
Lines and planes

Martin Herschend

In this brief text we explain how linear equations can be used to describe lines in the plane and planes
in space.

1 Matrices and vectors

A matrix is a rectangular array of real numbers. If the array has m rows and n columns we call it an
m× n matrix (pronounced “m by n matrix”). Here are examples of a 2× 3, 4× 2 and a 3× 3 matrix:

[

3 −2 0
1 4 13

]









2 7
0 −4
1 6
0 1













21 4 −17
11 2 0
4 9 31





A matrix consisting of a single column is called a column vector

~v =











v1
v2
...
vn











.

Its entries vi are called the components of ~v. Similarly a row vector is a matrix consisting of a single row.
In what follows the word vector always means column vector.

We think of the vector

~v =











v1
v2
...
vn











as the arrow pointing from the origin to the point with coordinates (v1, v2, . . . , vn) in n-dimensional space.
This provides a way to visualize vectors (especially for n = 2 and n = 3) as can be seen in Figure 1.

~v

Figure 1: The vector ~v =

[

1
2

]

.
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For any two vectors with the same number of components ~v =











v1
v2
...
vn











and ~w =











w1

w2

...
wn











, their sum is the

vector ~v + ~w defined by

~v + ~w =











v1 + w1

v2 + w2

...
vn + wn











.

For any real number c we define ~v multiplied by c as the vector c~v given by

c~v =











cv1
cv2
...

cvn











.

Adding two vectors to each other can be visualized as putting one vector after the other. Multiplying a
vector ~v with a real number c can be visualized as scaling ~v by c (see Figure 2). In this context, it is
therefore usual to call c a scalar.

~v

~w

~v + ~w

~v 2~v

Figure 2: Vector addition, and multiplication by scalar.

The dot product of ~v and ~w is the real number ~v · ~w defined by

~v · ~w = v1w1 + v2w2 + · · ·+ vnwn.

Notice that the dot product of two vectors is not a vector, but a real number.
In two dimensions the distance from the origin to a point (a, b) equals

√
a2 + b2 by the Pythagorean

Theorem. If we let ~v =

[

a

b

]

, then ~v · ~v = a2 + b2. So it makes sense to say that the length of ~v is
√
~v · ~v.

This formula can be justified in three dimensions as well, by similar reasoning. Inspired by this we say
(in any dimension) that the length of a vector ~v is the real number ||~v|| defined by

||~v|| =
√
~v · ~v.

In dimension 2 and 3, one can also show that

~v · ~w = ||~v|| cos θ||~w||,

where θ denotes the angle between ~v and ~w. The interested reader is advised to do this by using the law
of cosines from trigonometry (see Exercise 4 and 5). In particular, we see that ~v · ~w = 0 if and only if ~v
and ~w meet at a right angle. Motivated by this we say (in any dimension) that two vectors ~v and ~w are
orthogonal if

~v · ~w = 0.
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2 Lines in the plane

Consider the linear equation
x+ 2y = 0. (1)

The left hand side can be interpreted as the dot product of the vectors

[

1
2

]

and

[

x

y

]

. Thus the solutions

to equation (1) consists of all vectors

[

x

y

]

that are orthogonal to

[

1
2

]

. These vectors form a line ℓ through

the origin (see Figure 3).

x+ 2y = 0 [

1
2

]

Figure 3: Solutions to x+ 2y = 0.

Another way to present the solutions to equation (1) is to set y equal to a parameter t. Then we get
a solution to equation (1) if and only if x = −2t, and so the solutions to (1) are precisely the vectors

[

x

y

]

=

[

−2t
t

]

= t

[

−2
1

]

where t varies over all real numbers.
Now consider the linear equation

x+ 2y = 3. (2)

If we again set y = t we get x = 3− 2t and so the solutions to (2) are

[

x

y

]

=

[

3− 2t
t

]

=

[

3
0

]

+ t

[

−2
1

]

where t varies over all real numbers. Geometrically we can interpret these solutions as the line ℓ′ that

we get by translating ℓ by the vector

[

3
0

]

(see Figure 4).

x+ 2y = 3

[

3
0

]

Figure 4: Solutions to x+ 2y = 3.
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Notice that we can replace

[

3
0

]

by any vector pointing from the origin to a point on ℓ′. For instance

we can write the solutions to (2) as
[

x

y

]

=

[

1
1

]

+ s

[

−2
1

]

where s varies over all real numbers, since 1 · 1 + 2 · 1 = 3. Another way to see this is to set t = s+ 1.
Motivated by the above discussion we introduce some terminology. A non-zero vector that is orthog-

onal to a line ℓ is called a normal vector of ℓ and a non-zero vector that points in the same direction as

ℓ is called a direction vector of ℓ. For instance, if ℓ′ is the line corresponding to equation (2), then

[

1
2

]

is

a normal vector of ℓ′ and

[

−2
1

]

is a direction vector of ℓ′.

We now summarize the essential points of the above discussion. Let a, b and c be constants such that
at least one of a and b is non-zero.

1. The solutions to the equation ax+ by = c form a line ℓ.

2. The vector ~n =

[

a

b

]

is a normal vector of ℓ.

3. Any non-zero vector ~v satisfying ~n · ~v = 0 is a direction vector of ℓ. For example we can take

~v =

[

−b

a

]

.

4. Fix a direction vector ~v and some solution ~v0 to ax+ by = c. Then the solutions to ax+ by = c are
given by the vectors ~v0 + t~v where t varies over all real numbers.

Example 1. Find the intersection of the lines x+ 2y = 3 and 3x+ y = 4.

The intersection is given by all vectors

[

x

y

]

such that x and y satisfy the system

{

x + 2y = 3
3x + y = 4

Solving this system we arrive at x = 1 and y = 1, so the intersection is

[

x

y

]

=

[

1
1

]

.

The lines are drawn in Figure 5.

x+ 2y = 3

3x+ y = 4

Figure 5: Intersection of the lines x+ 2y = 3 and 3x+ y = 4.
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3 Planes in space

Now we shall investigate linear equations in three dimensions. For example, let us look at the equation

x+ 2y + 3z = 0. (3)

As before the right hand side can be interpreted as the dot product of the vectors





1
2
3



 and





x

y

z





and so the solutions to equation (3) are precisely the vectors that are orthogonal to

~n =





1
2
3



 .

These form a plane P in three dimensional space. We can also present the solutions using parameters.
Set y = s and z = t. Then we get a solution to equation (3) if and only if x = −2s − 3t and so the
solutions to equation (3) are the vectors





x

y

z



 =





−2s− 3t
s

t



 = s





−2
1
0



+ t





−3
0
1





where s and t vary over all real numbers. In particular, we have found two vectors

~v =





−2
1
0



 and ~w =





−3
0
1





that lie in P . These vectors and the plane P are displayed in Figure 6.

~v

~w

Figure 6: Solutions to x+ 2y + 3z = 0.

Now let us look at the linear equation

x+ 2y + 3z = 4. (4)

To parametrize the solutions we set y = s and z = t as before. Then x = 4− 2s− 3t and so the solutions
to equation (4) are





x

y

z



 =





4− 2s− 3t
s

t



 =





4
0
0



+ s





−2
1
0



+ t





−3
0
1



 .
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It follows that the solutions to (4) form a plane P ′ that we get by translating P by the vector

~u =





4
0
0



 .

See Figure 7.

Figure 7: Solutions to x+ 2y + 3z = 4.

Example 2. Find the intersection of the planes x+ 2y + 3z = 4 and 3x+ y + 4z = 12.

The intersection will be given by all vectors





x

y

z



 such that x, y and z satisfy the system

{

x + 2y + 3z = 4,
3x + y + 4z = 12.

Adding −3 times the first equation to the second gives

{

x + 2y + 3z = 4,
− 5y − 5z = 0,

which after dividing the second equation by −5 gives

{

x + 2y + 3z = 4,
y + z = 0,

Finally, adding −2 times the second equation to the first gives

{

x + z = 4,
y + z = 0.

Now put z = t. Then we get x = 4− t and y = −t. So the intersection consists of the vectors





x

y

z



 =





4− t

−t

t



 =





4
0
0



+ t





−1
−1
1





where t varies over all real numbers. We can interpret the intersection geometrically as the line passing

through





4
0
0



 in direction





−1
−1
1



.
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4 Exercises

Exercise 1. Calculate the following vectors and illustrate in the plane.

(a)

[

3
4

]

+

[

2
−1

]

(b) 2

[

3
4

]

(c) −3

[

2
−1

]

(d) 2

[

3
4

]

− 3

[

2
−1

]

Exercise 2. Find the lengths of the following vectors.

(a)

[

3
0

]

(b)

[

0
4

]

(c)

[

3
4

]

(d) −3

[

3
4

]

Exercise 3. Which of the following vectors are orthogonal to each other:




3
1
4



 ,





1
1
−1



 ,





3
1
−2



 ,





1
2
3



 .

Exercise 4. Prove the law of cosines

bc

a

c2 = a2 + b2 − 2ab cosγα

γβ

Hint: Determine x, y, and z in terms of a, b, sin γ, and cos γ in the following picture. Then calculate c2

using the Pythagorean Theorem.

bc

y

z x

c2 = a2 + b2 − 2ab cosγ

γ

Exercise 5. Use the law of cosines to prove that

~v · ~w = ||~v|| cos θ||~w||,
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for any vectors ~v and ~w, where θ is the angle between them. Hint: In the picture below, calculate ||~v− ~w||2
in to ways: first using the dot product and then using the law of cosines.

~v~v − ~w

~w

c2 = a2 + b2 − 2ab cosγ

θ

Exercise 6. Find the intersection of the following lines and interpret your result geometrically.

5x + y = 3,
2x + 3y = −4.

Exercise 7. Find the intersection of the following lines and interpret your result geometrically.

3x − 6y = −15,
−x + 2y = 5.

Exercise 8. Find the intersection of the following lines and interpret your result geometrically.

−2x + 8y = 3,
3x − 12y = 2.

Exercise 9. Find the intersection of the following planes and interpret your result geometrically.

2x + 1y + 3z = 7,
3y + 2z = 8,

x + 5y + 6z = 17.

Exercise 10. Find the intersection of the following planes and interpret your result geometrically.

2x + y + 4z = 6,
3x − 5y + 6z = 9.

Exercise 11. Find the intersection of the following planes and interpret your result geometrically.

5x + 2y + 2z = 4,
3x − y + 4z = 1,

−2x − 3y + 2z = 0.

Exercise 12. Find the intersection of the following planes and interpret your result geometrically.

6x − 9y + 3z = 12,
−8x + 12y − 4z = −16,
2x − 3y + z = 4.

Exercise 13. Find the intersection of the following planes and interpret your result geometrically.

x + y + z = 0,
x + z = 0,
2x + y = 0,

y + 2z = 0.
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