Problem set 2

Representation Theory of Associative Algebras

Solutions should contain detailed arguments for all statements made. Each problem gives a maximum of 25 points. Hand in before or during the lecture on November 15.

Problem 1. Let M and N be modules over a K-algebra A. Show that $M \oplus N$ is projective if and only if M and N are projective.

Problem 2. Consider the K-algebra

$$
A=\left[\begin{array}{ccc}
K & K & K \\
K & K & K \\
0 & 0 & K
\end{array}\right]
$$

Decompose A_{A} into a direct sum of indecomposable A-modules and determine which indecomposable summands are isomorphic. Describe the basic algebra associated to A.

Problem 3. Let Q be an acyclic quiver and $A=K Q$. Show that there exists a simple projective A-module.

Problem 4. Let A be the path algebra of the quiver

Find $\operatorname{rad} A$.

