Lines and planes

Martin Herschend

In this brief text we explain how linear equations can be used to describe lines in the plane and planes in space.

1 Matrices and vectors

A matrix is a rectangular array of real numbers. If the array has m rows and n columns we call it an $m \times n$ matrix (pronounced "m by n matrix"). Here are examples of a $2 \times 3,4 \times 2$ and a 3×3 matrix:

$$
\left[\begin{array}{ccc}
3 & -2 & 0 \\
1 & 4 & 13
\end{array}\right] \quad\left[\begin{array}{cc}
2 & 7 \\
0 & -4 \\
1 & 6 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
21 & 4 & -17 \\
11 & 2 & 0 \\
4 & 9 & 31
\end{array}\right]
$$

A matrix consisting of a single column is called a column vector

$$
\vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] .
$$

Its entries v_{i} are called the components of \vec{v}. Similarly a row vector is a matrix consisting of a single row. In what follows the word vector always means column vector.

We think of the vector

$$
\vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

as the arrow pointing from the origin to the point with coordinates $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in n-dimensional space. This provides a way to visualize vectors (especially for $n=2$ and $n=3$) as can be seen in Figure 1 .

Figure 1: The vector $\vec{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

For any two vectors with the same number of components $\vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ and $\vec{w}=\left[\begin{array}{c}w_{1} \\ w_{2} \\ \vdots \\ w_{n}\end{array}\right]$, their sum is the vector $\vec{v}+\vec{w}$ defined by

$$
\vec{v}+\vec{w}=\left[\begin{array}{c}
v_{1}+w_{1} \\
v_{2}+w_{2} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right] .
$$

For any real number c we define \vec{v} multiplied by c as the vector $c \vec{v}$ given by

$$
c \vec{v}=\left[\begin{array}{c}
c v_{1} \\
c v_{2} \\
\vdots \\
c v_{n}
\end{array}\right] .
$$

Adding two vectors to each other can be visualized as putting one vector after the other. Multiplying a vector \vec{v} with a real number c can be visualized as scaling \vec{v} by c (see Figure 2). In this context, it is therefore usual to call c a scalar.

Figure 2: Vector addition, and multiplication by scalar.
The dot product of \vec{v} and \vec{w} is the real number $\vec{v} \cdot \vec{w}$ defined by

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n} .
$$

Notice that the dot product of two vectors is not a vector, but a real number.
In two dimensions the distance from the origin to a point (a, b) equals $\sqrt{a^{2}+b^{2}}$ by the Pythagorean Theorem. If we let $\vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$, then $\vec{v} \cdot \vec{v}=a^{2}+b^{2}$. So it makes sense to say that the length of \vec{v} is $\sqrt{\vec{v} \cdot \vec{v}}$. This formula can be justified in three dimensions as well, by similar reasoning. Inspired by this we say (in any dimension) that the length of a vector \vec{v} is the real number $\|\vec{v}\|$ defined by

$$
\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}
$$

In dimension 2 and 3 , one can also show that

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\| \cos \theta\|\vec{w}\|,
$$

where θ denotes the angle between \vec{v} and \vec{w}. The interested reader is advised to do this by using the law of cosines from trigonometry (see Exercise 4 and 5). In particular, we see that $\vec{v} \cdot \vec{w}=0$ if and only if \vec{v} and \vec{w} meet at a right angle. Motivated by this we say (in any dimension) that two vectors \vec{v} and \vec{w} are orthogonal if

$$
\vec{v} \cdot \vec{w}=0 .
$$

2 Lines in the plane

Consider the linear equation

$$
\begin{equation*}
x+2 y=0 . \tag{1}
\end{equation*}
$$

The left hand side can be interpreted as the dot product of the vectors $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}x \\ y\end{array}\right]$. Thus the solutions to equation (1) consists of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ that are orthogonal to $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. These vectors form a line ℓ through the origin (see Figure 3).

Figure 3: Solutions to $x+2 y=0$.
Another way to present the solutions to equation (1) is to set y equal to a parameter t. Then we get a solution to equation (1) if and only if $x=-2 t$, and so the solutions to (1) are precisely the vectors

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

where t varies over all real numbers.
Now consider the linear equation

$$
\begin{equation*}
x+2 y=3 \tag{2}
\end{equation*}
$$

If we again set $y=t$ we get $x=3-2 t$ and so the solutions to (2) are

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3-2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

where t varies over all real numbers. Geometrically we can interpret these solutions as the line ℓ^{\prime} that we get by translating ℓ by the vector $\left[\begin{array}{l}3 \\ 0\end{array}\right]$ (see Figure 4).

Figure 4: Solutions to $x+2 y=3$.

Notice that we can replace $\left[\begin{array}{l}3 \\ 0\end{array}\right]$ by any vector pointing from the origin to a point on ℓ^{\prime}. For instance we can write the solutions to (2) as

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

where s varies over all real numbers, since $1 \cdot 1+2 \cdot 1=3$. Another way to see this is to set $t=s+1$.
Motivated by the above discussion we introduce some terminology. A non-zero vector that is orthogonal to a line ℓ is called a normal vector of ℓ and a non-zero vector that points in the same direction as ℓ is called a direction vector of ℓ. For instance, if ℓ^{\prime} is the line corresponding to equation (2), then $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a normal vector of ℓ^{\prime} and $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is a direction vector of ℓ^{\prime}.

We now summarize the essential points of the above discussion. Let a, b and c be constants such that at least one of a and b is non-zero.

1. The solutions to the equation $a x+b y=c$ form a line ℓ.
2. The vector $\vec{n}=\left[\begin{array}{l}a \\ b\end{array}\right]$ is a normal vector of ℓ.
3. Any non-zero vector \vec{v} satisfying $\vec{n} \cdot \vec{v}=0$ is a direction vector of ℓ. For example we can take $\vec{v}=\left[\begin{array}{c}-b \\ a\end{array}\right]$.
4. Fix a direction vector \vec{v} and some solution \vec{v}_{0} to $a x+b y=c$. Then the solutions to $a x+b y=c$ are given by the vectors $\vec{v}_{0}+t \vec{v}$ where t varies over all real numbers.

Example 1. Find the intersection of the lines $x+2 y=3$ and $3 x+y=4$.
The intersection is given by all vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ such that x and y satisfy the system

$$
\left\{\begin{array}{r}
x+2 y=3 \\
3 x+y=4
\end{array}\right.
$$

Solving this system we arrive at $x=1$ and $y=1$, so the intersection is

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The lines are drawn in Figure 5.

Figure 5: Intersection of the lines $x+2 y=3$ and $3 x+y=4$.

3 Planes in space

Now we shall investigate linear equations in three dimensions. For example, let us look at the equation

$$
\begin{equation*}
x+2 y+3 z=0 \tag{3}
\end{equation*}
$$

As before the right hand side can be interpreted as the dot product of the vectors

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { and }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

and so the solutions to equation (3) are precisely the vectors that are orthogonal to

$$
\vec{n}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

These form a plane P in three dimensional space. We can also present the solutions using parameters. Set $y=s$ and $z=t$. Then we get a solution to equation (3) if and only if $x=-2 s-3 t$ and so the solutions to equation (3) are the vectors

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 s-3 t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

where s and t vary over all real numbers. In particular, we have found two vectors

$$
\vec{v}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \text { and } \vec{w}=\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

that lie in P. These vectors and the plane P are displayed in Figure 6.

Figure 6: Solutions to $x+2 y+3 z=0$.
Now let us look at the linear equation

$$
\begin{equation*}
x+2 y+3 z=4 \tag{4}
\end{equation*}
$$

To parametrize the solutions we set $y=s$ and $z=t$ as before. Then $x=4-2 s-3 t$ and so the solutions to equation (4) are

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4-2 s-3 t \\
s \\
t
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

It follows that the solutions to (4) form a plane P^{\prime} that we get by translating P by the vector

$$
\vec{u}=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]
$$

See Figure 7.

Figure 7: Solutions to $x+2 y+3 z=4$.

Example 2. Find the intersection of the planes $x+2 y+3 z=4$ and $3 x+y+4 z=12$.
The intersection will be given by all vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that x, y and z satisfy the system

$$
\left\{\begin{aligned}
x+2 y+3 z & =4 \\
3 x+y+4 z & =12
\end{aligned}\right.
$$

Adding -3 times the first equation to the second gives

$$
\left\{\begin{array}{r}
x+2 y+3 z=4 \\
-5 y-5 z=0
\end{array}\right.
$$

which after dividing the second equation by -5 gives

$$
\left\{\begin{array}{r}
x+2 y+3 z=4 \\
y+z=0
\end{array}\right.
$$

Finally, adding -2 times the second equation to the first gives

$$
\left\{\begin{array}{r}
x+z=4 \\
y+z=0
\end{array}\right.
$$

Now put $z=t$. Then we get $x=4-t$ and $y=-t$. So the intersection consists of the vectors

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4-t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

where t varies over all real numbers. We can interpret the intersection geometrically as the line passing through $\left[\begin{array}{l}4 \\ 0 \\ 0\end{array}\right]$ in direction $\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$.

4 Exercises

Exercise 1. Calculate the following vectors and illustrate in the plane.
(a) $\left[\begin{array}{l}3 \\ 4\end{array}\right]+\left[\begin{array}{c}2 \\ -1\end{array}\right]$
(b) $2\left[\begin{array}{l}3 \\ 4\end{array}\right]$
(c) $-3\left[\begin{array}{c}2 \\ -1\end{array}\right]$
(d) $2\left[\begin{array}{l}3 \\ 4\end{array}\right]-3\left[\begin{array}{c}2 \\ -1\end{array}\right]$

Exercise 2. Find the lengths of the following vectors.
(a) $\left[\begin{array}{l}3 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{l}0 \\ 4\end{array}\right]$
(c) $\left[\begin{array}{l}3 \\ 4\end{array}\right]$
(d) $-3\left[\begin{array}{l}3 \\ 4\end{array}\right]$

Exercise 3. Which of the following vectors are orthogonal to each other:

$$
\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \quad\left[\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

Exercise 4. Prove the law of cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

Hint: Determine x, y, and z in terms of $a, b, \sin \gamma$, and $\cos \gamma$ in the following picture. Then calculate c^{2} using the Pythagorean Theorem.

Exercise 5. Use the law of cosines to prove that

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\| \cos \theta\|\vec{w}\|,
$$

for any vectors \vec{v} and \vec{w}, where θ is the angle between them. Hint: In the picture below, calculate $\|\vec{v}-\vec{w}\|^{2}$ in to ways: first using the dot product and then using the law of cosines.

Exercise 6. Find the intersection of the following lines and interpret your result geometrically.

$$
\begin{aligned}
& 5 x+y=3 \\
& 2 x+3 y=-4
\end{aligned}
$$

Exercise 7. Find the intersection of the following lines and interpret your result geometrically.

$$
\begin{aligned}
3 x-6 y & =-15 \\
-x+2 y & =5
\end{aligned}
$$

Exercise 8. Find the intersection of the following lines and interpret your result geometrically.

$$
\begin{array}{r}
-2 x+8 y=3 \\
3 x-12 y=2 .
\end{array}
$$

Exercise 9. Find the intersection of the following planes and interpret your result geometrically.

$$
\begin{array}{r}
2 x+1 y+3 z=7 \\
3 y+2 z=8 \\
x+5 y+6 z=17
\end{array}
$$

Exercise 10. Find the intersection of the following planes and interpret your result geometrically.

$$
\begin{aligned}
& 2 x+y+4 z=6 \\
& 3 x-5 y+6 z=9 .
\end{aligned}
$$

Exercise 11. Find the intersection of the following planes and interpret your result geometrically.

$$
\begin{array}{r}
5 x+2 y+2 z=4, \\
3 x-y+4 z=1, \\
-2 x-3 y+2 z=0 .
\end{array}
$$

Exercise 12. Find the intersection of the following planes and interpret your result geometrically.

$$
\begin{aligned}
6 x-9 y+3 z= & 12 \\
-8 x+12 y-4 z= & -16 \\
2 x-3 y+z= & 4
\end{aligned}
$$

Exercise 13. Find the intersection of the following planes and interpret your result geometrically.

$$
\begin{aligned}
x+y+z & =0, \\
x+z & =0 \\
2 x+y & =0, \\
y+2 z & =0
\end{aligned}
$$

