Problem set 3

Topics in Representation Theory I

Solutions should contain detailed arguments for all statements made. Each problem gives a maximum of 5 points. Hand in before or during the lecture on July 3.

Problem 1. Let Λ be a finite dimensional K-algebra. Recall that $\operatorname{rad}_{\Lambda}$ is the ideal in the K-category $\operatorname{mod} \Lambda$ defined by

$$\operatorname{rad}_{\Lambda}(M,N) = \{ f : M \to N \mid 1_N - f \circ g \in \operatorname{Aut}_{\Lambda}(N) \text{ for all } g \in \operatorname{Hom}_{\Lambda}(N,M) \}$$

for all $M, N \in \text{mod } \Lambda$.

Let $M, N \in \text{mod} \Lambda$ be indecomposable and not isomorphic. Show that

$$\operatorname{rad}_{\Lambda}(M, M) = \operatorname{rad}(\operatorname{End}_{\Lambda}(M))$$

and

$$\operatorname{rad}_{\Lambda}(M, N) = \operatorname{Hom}_{\Lambda}(M, N).$$

Problem 2. Let Q be the following quiver

$$\begin{array}{c}
2 \\
\alpha / \beta \\
1 & \\
\hline{} 3
\end{array}$$

and I the ideal in KQ generated by $\alpha\beta$, $\beta\gamma$ and $\gamma\alpha$. Describe explicitly all simples, indecomposable projectives and indecomposable injectives in $\operatorname{rep}_K(Q,I)$.

Problem 3. (From Assem-Simson-Skowronski) Let A be a K-algebra and $f:M\to N$ a morphism in mod A. Show that the following conditions are equivalent.

- (a) For any $L \in \text{mod } A$ and epimorphism $h: L \to N$, there is $g: M \to L$ such that f = hg.
- (b) For any projective $P \in \text{mod } A$ and epimorphism $h: P \to N$, there is $g: M \to P$ such that f = hg.
- (c) There is a projective $P \in \operatorname{mod} A$ and morphisms $g: M \to P$ and $h: P \to N$ such that f = hg.

Problem 4. Let Λ be a finite dimensional K-algebra and $f:P\to M$ an epimorphism in mod Λ with $P\in \operatorname{mod}\Lambda$ projective. Show that $f:P\to M$ is a projective cover of M if and only if f is right minimal.

Problem 5. Let $\Lambda=K[T]/(T^2)$ and S be the simple Λ -module $S=\Lambda/\operatorname{rad}\Lambda\simeq K$. Show that Λ and S classify all indecomposable Λ -modules. Show that there is an almost split sequence

$$0 \to S \to \Lambda \to S \to 0.$$