ^{2} t}} d \sin t=\int_{\arcsin u}^{\pi / 2} \frac{1}{\cos t} d \sin t=$ $\int_{\arcsin u}^{\pi / 2} d t=\left.t\right|_{\arcsin u} ^{\pi / 2}=\pi / 2-\arcsin u$. Since

$$
\lim _{u \rightarrow 0} \int_{u}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\lim _{u \rightarrow 0} \pi / 2-\arcsin u=\pi / 2
$$

Thus I is convergent and $I=\pi / 2$.
(b) Let $\sqrt{x}=t$, then $\int_{u}^{1} \frac{\ln x}{\sqrt{x}} d x=\int_{\sqrt{u}}^{1} \frac{\ln t^{2}}{t} d t^{2}=\int_{\sqrt{u}}^{1} 4 \ln t d t=-2 \sqrt{u} \ln u-$ $4+4 \sqrt{u}$. Using L'Hospital'l rule, we can obtain

$$
\lim _{u \rightarrow 0}-2 \sqrt{u} \ln u=0
$$

Thus

$$
I=\lim _{u \rightarrow 0} \int_{u}^{1} \frac{\ln x}{\sqrt{x}} d x=\lim _{u \rightarrow 0}-2 \sqrt{u} \ln u-4+4 \sqrt{u}=-4 .
$$

So I is convergent.

