Problem set 6

Representation Theory of Associative Algebras

Solutions should contain detailed arguments for all statements made. Each problem gives a maximum of 25 points. Hand in before or during the lecture on January 31.

In the problems below, let K denote an algebraically closed field and A a finite dimensional $K\mbox{-algebra}.$

Problem 1. Let Q be the following quiver

Find the Auslaner-Reiten quiver of KQ.

Problem 2. Let Q be the following quiver

$$\begin{array}{c} 2 \\ \alpha \swarrow \gamma \\ 1 \\ \hline \gamma \end{array} \begin{array}{c} 3 \end{array}$$

and I the ideal in KQ generated by $\alpha\beta$, $\beta\gamma$ and $\gamma\alpha$. Find the Auslaner-Reiten quiver of KQ/I.

Problem 3. Let

$$0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$$
$$0 \longrightarrow L' \xrightarrow{f'} M' \xrightarrow{g'} N' \longrightarrow 0$$

be two almost split sequences in mod A. Show that if $L \simeq L'$ or $N \simeq N'$, then the sequences are isomorphic, i.e., there is a commutative diagram

$$0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$$
$$\downarrow^{u} \qquad \downarrow^{v} \qquad \downarrow^{w}$$
$$0 \longrightarrow L' \xrightarrow{f'} M' \xrightarrow{g'} N' \longrightarrow 0$$

where u, v and w are isomorphisms.

Problem 4. (From Assem-Simson-Skowronski) Let X be a non-zero A-module. Show that, up to isomorphism, there are at most finitely many almost split sequences

$$0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$$

in $\operatorname{mod} A$ such that X is a direct summand of M.