PRACTICE PROBLEMS FOR FINAL EXAM - ANSWERS

Linear Algebra I
Nagoya University
G30 Program, Fall 2012

Problem 1.

(a) T is linear. The matrix of T is $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$
(b) T is not linear.
(c) T is linear. The matrix of T is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
(d) T is not linear.

Problem 2. $X=\left[\begin{array}{cc}s & t \\ 0 & s\end{array}\right]$, where $s, t \in \mathbb{R}$

Problem 3.

(a) The matrix of T is $\frac{1}{6}\left[\begin{array}{ccc}5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5\end{array}\right]$
(b) $T\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=\frac{1}{6}\left[\begin{array}{l}7 \\ 4 \\ 1\end{array}\right]$ and $T\left(\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right)=\frac{1}{6}\left[\begin{array}{l}7 \\ 4 \\ 1\end{array}\right]$.
(c) T is not invertible.

Problem 4.

(a) The matrix of T is $A=\frac{1}{11}\left[\begin{array}{ccc}-9 & -2 & 6 \\ -2 & -9 & -6 \\ 6 & -6 & 7\end{array}\right]$.
(b) Since $T \circ T$ is the identity it is invertible and the matrix of T^{-1} is A.

Problem 5. Let A, B be $n \times n$-matrices. If $A B$ is invertible then $I_{n}=(A B)(A B)^{-1}=$ $A\left(B(A B)^{-1}\right)$ and so A is invertible.
(a) Follows from the above since $A^{2}=A A$
(b) Same argument using $A^{2}-I_{n}=\left(A-I_{n}\right)\left(A+I_{n}\right)$.

Problem 6.

(a) $\operatorname{det} A=a$.
(b) $A^{-1}=\left[\begin{array}{cccc}\frac{1}{a} & 0 & 0 & 0 \\ 0 & -7 & 4 & -2 \\ 0 & -2 & 1 & 0 \\ 0 & 4 & -2 & 1\end{array}\right]$ for all $a \neq 0$.
(c) $\operatorname{adj}(A)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -7 a & 4 a & -2 a \\ 0 & -2 a & a & 0 \\ 0 & 4 a & -2 a & a\end{array}\right]$.

Problem 7. $\operatorname{det} A_{n}=1$ for all $n \geq 1$.

Problem 8.

(a) Since $0=\operatorname{det}\left(A^{N}\right)=(\operatorname{det} A)^{N}$, the matrix A is not invertible. So the equation

$$
A \vec{x}=0
$$

has infinitely many solutions. In particular there is one that is non-zero.
(b) Since $0=A^{N} \vec{x}=k^{N} \vec{x}$ and $\vec{x} \neq 0$, we get $k^{N}=0$ and so $k=0$.

