Problem set 2

Topics in Representation Theory I

Solutions should contain detailed arguments for all statements made. Each problem gives a maximum of 5 points. Hand in before or during the lecture on June 12.

Problem 1. Let M and N be modules over a K-algebra Λ . Show that $M \oplus N$ is projective if and only if M and N are projective.

Problem 2. Consider the *K*-algebra

$$\Lambda = \begin{bmatrix} K & K & K \\ K & K & K \\ 0 & 0 & K \end{bmatrix}.$$

Decompose Λ_{Λ} into a direct sum of indecomposable Λ -modules and determine which indecomposable summands are isomorphic. Describe the basic algebra associated to Λ .

Problem 3. Let Q be an acyclic quiver and $\Lambda = KQ$. Show that there exists a simple projective Λ -module.

Problem 4. (From Assem-Simson-Skowronski) Let K be an algebraically closed field. Describe, up to isomorphism, all basic three-dimensional K-algebras.

Problem 5. Let Λ be the \mathbb{R} -algebra

$$\begin{bmatrix} \mathbb{C} & \mathbb{C} \\ 0 & \mathbb{R} \end{bmatrix}$$

Show that Λ is a basic \mathbb{R} -algebra, but there is no quiver Q such that $\Lambda \simeq \mathbb{R}Q/I$ for some admissible ideal I.