Every curve of genus not greater than eight lies on a K3 surface

Manabu Ide
December 19, 2002

1 Introduction

Let \(C \) be a smooth irreducible complete curve of genus \(g \geq 2 \) over an algebraically closed field \(k \) of characteristic 0. An ample K3-extension of \(C \) is a K3 surface \(S \) with at worst rational double points which contains \(C \) in the smooth locus as an ample divisor. If \(C \) is contained in a smooth K3 surface, then we obtain an ample K3-extension by contracting all \((-2)\)-curves disjoint from \(C \).

The purpose of this paper is to show

Main Theorem. All smooth curves of genera \(2 \leq g \leq 8 \) have ample K3-extensions. Moreover, they have smooth ample extensions except the following cases:

- \(g = 6, 7, 8 \) and \(K_C = 2D \) where \(D \) is a \(g^2 \), or
- \(g = 8 \) and \(K_C = A + 2B \) where \(A \) is a \(g^1 \) and \(B \) is a \(g^1 \).

In these exceptional cases, the canonical model \(C \subset \mathbb{P}^{g-1} \) is contained in a weighted projective variety. Rational double points come from the singularities of the weighted projective variety (Lemma 2.6).

Since the dimension of the moduli space of curves of genus \(g \) is \(3g - 3 \) and the dimension of the moduli space of pairs \((S, C)\) of a K3 surface \(S \) and a curve \(C \subset S \) of genus \(g \) is \(19 + g \), general smooth curves have no ample K3-extensions for \(g \geq 12 \). For \(g = 10 \), by [Muk4], general curves have no ample K3-extensions. For \(g = 11, 9 \), by [MM] and [Muk4], general curves have ample K3-extensions, but special cases are still unknown.

In section 2, we prepare some lemmas to construct ample K3-extensions, namely, double covering and Bertini type lemmas. In section 3, we study hyperelliptic curves, trigonal curves, and bielliptic curves, and construct K3
extensions which preserve the hyperelliptic pencils, trigonal pencils, and 2:1-morphisms onto the elliptic curves respectively by these lemmas. In section 4, we construct K3 extensions of remaining curves.

Notation and conventions. For a smooth variety X, we denote by K_X the canonical divisor class of X and by $\omega_X := \mathcal{O}_X(K_X)$ the canonical line bundle. A g_d^r is a line bundle \mathcal{L} of degree d such that $h^0(\mathcal{L}) \geq r + 1$.

2 How to make a K3 extension

2.1 K3-extension as a double cover

Let X be a scheme and \mathcal{L} a line bundle over X. A global section $s \in H^0(X, \mathcal{L}^{-2})$ yields an algebra structure on $\mathcal{O}_X \oplus \mathcal{L}$. Then $\pi : Y = \text{Spec}(\mathcal{O}_X \oplus \mathcal{L}) \longrightarrow X$ is a double covering branched along $B = (s)_0$.

Lemma 2.1. Let X be a smooth regular surface (i.e., smooth complete surface with $H^1(X, \mathcal{O}_X) = 0$). Let B be a smooth member of $|-2K_X|$. Then the double cover $\pi : Y \longrightarrow X$ branched over B, obtained as above, is a smooth K3 surface.

Proof. The double covering Y is obviously smooth, and has the irregularity $h^1(Y, \mathcal{O}_Y) = h^1(X, \mathcal{O}_X \oplus \mathcal{O}_X(K_X)) = h^1(X, \mathcal{O}_X) + h^1(X, \mathcal{O}_X(K_X)) = 0$ by our assumption. Since the canonical divisor class K_Y of Y is linearly equivalent to $\pi^*K_X + R$ where R is the ramification divisor class, and R is linearly equivalent to $\pi^*\mathcal{O}_X(-K_X)$ in this situation, we conclude that K_Y is linearly equivalent to zero. \hfill \square

2.2 Bertini type lemmas for smooth extension

Let S be a surface in \mathbb{P}^g and C a hyperplane section of S, then we have a commutative diagram;

$$
\begin{array}{ccc}
S & \subset & \mathbb{P}^g \\
\cup & \cup & \text{hyperplane section} \\
S \cap \mathbb{P}^{g-1} = C & \subset & \mathbb{P}^{g-1}.
\end{array}
$$

Lemma 2.2 ([Reid] 3.3). Assume that $S \subset \mathbb{P}^g$ is a surface with at worst rational double points. Then the following conditions are equivalent;

(i) S is a K3 surface embedded by a very ample complete linear system.
(ii) Every smooth hyperplane section is a canonical curve of genus g.

(iii) One smooth hyperplane section is a canonical curve of genus g.

According to this lemma, we only need to show that the extension S is smooth or S has at worst rational double points as its singularities for our main theorem. We shall often use Bertini’s theorem which guarantees us the existence of smooth extensions; if Λ is a base point free linear system on a smooth variety X, then every general member of Λ is smooth ([GH], p.137). The same holds true under the weaker assumption that there exists a member which is smooth at p for every base point p of Λ.

Lemma 2.3 (Bertini type lemma for complete linear sections). Let Λ be a linear system of dimension n on X. Assume that the base locus B of the system Λ is smooth of codimension $n + 1$, i.e., B is a complete intersection of basis divisors of Λ, then the general member of Λ is smooth.

Proof. The general member D of a linear system Λ is smooth away from the base locus. Since B is smooth complete intersection of D and n divisors of Λ, D is also smooth around B. \square

Lemma 2.4 (Bertini type lemma for two divisors). Let W be a smooth divisor and \mathcal{L} a line bundles on X. Let $D \subset W$ be a smooth member of the linear system $|\mathcal{L}|_{W}$. Assume that $H^{1}(X, \mathcal{L}(-W)) = 0$ and the linear system $|\mathcal{L}(-W)|$ is base point free. Then D has a smooth extension, i.e., there is a smooth divisor $\tilde{D} \in |\mathcal{L}|$ on X which satisfies $\tilde{D} \cap W = D$.

Proof. Since $H^{1}(X, \mathcal{L}(-W)) = 0$, the restriction map
\[H^{0}(X, \mathcal{L}) \longrightarrow H^{0}(W, \mathcal{L}|_{W}) \]
is surjective, and therefore there is a divisor $\mathcal{D} \in |\mathcal{L}|$ such that $\mathcal{D} \cap W = D$.

Consider the linear subsystem
\[\Lambda = \langle \mathcal{D}, |\mathcal{L}(-W)| + W \rangle \subset |\mathcal{L}| \]
gerated by \mathcal{D} and the members of $|\mathcal{L}(-W)| + W$. Since $|\mathcal{L}(-D)|$ is base point free, the base locus of Λ is $D \cap W = D$. By Bertini’s theorem, there is a divisor $\tilde{D} \in \Lambda$ which is smooth away from $D = \tilde{D} \cap W$. Since $D = \tilde{D} \cap W$ is smooth complete intersection, \tilde{D} is smooth around D, hence smooth everywhere. \square
Lemma 2.5 (Bertini type lemma for more divisors). Let D_1, \ldots, D_s, and W be divisors on X. Assume that $C := W \cap D_1 \cap \cdots \cap D_s$ is smooth complete intersection, and $D_i \cap Bs|D_i - W| = \emptyset$ for $i = 1, \ldots, s$. Then there exist divisors $\tilde{D}_1, \ldots, \tilde{D}_s$, $\tilde{D}_i \sim D_i$, such that $S := \tilde{D}_1 \cap \cdots \cap \tilde{D}_s$ is smooth and $S \cap W = C$.

Proof. We prove the case $s = 2$. Induction goes for $s \geq 2$.

First, consider the linear system
$$
\Lambda_1 = \langle D_1, |D_1 - W| + W \rangle \subset |D_1|
$$
on X. Since $D_1 \cap Bs|D_1 - W| = \emptyset$, we have $Bs(\Lambda_1) = D_1 \cap W$. Let \tilde{D}_1 be a general member of Λ_1, then \tilde{D}_1 is smooth away from $D_1 \cap W = \tilde{D}_1 \cap W$.

Next, consider the linear system
$$
\Lambda_2 = ((D_2, |D_2 - W| + W))|_{\tilde{D}_1} \subset |(D_2)|_{\tilde{D}_1}|
$$
on \tilde{D}_1. Since $D_2 \cap Bs|D_2 - W| = \emptyset$, we have $Bs(\Lambda_2) = \tilde{D}_1 \cap D_2 \cap W = C$ which is a smooth complete intersection. Therefore a general member $D'_2 \in \Lambda_2$ satisfies $D'_2 \cap W = \tilde{D}_1 \cap D_2 \cap W = C$ and is smooth away from $Sing(\tilde{D}_1) \cup Bs(\Lambda_2) \subset (W \cap \tilde{D}_1) \cup C$. Since D'_2 meets W only at C, D'_2 is smooth away from C.

It is clear, from the definition of Λ_2, that there exist an extension $\tilde{D}_2 \in |D_2|$ of D'_2, i.e., $\tilde{D}_2 \cap \tilde{D}_1 = D'_2$. Since $S = \tilde{D}_1 \cap \tilde{D}_2 = D'_2$ is smooth away from $C = W \cap \tilde{D}_1 \cap \tilde{D}_2$, S is smooth everywhere.

A weighted projective variety $X \subset \mathbb{P}(a_1 : a_2 : \cdots : a_n)$ is said to be quasi-smooth if its affine cone $\text{Cone}(X) \subset \mathbb{A}(a_1 : a_2 : \cdots : a_n) = \mathbb{A}^n$ is smooth outside the vertex $0 \in \mathbb{A}^n$. If a weighted projective variety X is quasi-smooth, then X has at worst cyclic quotient singularities.

Lemma 2.6 (Bertini type lemma for weighted projective varieties).
Let X be a quasi-smooth weighted projective variety. Assume that C is a smooth complete intersection of divisors in X, and satisfies the same assumptions as in Lemmas 2.3, 2.4, or 2.5. Then there is an extension S of C which has at worst cyclic quotient singularities. Moreover, if C is smooth curve and X is Gorenstein, then the extension S has at worst rational double points.

Proof. Since C is smooth, its affine cone $\text{Cone}(C)$ is smooth outside the vertex. By Bertini type lemmas, we can construct an extension $\text{Cone}(S)$.
of Cone(C), which is smooth outside the vertex. Therefore S has at worst cyclic quotient singularities.

If C is a curve and X is Gorenstein, then the extension S is a surface with at worst Gorenstein cyclic quotient singularities. Therefore these singularities are rational double points.

3 Curves with very special linear systems

The main tool in this section is the rational normal scrolls $F = F(a_1, \ldots, a_n)$. We denote by H (instead of M in [Reid]) the pull back of the hyperplane section divisor under the natural projective morphism $F \to \mathbb{P}^N$ ($N = \sum (a_i + 1) - 1$), and by L the fiber (class) of the projection $F \to \mathbb{P}^1$. As in [Reid], we denote by F_i the i-th coordinate divisor $\{x_i = 0\}$, which is a divisor of class $H - a_i L$.

3.1 Hyperelliptic cases

Let C be a smooth hyperelliptic curve of genus g. Then the canonical divisor K_C defines a two-to-one map $\Phi|_{K_C}$ from C onto a rational normal curve \overline{C} of degree $g - 1$ in \mathbb{P}^{g-1}. The morphism $\Phi|_{K_C} : C \to \overline{C}(\subset \mathbb{P}^{g-1})$ is branched over $2g - 2$ points P_1, \ldots, P_{2g+2}. Since C is smooth, these points are distinct.

We consider a commutative diagram

$$
\begin{array}{ccc}
F & \hookrightarrow & \mathbb{P}^g \\
\cup & & \cup \\
C & \twoheadrightarrow & \overline{C} \hookrightarrow \mathbb{P}^{g-1},
\end{array}
$$

where F is the two-dimensional rational normal scroll of degree $g - 1$ and \overline{C} is embedded as a hyperplane section. The canonical divisor of F is $K_F = -2H + (g - 3)L$. We take

$$
\begin{cases}
F(\frac{g-1}{2}, \frac{g-1}{2}) & \text{if } g \text{ is odd}, \\
F(\frac{g}{2}, \frac{g}{2} - 1) & \text{if } g \text{ is even}.
\end{cases}
$$

as F.

Proposition 3.1. If $2 \leq g \leq 9$, there is a smooth curve $B \in |{-2K_F}|$ which passes through P_1, \ldots, P_{2g+2}.

Proof. Since $-2K_F \sim 4H - 2(g - 3)L$ and $\overline{C} \sim H$, we have an exact sequence

$$
0 \to \mathcal{O}_F(3H - 2(g - 3)L) \to \mathcal{O}_F(-2K_F) \to \mathcal{O}_{\overline{C}}(-2K_F) \to 0.
$$

5
Since the degree of $\mathcal{O}_C(-2K_F)$ is
\[
(4H - 2(g - 3)L)H = 4H^2 - 2(g - 3)HL = 4(g - 1) - 2(g - 3) = 2g + 2
\]
on $C \cong \mathbb{P}^1$, we have $\mathcal{O}_C(-2K_F) \cong \mathcal{O}_{\mathbb{P}^1}(2g + 2)$ and $P_1 + \cdots + P_{2g+2}$ is a smooth member of the system $|\mathcal{O}_C(-2K_F)|$.

If g is odd, we have
\[
H^1(\mathbb{P}, \mathcal{O}_F(3H - 2(g - 3)L)) = H^1(\mathbb{P}, (\text{Sym}^3(\mathcal{O}_{\mathbb{P}^1}(\frac{2g-1}{2}) \oplus \mathcal{O}_{\mathbb{P}^1}(\frac{g-1}{2}))))(-2(g - 3)))
\]
and this vanishes for $g \leq 11$. Moreover, since
\[
3H - 2(g - 3)L = 3(H - \frac{g-1}{2}L) + (\frac{g-2}{2}L),
\]
the linear system $|3H - 2(g - 3)L|$ is base point free for $g \leq 9$. Therefore there is a smooth extension $B \in | - 2K_F|$ of $P_1 + \cdots + P_{2g+2} \in | - 2K_F|_C$ by Lemma 2.4.

If g is even, since
\[
\pi_* \mathcal{O}_F(3H - 2(g - 3)L) \cong \mathcal{O}_{\mathbb{P}^1}(6 - \frac{g}{2}) \oplus \mathcal{O}_{\mathbb{P}^1}(5 - \frac{g}{2}) \oplus \mathcal{O}_{\mathbb{P}^1}(4 - \frac{g}{2}) \oplus \mathcal{O}_{\mathbb{P}^1}(3 - \frac{g}{2}),
\]
$H^1(\mathbb{P}, \mathcal{O}_F(3H - 2(g - 3)L))$ vanishes for $g \leq 8$, and the linear system $|3H - 2(g - 3)L|$ is base point free for $g \leq 6$. Therefore, by Lemma 2.4, there is a smooth extension $B \in | - 2K_F|$ for $g = 2, 4, 6$.

If $g = 8$, the system $|3H - 2(g - 3)L| = |3H - 10L|$ has $F_1 \sim H - 4L$ as its base component, and the system $|3H - 10L - F_1| = |2(H - 3L)|$ is base point free. We may assume that P does not intersect F_1, since there is an action of $\text{PGL}(1)$ on $C \cong \mathbb{P}^1$. Let $B \subset F$ be an extension of the 18 branch points $P = P_1 + \cdots + P_{18} \subset C$ such that $F_1 \not\subset B$. We now consider the linear system
\[
\Lambda = \langle B, |3H - 10L| + C \rangle = \langle B, |2(H - 3L)| + F_1 + C \rangle.
\]

By Lemma 2.4, we can choose B so general that B is smooth outside $B \cap F_1$. Since $F_1 \cong \mathbb{P}^1$ is smooth, general members of Λ are smooth at $B \cap F_1$. Hence general members of Λ are smooth everywhere. \qed
3.2 Trigonal cases

Let C be a smooth non-hyperelliptic trigonal curve of genus $g \geq 5$. Then C is contained in a 2-dimensional rational normal scroll $F = F(a_1, a_2)$ of degree $d = a_1 + a_2 = g - 2$, and C is a divisor linearly equivalent to $3H - (g - 4)L$. By [Sch], we have a bound
\[
\frac{2g - 2}{3} \geq a_1 \geq a_2 \geq \frac{g - 4}{3}.
\]

If $g = 5$, C is contained in $F = F(2, 1)$ and C is a divisor of class $3H - L$. There is a commutative diagram
\[
\tilde{F} := F(1, 1, 1) \xrightarrow{\phi} \mathbb{P}^5 \\
C \subset F := F(2, 1) \xrightarrow{\psi} \mathbb{P}^4,
\]
and F is a divisor linearly equivalent to the hyperplane section \tilde{H} on \tilde{F}. Since $2\tilde{H} - \tilde{L} = 2(\tilde{H} - \tilde{L}) + L$, the system $|2\tilde{H} - \tilde{L}|$ is base point free. We have
\[
H^1(\tilde{F}, \mathcal{O}_{\tilde{F}}(2\tilde{H} - \tilde{L})) = H^1(\mathbb{P}^1, \text{Sym}^2(\mathcal{O}_{\mathbb{P}^1}(1))^{\oplus 2})(-1)) = H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus 6}) = 0,
\]
and therefore by Lemma 2.4, there is a smooth surface S of class $3\tilde{H} - \tilde{L}$ in \tilde{F}. Thus C has a smooth K3 extension.

For a smooth trigonal curve of genus g, what we have to do is;

1. classify the type (a_1, a_2) of F and find a type (b_1, b_2, b_3) of \tilde{F} suitable for extension,
2. check the vanishing of $H^1(\mathbb{P}^1, (\text{Sym}^2 \tilde{E})(4 - g))$, and
3. check the freeness of the system $|2\tilde{H} - (g - 4)\tilde{L}|$.

where $\tilde{E} = \mathcal{O}_{\mathbb{P}^1}(b_1) \oplus \mathcal{O}_{\mathbb{P}^1}(b_2) \oplus \mathcal{O}_{\mathbb{P}^1}(b_3)$.

The table below is the answer to (1). The condition (2) holds for $5 \leq g \leq 9$, and (3) holds for $g = 5, 6, 8$.

For $g = 7$, since $H^1(\tilde{F}, \mathcal{O}_{\tilde{F}}(2\tilde{H} - 3\tilde{L})) = 0$, there is an extension $S' \in |3\tilde{H} - 3L|$ of C. The linear pencil
\[
\Lambda = \langle S', |2\tilde{H} - 3\tilde{L}| + F \rangle
\]
has the base locus $Bs\Lambda = (S' \cap F) \cup (S' \cap B) = (S' \cap F_1 \cap F_2)$.
<table>
<thead>
<tr>
<th>genus</th>
<th>F</th>
<th>\bar{F}</th>
<th>base locus</th>
<th>vanishing of H^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(2,1)</td>
<td>(1,1,1)</td>
<td>\emptyset</td>
<td>$H^1(\mathbb{P}^1, (\text{Sym}^2 E)(-1)) = 0$</td>
</tr>
<tr>
<td>6</td>
<td>(3,1)</td>
<td>(2,1,1)</td>
<td>\emptyset</td>
<td>$H^1(\mathbb{P}^1, (\text{Sym}^2 \tilde{E})(-2)) = 0$</td>
</tr>
<tr>
<td>7</td>
<td>(4,1)</td>
<td>(2,2,1)</td>
<td>$F_1 \cap F_2$</td>
<td>$H^1(\mathbb{P}^1, (\text{Sym}^2 \tilde{E})(-3)) = 0$</td>
</tr>
<tr>
<td>8</td>
<td>(4,2)</td>
<td>(2,2,2)</td>
<td>\emptyset</td>
<td>$H^1(\mathbb{P}^1, (\text{Sym}^2 \tilde{E})(-4)) = 0$</td>
</tr>
<tr>
<td>9</td>
<td>(5,2)</td>
<td>(3,2,2)</td>
<td>$F_1 \cap F_2$</td>
<td>$H^1(\mathbb{P}^1, (\text{Sym}^2 \tilde{E})(-5)) = 0$</td>
</tr>
<tr>
<td>10</td>
<td>(6,2)</td>
<td>(4,2,2)</td>
<td>$F_1 \cap F_2$</td>
<td>$h^1(\mathbb{P}^1, (\text{Sym}^2 E)(-6)) = 1$</td>
</tr>
<tr>
<td></td>
<td>(5,3)</td>
<td>(3,3,2)</td>
<td>$F_1 \cap F_2$</td>
<td>$h^1(\mathbb{P}^1, (\text{Sym}^2 \tilde{E})(-6)) = 0$</td>
</tr>
<tr>
<td></td>
<td>(4,4)</td>
<td>(4,3,1)</td>
<td>$F_1 \cap F_2$</td>
<td>$h^1(\mathbb{P}^1, (\text{Sym}^2 \tilde{E})(-6)) = 1$</td>
</tr>
</tbody>
</table>

We can choose the linear embedding $\mathbb{F} \subset \mathbb{F}(2,2,1)$ so that C does not contain $F_1 \cap F_2 \cap \mathbb{F}$. Therefore S' does not contain $F_1 \cap F_2 \cong \mathbb{P}^1$. Since S' and $F_1 \cap F_2$ have the intersection number

$$(S')(F_1)(F_2) = (3\tilde{H} - 3\tilde{L})(\tilde{H} - 2\tilde{L})^2$$

$$= 3\tilde{H}^3 - 15\tilde{H}^2\tilde{L}$$

$$= 3 \cdot 5 - 15 \cdot 1 = 0,$$

we conclude that $S' \cap F_1 \cap F_2$ is empty. Hence a general member S of Λ is smooth by Lemma 2.4. Thus C has a smooth K3-extension S.

3.3 Bielliptic cases

Let $C \subset \mathbb{P}^{g-1}$ be a smooth bielliptic canonical curve of genus g. By definition, there is a two-to-one morphism $f : C \rightarrow E$ from C onto an elliptic curve E. For any point p in E, set $f^*(p) = q_1 + q_2$, and define the line l_p in \mathbb{P}^{g-1} as follows:

$$l_p = \begin{cases}
\text{the line passing through } q_1 \text{ and } q_2 & \text{if } q_1 \neq q_2, \\
\text{the tangent line to } C \text{ at } q_1 & \text{if } q_1 = q_2.
\end{cases}$$

Let p, p' be points in E and set $f^*(p) = q_1 + q_2$ and $f^*(p') = q'_1 + q'_2$. Then

$$h^0(C, \mathcal{O}_C(q_1 + q_2 + q'_1 + q'_2)) = h^0(E, \mathcal{O}_E(p + p')) = 2,$$
and therefore \(q_1, q_2, q'_1, \) and \(q'_2 \) are all lie in a 2-plane by the geometric version of Riemann-Roch theorem ([ACGH]). Since \(C \) is non-degenerate, this implies that all the lines \(l_p \)'s pass through a common point \(p \in \mathbb{P}^{g-1} \setminus C \). The projection from \(p \) gives a two-to-one map \(\pi_p : C \rightarrow E_{g-1} \) from \(C \) onto an elliptic curve \(E_{g-1} \subset \mathbb{P}^{g-2} \) of degree

\[
\deg E_{g-1} = \frac{1}{2} \deg C = g - 1.
\]

Every elliptic curves \(E := E_{g-1} \) of degree \(g - 1 \) in \(\mathbb{P}^{g-2} \), where \(5 \leq g - 1 \leq 8 \), is smoothly extended to del Pezzo surfaces \(S := S_{g-1} \) of degree \(g - 1 \) in \(\mathbb{P}^{g-1} \). The extension \(S \) is the blowing-up \(\pi : S \rightarrow \mathbb{P}^2 \) at \(9 - (g - 1) \) points, and the elliptic curve \(E \) is the strict transform of a nonsingular cubic curve which passes through all the center of the blowing-up.

Let \(B = B_1 + \cdots + B_{2g-2} \) be the branch locus of \(\pi_p : C \rightarrow E \), and \(R = R_1 + \cdots + R_{2g-2} \) be the ramification locus. Then \(K_C \sim \pi_p^*(K_E) + R \sim R \) since \(E \) is elliptic. We distinguish the ambient spaces \(\mathbb{P}^{g-1} \) of \(C \) and \(S \), and denote them by \(\mathbb{P}^{g-1}_1 \) and \(\mathbb{P}^{g-1}_2 \) respectively. Let \(H_i(i = 1, 2) \) be the hyperplane divisor classes of \(\mathbb{P}^{g-1}_i \). Then \(H_1|_C = K_C \sim R \) and hence

\[
2H_2|_E \sim \pi_p^*H_1|_C \sim \pi_p^*R \sim B.
\]

On the other hand, we have \(H_2|_E \sim -K_S|_E \), thus we conclude that

\[
B \sim (-2K_S)|_E.
\]

Proposition 3.2. There is a smooth curve \(X \in |-2K_S| \) on \(S \) which passes through \(B_1, \cdots, B_{2g-2} \).

Proof. Let \(h \in \text{Pic}(S) \) be the pull-back of a line of \(\mathbb{P}^2 \) and \(e = e_1 + \cdots + e_{10-g} \) be the sum of all the exceptional divisors. Since \(K_S \sim -3h + e \) and \(E \sim 3h - e \sim -K_S \), there is an exact sequence

\[
0 \rightarrow \mathcal{O}_S(-K_S) \rightarrow \mathcal{O}_S(-2K_S) \rightarrow \mathcal{O}_E(-2K_S) \rightarrow 0.
\]

Since \(-K_S \sim H_2|_S \), the system \(|-K_S| = |\mathcal{O}_S(H_2)| = |\mathcal{O}_S(1)| \) is base point free and \(H^1(\mathcal{O}_S(-K_S)) = H^1(\mathcal{O}_S(1)) \) vanishes. Therefore, by Lemma 2.5, \(B \in |-2K_S|_E \) extends to a smooth curve \(X \in |-2K_S| \).

\[
\square
\]

4 Curves without very special linear systems

4.1 Genus \(\leq 5 \)

Every curve of genus 2 is hyperelliptic, so we have done before. Every non-hyperelliptic curve of genus 3 is a plane quartic, every non-hyperelliptic
curve of genus 4 is a complete intersection of hypersurfaces of degree three and four in \mathbb{P}^3, and every non-hyperelliptic non-trigonal curve of genus 5 is a complete intersection three quadric hypersurfaces. Hence they are K3 by Lemma 2.5.

4.2 Genus 6

Let C be a smooth non-hyperelliptic, non-trigonal, non-bielliptic canonical curve of genus 6. There are two cases remaining:

1. C is not plane quintic, and
2. C is smooth plane quintic.

Case 1. In this case, by [Muk2], there is a commutative diagram

$$
G = \text{Grass}(5,2) \subset \mathbb{P}^9 \subset \mathbb{P}^5 \subset C \subset S_5 = G \cap \mathbb{P}^5 \subset \mathbb{P}^5,
$$

where S_5 is a quintic del Pezzo surface and C is a hyperquadric section of S_5.

Let H_1, H_2, H_3, H_4 be the hyperplanes and Q the hyperquadric in \mathbb{P}^9 such that $C = G \cap H_1 \cap H_2 \cap H_3 \cap H_4 \cap Q$. Then the systems $|H_i - H_1|_{\mathcal{O}_G}$ and $|(Q - H_1)|_{\mathcal{O}_G} = |\mathcal{O}_G(1)|$ are base point free and $H^1(\mathcal{O}_G) = H^1(\mathcal{O}_G(1)) = 0$. Therefore there are extensions $\tilde{H}_2, \tilde{H}_3, \tilde{H}_4$ and \tilde{Q} such that $S := G \cap \tilde{H}_2 \cap \tilde{H}_3 \cap \tilde{H}_4 \cap \tilde{Q}$ is a smooth surface. Thus C has a smooth K3 extension.

Case 2. If C has a g^2_5, then there is an isomorphism from C onto a smooth plane quintic $C_5 = \{f(x_0, x_1, x_2) = 0\} \subset \mathbb{P}^2$, and the canonical model is the image of C_5 under the Veronese embedding $\mathbb{P}^2 \hookrightarrow \mathbb{P}^9$.

Let $L = \{l(x_0, x_1, x_2) = 0\} \subset \mathbb{P}^2$ be a line which meets C_5 transversally at 5 distinct points. Let $S \rightarrow \mathbb{P}^2$ be the blowing-up at $L \cap C_5$, and \tilde{L} and \tilde{C}_5 be the strict transform of L and C_5 respectively. Then $\tilde{L} + \tilde{C}_5$ is a smooth member of $|-2K_S|$, and therefore the double covering $X \rightarrow S$ is the smooth K3 surface which contains a curve isomorphic to C.

Remark. The pull back of L is a (-2)-curve on the smooth K3 surface X. Collapsing this and we get a weighted projective ample K3-extension $\tilde{X} = \{l(x)y^2 + f_3(x) = 0\} \subset \mathbb{P}(1:1:1:2)$.

10
4.3 Genus 7

Let C be a smooth non-hyperelliptic non-trigonal non-bielliptic curve of genus 7. There are three cases remaining:

1. C has a g^1_4 but no g^2_6.
2. C has a g^2_6 but is not bielliptic.
3. C is non-tetragonal (i.e., C has no g^1_4’s)

For Case 3, our main theorem is immediate from the Bertini type lemma 2.3 and the Mukai linear section theorem.

Theorem 4.1 ([Muk3]). A curve C of genus 7 is a transversal linear section of the 10-dimensional orthogonal Grassmannian $X \subset \mathbb{P}^{15}$ if and only if C is not tetragonal.

Case 1. Let α be a g^1_4 and $\beta := \omega C \alpha^{-1}$ its Serre adjoint. Then β is a g^3_8 by the Riemann-Roch theorem. Since C has no g^2_6 the morphism $\Phi_{|\alpha|} : C \rightarrow \mathbb{P}^3 = \mathbb{P}^* H^0(\beta)$ is an embedding and the multiplication map

$$\mu : H^0(\alpha) \otimes H^0(\beta) \rightarrow H^0(\omega_C)$$

is surjective by [Muk3]. Hence we have a linear embedding

$$\mu^* : \mathbb{P}^6 = \mathbb{P}^*(H^0(\omega_C)) \rightarrow \mathbb{P}^*(H^0(\alpha) \otimes H^0(\beta))$$

and there is a commutative diagram

$$\begin{array}{ccc}
\mathbb{P}^1 \times \mathbb{P}^3 & \xrightarrow{\text{Segre}} & \mathbb{P}^7 \\
\Phi_{|\alpha|} \times \Phi_{|\beta|} & & \\
\downarrow & & \uparrow \mu^* \\
C & \xrightarrow{\text{canonical}} & \mathbb{P}^6.
\end{array}$$

By [Muk3], C is a complete intersection of divisors of bidegrees (1,1), (1,2) and (1,2) in $\mathbb{P}^1 \times \mathbb{P}^3$. Let $W = (\mathbb{P}^1 \times \mathbb{P}^3) \cap \mu^*(\mathbb{P}^6)$ be the divisor of bidegree (1,1) and D_1, D_2 the divisors of degree (1,2) such that $C = W \cap D_1 \cap D_2$. Since $|D_i - W| = |O_{\mathbb{P}^1 \times \mathbb{P}^3}(0,1)|$ is base point free for $i = 1, 2$ and $H^1(O_{\mathbb{P}^1 \times \mathbb{P}^3}(0,1)) = 0$, by Lemma 2.5, we have extensions \tilde{D}_1 and \tilde{D}_2 of D_1 and D_2 respectively such that $S = \tilde{D}_1 \cap \tilde{D}_2$ is a smooth surface. Thus C has a K3 extension.
Case 2. Let α be a g^2_6 and $\beta = \omega_C \alpha^{-1}$ its Serre adjoint. Then β is also a g^2_6 by the Riemann-Roch theorem. If α is not isomorphic to β, we have a commutative diagram

$$\begin{array}{ccc}
P^2 \times P^2 & \xrightarrow{\text{Segre}} & P^8 \\
\phi_{|\alpha|} \times \phi_{|\beta|} & \uparrow & \alpha^* \\
C & \xrightarrow{\text{canonical}} & P^6.
\end{array}$$

By [Muk3], all morphisms in the diagram are embeddings, and C is a complete intersection of divisors of bidegrees $(1,1)$, $(1,1)$ and $(2,2)$ in $P^2 \times P^2$. Let H_1 and H_2 be divisors of bidegree $(1,1)$ and D a divisor of bidegree $(2,2)$ such that $C = H_1 \cap H_2 \cap D$. Then the systems $|H_2 - H_1| = |O_{P^2 \times P^2}|$ and $|D - H_1| = |O_{P^2 \times P^2}(1,1)|$ are base point free and $H^1(O_{P^2 \times P^2}) = H^1(O_{P^2 \times P^2}(1,1)) = 0$. Therefore, by Lemma 2.5, we have extensions \tilde{H}_2 and \tilde{D} such that $S := \tilde{H}_2 \cap \tilde{D}$ is a smooth K3-extension of C.

If α is isomorphic to β, then by [Muk3] the canonical embedding $C \hookrightarrow P^6$ factors through the weighted projective space $P(1 : 1 : 1 : 2)$, and C is a complete intersection of two divisors D_3 and D_4 in $P(1 : 1 : 1 : 2)$ of degree 3 and 4 respectively. By Lemma 2.6, we can extend these divisors to \tilde{D}_3 and \tilde{D}_4 in $P(1 : 1 : 1 : 2 : 2)$ of degree 3 and 4 such that $S = \tilde{D}_3 \cap \tilde{D}_4$ has at worst cyclic quotient singularities. These singularities are Gorenstein since $P(1 : 1 : 1 : 2 : 2)$ is so. Thus S has only rational double points as its singularities and S is an ample K3-extension of C.

4.4 Genus 8

Let C be a non-hyperelliptic, non-trigonal, non-bielliptic smooth curve of genus 8. We have one of the following:

1. C has a g^1_4 but has no g^2_6,
2. C has a g^2_6 but is not bielliptic,
3-1 C has a g^2_7 such that $\alpha^2 \not\sim \omega_C$, but C has no g^1_4,
3-2 C has a g^2_7 such that $\alpha^2 \cong \omega_C$, but C has no g^1_4, or
4. C has no g^2_7.

For Case 4, it is immediate from Bertini type lemma 2.3 and the Mukai linear section theorem.
Theorem 4.2 ([Muk2]). A curve C of genus 8 is a transversal linear section of the 8-dimensional Grassmanian variety $Gr(2, 6) \subset \mathbb{P}^{14}$ if and only if it has no g^2_7.

Case 1. In this case we have

Theorem 4.3 ([Muk1],[MI]). The canonical curve C is the complete intersection of four divisors in $\mathbb{P}^1 \times \mathbb{P}^4$ of bidegrees $(1, 1), (1, 1), (1, 2)$ and $(0, 2)$.

Let X be the unique irreducible divisor of bidegree $(0, 2)$ in $\mathbb{P}^1 \times \mathbb{P}^4$ which contains C. Let D'_1, D'_2, and E' be the divisors on X of bidegrees $(1, 1), (1, 1)$ and $(1, 2)$ respectively, such that $C = D'_1 \cap D'_2 \cap E'$ in X. Since $|E' - D'_2|$ and $|D'_1 - D'_2|$ are base point free linear systems and since $H^1(O_X(D'_1 - D'_2)) = 0$, there are divisors D'_0 and E'_0 of bidegrees $(1, 1)$ and $(1, 2)$ such that $S = D'_0 \cap E'_0$ is smooth away from the singular locus $\text{Sing}(X)$ of X.

If X is $\mathbb{P}^1 \times \mathbb{P}(1 : 1 : 2 : 2)$, then $\dim \text{Sing}(X) = 2$ and we can choose D'_0 and E'_0 so general that $S = D'_0 \cap E'_0$ has at worst ordinally double points as its singularities.

If X is $\mathbb{P}^1 \times \text{Cone}(\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3)$ or $\mathbb{P}^1 \times$ (smooth quadric), then $\dim \text{Sing}(X) \leq 1$ and therefore a general intersection $S = D'_0 \cap E'_0$ does not meet $\text{Sing}(X)$.

Hence S is smooth.

Case 2. By [Muk1], the canonical curve C is the complete intersection of two divisors in X of classes $| - K_X |$ and $| - \frac{1}{2} K_X |$, where X is a blowing-up of \mathbb{P}^3 at a one point. Then $| - \frac{1}{2} K_X |$ is very ample and therefore C is a hyperplane section of D. Since $| - \frac{1}{2} K_X | = | 2h - e |$ is base point free, C has a smooth extension $\tilde{D} \in | - K_X |$ by Lemma 2.5.

Case 3. Let α be a g^2_7 and $\beta = \omega_C \alpha^{-1}$ its Serre adjoint. By the Riemann-Roch theorem, β is also a g^2_7.

Case 3-1. If α is not isomorphic to β, then by [MI], the canonical curve C is the complete intersection of three divisors in $\mathbb{P}^2 \times \mathbb{P}^2$ of bidegrees $(1, 1), (1, 2)$ and $(2, 1)$.

Let $W = (\mathbb{P}^2 \times \mathbb{P}^2) \cap \mathbb{P}^7$ be the unique divisor of bidegree $(1,1)$, and D_1, D_2 divisors of bidegrees $(1,2)$ and $(2,1)$ respectively such that $C = W \cap D_1 \cap D_2$. Then $|D_i - W|$ is base point free, $H^0(D_i - W) \neq 0$, and $H^1(D_i - D_2) = 0$. Therefore, by the Lemma 2.5, there are divisors \tilde{D}_1, \tilde{D}_2 of bidegrees $(1,2)$ and $(2,1)$ such that $S := \tilde{D}_1 \cap \tilde{D}_2$ is smooth and $\tilde{D}_1 \cap \tilde{D}_2 \cap W = C$. Thus S is a smooth K3 extension of C.

13
Case 3-2. If α is isomorphic to β, then the canonical embedding factors through a weighted projective space

$$\mathbb{P}(1 : 1 : 2 : 2) = \mathbb{P}(1^3 : 2^2) = \text{Proj} \mathbb{k}[x_0, x_1, x_2, y_0, y_2],$$

where \{\(x_0, x_1, x_2\}\} is a basis of $H^0(\alpha)$ and \{\(y_0, y_1, \text{Sym}^2(x)\}\} that of $H^0(\alpha^2) = H^0(\omega_C)$.

$$C \hookrightarrow \mathbb{P}(1^3 : 2^2) \hookrightarrow \mathbb{P}(2^6 : 2^2) \cong \mathbb{P}^7 = \mathbb{P}^*H^0(\omega_C).$$

Theorem 4.4 ([MI]). The canonical model C is the complete linear section of the weighted Grassmann $G := \text{Gr}(2, (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2})) \subset \mathbb{P}(1^3 : 2^6 : 3^3)$,

$$[C \subset \mathbb{P}(1^3 : 2^2)] = [G \subset \mathbb{P}(1^3 : 2^6 : 3^3)] \cap \mathbb{P}(1^3 : 2^2).$$

Since C is smooth, its affine cone

$$\text{Cone}(C) = \text{Cone}(G) \cap \mathbb{A}(1 : 1 : 1 : 2) \subset \mathbb{A}(1^3 : 2^6 : 3^3),$$

is smooth away from the vertex. By the Bertini type lemma 2.6, there is a general 5-dimensional plane $\mathbb{P}(1 : 1 : 1 : 2 : 2)$ containing $\mathbb{P}(1 : 1 : 1 : 2 : 2)$ such that $S := G \cap \mathbb{P}(1 : 1 : 1 : 2 : 2)$ has at worst rational double points. Therefore C has an ample K3-extension.

Graduate School of Mathematics, Nagoya University,
Furō–chō, Chikusa-ku Nagoya 464-01, Japan

References

