The big de Rham-Witt complex

Lars Hesselholt

Introduction

The big de Rham-Witt complex was introduced by the author and Madsen in [15] with
the purpose of giving an algebraic description of the equivariant homotopy groups in
low degrees of Bokstedt’s topological Hochschild spectrum of a commutative ring.
This functorial algebraic description, in turn, is essential for understading algebraic
K-theory by means of the cyclotomic trace map of Bokstedt-Hsiang-Madsen [4];
compare [16,14,10]. The original construction, which relied on the adjoint functor
theorem, was very indirect and a direct construction has been lacking. In this paper,
we give a new and explicit construction of the big de Rham-Witt complex and we
also correct the 2-torsion which was not quite correct in the original construction.

The new construction is based on a theory, which is developed first, of modules
and derivations over a A-ring. The main result of this first part of the paper is that the
universal derivation of a A-ring is given by the universal derivation of the underlying
ring together with an additional structure that depends directly on the A-ring structure
in question. In the case of the universal A-ring, which is given by the ring of big
Witt vectors, this additional structure consists in divided Frobenius operators on the
module of Kdhler differentials. It is the existence of these divided Frobenius operators
that makes the new direct construction of the big de Rham-Witt complex possible.
This is carried out in the second part of the paper, where we also show that the big
de Rham-Witt complex behaves well with respect to étale morphisms. Finally, we
explicitly evaluate the big de Rham-Witt complex of the ring of integers.

In more detail, let A be a ring, which we always assume to be commutative and
unital. The ring W(A) of big Witt vectors in A is equipped with a natural action
through ring homomorphisms by the multiplicative monoid N of positive integers,
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where the action by n € N is given by the nth Frobenius map

W(A) — s W(A).
The Frobenius maps give rise to a natural ring homomorphism
W(A) — W(W(4))
whose Witt components A, : W(A) — W(A) are characterized by the formula
Fu(a) = ZeAe (a)"e.
eln

The triple (W(—),A,€) with £: W(A) — A the first Witt component is a comonad
on the category of rings and a A-ring in the sense of Grothendieck [11] is precisely a
coalgebra (A, A4) over this comonad.

Recently, Borger [5] has proposed that a A-ring structure A4: A — W(A) on a
ring A be considered as descent data from Z-algebras to algebras over a deeper base
. This begs the question as to the natural notions of modules and derivations over
A-rings. We show here that the general approach of Beck [2] leads to the following
answer. First, if (A,A4) is a A-ring, then the ring A is equipped with an action by the
multiplicative monoid N through ring homomorphisms, where the action by n € N is
given by the nth associated Adams operation

A Yan A

defined by the formula
Yian(a) = Y eda(a)”.

eln
Here A4 .: A — A is the eth Witt component of A4: A — W(A). Now, the category
of (A, A4)-modules is identified with the category of left modules over the twisted
monoid algebra AY[N] with the product defined by the formula

n-a=vwyy,(a)-n.

Hence, an (A, A4)-module is a pair (M, Ay) that consists of an A-module M and an
N-indexed family of maps Ay ,: M — M such that Ay, is Wa ,-linear, Ay = idpy,
and Ay mAr.n = Apg mn- Moreover, we identify the derivations

(A, 20) == (M 2a1)
with the derivations D: A — M that satisfy the identities
Mrn(Da) =Y Aa (@)™ DAy ().
eln
It is now easy to show that there is a universal derivation
(A, ) —2 (@101, )

We prove the following result.



Theorem A. For every A-ring (A, Ay), the canonical map

1 1
Qp —— Q03

is an isomorphism of A-modules.

It follows that for a A-ring (A, A4), the A-module of differentials Q! carries the
richer structure of an (A, A4)-module. In the case of (W(A),A4), this implies that
there are natural F,,-linear maps F, : .QQV( N .Q{,V( 4) defined by

Fy(da) = Y Ac(a)"/97'dA,(a)
eln

such that F = id, F,,F, = Fyy, dF,(a) = nF,(da), and F,(d[a]) = [a]"~'d[a]. The
p-typical analog of F,, was also constructed by Borger and Wieland in [7, 12.8].

The construction of the de Rham-Witt complex begins with the following variant
of the de Rham complex. The ring W(Z) contains exactly the four units +[£1], all
of which are square roots of [1], and the 2-torsion element

dlog[~1] = [~1]"'d[~1] = [~ 1]d[- 1] € @,
plays a special réle. We define the graded W(A)-algebra
AL . 1 .
ia) = Tonia)yLway /J

to be the quotient of the tensor algebra of the W(A)-module Q‘}V( 4) by the graded
ideal J° generated by all elements of the form

da®da—dlog[—1]® Fada

with a € W(A). It is an anticommutative graded ring which carries a unique graded
derivation d that extends d: W(A) — .Q%lw( 4) and satisfies

ddw = dlog[—1]-do.

Moreover, the maps F,: W(A) — W(A) and Fy: Qq 4~ Qyy( 4) extend uniquely
to a map of graded rings F, : .QW( A QW( n which satisfies dF,, = nF,d. Next, we
show that the maps d and F;, both descend to the further quotient

v

Qi) = Qi) /K
by the graded ideal generated by all elements of the form
F,dV,(a) —da—(p—1)dlog[—1]-a
with p a prime number and a € W(A). We now recall the Verschiebung maps
V,: W(A) —» W(A)
which are additive and satisfy the projection formula

aV,(b) =V, (F,(a)b).
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These maps, however, do not extend to QW( 4) OF QW( 4y and the de Rham-Witt com-
plex, roughly speaking, is the largest quotient
Qi) — > WQ;
W(A) A
such that the Verschiebung maps extend to W £2, and such that the extended maps
F, and V,, satisfy the projection formula. The precise definition given in Section 4
below is by recursion with respect to the quotients Wg(A) of W(A) where S ranges
over the finite subsets S C N that are stable under division. We further prove the
following result to the effect that the de Rham-Witt complex may be characterized
as the universal example of an algebraic structure called a Witt complex, the precise
definition of which is given in Definition 4.1.

Theorem B. There exists an initial Witt complex S — WgQ, over the ring A. In
addition, the canonical maps

QL Wl

Ws(A)
are surjective, and the diagrams
Q4 B awel! 0 B swel! Qe B wWed
Ws(A) 55°A Ws(A) $2°A Ws(A) 52°A
J/R‘} JRST ld Jd JFm JF,"
q nr q S+l Ts a+l g M/ q
QWT(A) — WrQy QWS(A) — W50, ‘QWS/W(A) — Wy/m2y
commute.

If Ais an F-algebraand S = {1,p,..., p" "'}, then W2, agrees with the origi-
nal p-typical de Rham-Witt complex W, 2, of Bloch-Deligne-Illusie [19]. More gen-
erally, if A is a Z,)-algebra and S = {1, p,... ,p"" '}, then WsQ, agrees with the
p-typical de Rham-Witt complex W, €2, constructed by the author and Madsen [17]
for p odd and by Costeanu [9] for p = 2. Finally, if 2 is either invertible or zero in A
and S is arbitrary, then W52, agrees with the big de Rham-Witt complex introduced
by the author and Madsen [15]. We also note that if f: R — A is a map of Z,)-
algebras and S = {1, p,..., p" "'}, then the relative p-typical de Rham-Witt complex
W, IR of Langer-Zink [22] agrees with the quotient of WgQ, by the differential
graded ideal generated by the image of WgQ} — WsQ,.

We recall that van der Kallen [27, Theorem 2.4] and Borger [6, Theorem B] have
proved independently that for every étale morphism f: A — B and every finite subset
S C N stable under division, the induced morphism

Ws(f)
—3

Ws(A) Ws(B)

again is étale. Based on this theorem, we prove the following result.



Theorem C. Let f: A — B be an étale map and let S C N be a finite subset stable
under division. Then the induced map

Ws(B) Quyg(ay WsQf —— W5}

is an isomorphism, for all q.

To prove Theorem C, we verify that the left-hand terms form a Witt complex over
the ring B and use Theorem B to obtain the inverse of the map in the statement. The
verification of the Witt complex axioms, in turn, is significantly simplified by the
existence of the divided Frobenius on Qyy4) as follows from Theorem A.

Finally, we evaluate the de Rham-Witt complex of Z. The result is that W.Q% is
non-zero for g < 1 only. Moreover, we may consider W £2., as the quotient

QW(Z> — W,
of the de Rham complex of W(Z) by a differential graded ideal generated by elements
of degree 1. Hence, following Borger [5], we may interpret W £, as the complex of
differentials along the leaves of a codimension 1 foliation of Spec(Z) considered as
an [F|-space. We note that, by contrast, .ng(Z) is non-zero for all g.

As mentioned earlier, the big de Rham-Witt complex was introduced in [15] with
the purpose of giving an algebraic description of the equivariant homotopy groups

TR} (4) = (YA (T/C,) 1 T(A)]r

of the topological Hochschild T-spectrum T (A) of the ring A. Here T = R/Z is the
circle group, C, C T is the subgroup of order r, and [—, —|r is the abelian group of
maps in the homotopy category of orthogonal T-spectra. We proved in [13, Section 1]
that the groups TR} (A) give rise to a Witt complex over the ring A in the sense of
Definition 4.1 below. Therefore, by Theorem B, there is a unique map

W QX — TRQ (A)

of Witt complexes over A, where (r) denotes the set of divisors of r. We will show
elsewhere that this map is an isomorphism for all r and all g < 1.

1 Witt vectors

We begin with a review of Witt vectors and A-rings. The material in this section is due
to Cartier [8], Grothendieck [11], Teichmiiller [26], and Witt [29] and accordingly
we make no claim of originality. The reader is also referred to the very readable
account by Bergman [24, Appendix] and to the more modern and general exposition
by Borger [6]. We further mention the books by Hazewinkel [12] and Knutson [20],
which focus more on the réle of symmetric functions.

In the approach to Witt vectors taken here, all necessary congruences are isolated
in following lemma, commonly attributed to Dwork [12, E.2.4]. Let N be the set of
positive integers. We say that a subset S C N, possibly empty, is a truncation set if



whenever n € S and e is a divisor in 7, then e € S. The ring of big Witt vectors Wg(A)
associated with the ring A and the truncation set S is defined to be the set AS equipped
with a ring structure such that the ghost map

Ws(A) —2— AS
that takes the vector a = (a, | n € S) to the sequence w(a) = (w,(a) | n € S) with

wp(a) = Zeag/e

eln

is a natural transformation of functors from the category of rings to itself. Here the
target AS is considered a ring with componentwise addition and multiplication. The
elements a, and wy,(a) are called the Witt components and the ghost components of
the vector a, respectively. To prove that there exists a unique ring structure on Wg(A)
characterized in this way, we first recall the following result, a different proof of
which is given in [12, Lemma 17.6.1]. We write v, (n) for the p-adic valuation of n,
normalized such that v,(p) = 1.

Lemma 1.1. Suppose that for every prime number p € S, there exists a ring homo-
morphism ¢,: A — A with the property that §,(a) = a” modulo pA. Then for every
sequence x = (x, | n € S), the following (1)-(ii) are equivalent.

(i) The sequence x is in the image of the ghost map w: Wg(A) — AS.

(i) For every prime number p € S and every n € S with v,(n) > 1,

Xn = Pp (/) modulo p'r™A.

Proof. We first show that if a = b modulo pA, then a?”' = """ modulo p'A. If we
write a = b+ pg, then

v—1 v—1 v—1 v—1_ . - -
e g (7 e
— N\
I<i<p?
In general, the p-adic valuation of the binomial coefficient (m:") is equal to the num-
ber of carrys in the addition of m and n in base p. So in particular,

v—1 )
vp<(pi )p’) =v—1+i—v,(i)>v

which proves the claim. Now, suppose that x = w(a) satisfies (i). Since ¢,: A — A is
a ring-homomorphism and lifts the Frobenius of A/pA, we have

Opwasp(@) = Y edp(at’?)
e|(n/p)

which is congruent to ¥/(,/,) ea"’® modulo p"»™A. But if ¢ divides n but not n/p,
then v, (e) = v,(n) and hence, this sum is congruent to ¥, ede’© = wy(a) modulo
p"P(”)A. This shows that x satisfies (ii). Conversely, suppose that x satisfies (ii). We



find a vector a = (a, | n € S) with w,(a) = x, as follows. We let a; = x| and assume,
inductively, that a, has been chosen, for all e # n that divide n, such that w,(a) = x..
The calculation above shows that for every prime number p dividing n,

nje
Xp — Z ede

eln,e#n

is congruent to zero modulo p"» (W A. Therefore, this difference is divisible by n and
hence is equal to na, for some a, € A. This shows that x satisfies (i). O

Proposition 1.2. There exists a unique ring structure on the domain of the ghost map
Ws(A) —— A
making it a natural transformation of functors from rings to rings.

Proof. Let A be the free ring generated by {a,,b, | n € S}. The unique ring homo-
morphism ¢,: A — A that maps a, to a} and b, to b satisfies ¢,(f) = f? modulo
pA. Hence, if a and b are the vectors (a, | n € S) and (b, | n € S), respectively,
then Lemma 1.1 shows that the sequences w(a) +w(b), w(a) - w(b), and —w(a) are
in the image of the ghost map. It follows that there are sequences of polynomials
s=(sp|neSs),p=(p,|nes), andi= (i, | n €S) such that w(s) = w(a) +w(b),
w(p) = w(a) -w(b), and w(i) = —w(a). Moreover, since A is torsion free, the ghost
map is injective, and accordingly, these polynomials are unique.

Let A’ be any ring. If ¢’ = (a, | n € S) and &' = (b, | n € S) are two vectors in
W (A’), then there is a unique ring homomorphism f: A — A" with the property that
Ws(f)(a) =d and Ws(f)(b) =b'. We define d’ +b' = Ws(f)(s), a-b=Ws(f)(p),
and —a = Wy(f)(i). To prove that the ring axioms are verified, suppose first that A’
is torsion free. In this case, the ghost map is injective, and hence, the ring axioms
hold since they do so in AS. In general, we choose a surjective ring homomorphism
g: A” — A’ from a torsion free ring A”. The induced map Wg(g): Ws(A”) — Wg(A")
is again surjective, and since the ring axioms hold in the domain, they do so, too, in
the target. O

If T C § are two truncation sets, then the forgetful map

S
RT

We(A) —— Wr(A)

is a natural ring homomorphism called the restriction from Sto 7. If SC N is a
truncation set and n € N, then the set

S/n={eeN|necS}
again is a truncation set, possibly empty. For every n € N, there is a natural map
Vi
Wen(A) —— Ws(A)

that to the vector a = (a, | e € S/n) assigns the vector V,(a) = (b, | m € S), where
by, is equal to a,, if m = ne, and 0, otherwise. It is called the nth Verschiebung.



Lemma 1.3. For every n € N, the map V,: Wy, (A) — Wg(A) is additive.

Proof. The following diagram, where V," takes the sequence (x. | e € S/n) to the
sequence whose mth component is nx,, if m = ne, and 0, otherwise, commutes.

W/ (A) —2s Ws(A)

ok

AS/n Vi AS

Since V,)" is additive, so is V,,. Indeed, if A is torsion free, the horizontal maps are both
injective, and hence V,, is additive in this case. In general, we choose a surjective ring
homomorphism g: A’ — A and argue as in the proof of Proposition 1.2. O

Lemma 1.4. For every n € N, there exists a unique natural ring homomorphism

Wi(4) —— W, (4)

called the nth Frobenius that makes the following diagram, where the map F, takes
the sequence x = (x,, | m € S) to the sequence F)' (x) = (x,, | e € S/n), commute.

Wi(4) —— W, (4)

bk

AS Fa AS/n

Proof. The construction of the map F,, is similar to the proof of Proposition 1.2. We
let A be the free ring generated by {a,, | m € S}, and let a be the vector (a,, | m € S).
By Lemma 1.1, the sequence F*(w(a)) € AS/" is the image by the ghost map of a
vector

Fa(a) = (fae | e €S/n) € Wy, (A),

this vector being unique since A is torsion free. If A" is any ring and @’ = (al,, | m € S)
a vector in Wg(A’), then we define F,(a') = W, (¢)(Fy(a)), where g: A — A’ is the
unique ring homomorphism that maps a to «’. Finally, since the map F,” is a ring
homomorphism, an argument similar to the proof of Lemma 1.3 shows that also F,, is
a ring homomorphism. O

The Teichmiiller representative is the map

A wga)

whose mth component is a, if m = 1, and 0, otherwise. It is a multiplicative map.
Indeed, the following diagram, where [a|{ is the sequence with mth component a”,



commutes, and [—]¢ is a multiplicative map.

AHWS

In particular, the Teichmiiller representative [1]s is the multiplicative identity element
in the ring Wg(A).

Lemma 1.5. Let S C N be a truncation set and let A be a ring.

(i) Forall a € Wg(A), there is a convergent sum

a= ZVn([an]S/n)'

nes
(ii) For all m,n € N with greatest common divisor ¢ = (m,n),
FnVn = VoyeFnje: Wsyo(A) = Wy e(A).
(iii) Foralln €N, a € Wg(A), and a' € Wy, (A),
aVu(d') = Va(Fy(a)d).

(iv) Forall m,n € N,

FnFy = Fyn: Ws(A) = Wy, (A),

ViV = Vi W (A) = Wi(A),
(v) Foralln e Nanda € A,

Fy([als) = lalgy,-

Proof. One readily verifies that the two sides of each equation have the same image
by the ghost map. This shows that the relations hold, if A is torsion free, and hence, in
general. In statement (i), the convergence, for S infinite, is with respect to the product
topology on Wg(A) induced by the discrete topology on A. O

Proposition 1.6. The ring of Witt vectors in 7 is equal to the abelian group

HZ Va([1s/n)

nes

with the multiplication given by

Vin([Us/m) - Va([Usn) = ¢ Ve([1]s/e)

where ¢ = (m,n) and e = [m,n] are the greatest common divisor and the least common
multiple, respectively.
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Proof. The formula for the product follows from Lemma 1.5 (ii)-(iv). For finite S,
we prove the statement by induction beginning from the case S = @ which is trivial.
So suppose that S is non-empty, let m € S be maximal, and let 7 = S\ {m}. The
sequence of abelian groups

S
Vin RT

0—— Wi;y(2) Ws(Z) Wr(Z) —— 0

is exact, and we wish to show that it is equal to the following exact sequence.

Vin Ry
0 ? Z'[l]{l}HHZ'VH([I]SW)i)HZ'Vn([l]T/n)%O
nes neT

The latter sequence maps to the former, and by induction, the right-hand terms of the
two sequences are equal. Since also the left-hand terms are equal, so are the middle
terms. This completes the proof for S finite. Finally, every truncation set S is the union
of its finite sub-truncation sets So C S and Wg(Z) = limgq Wy, (Z). O

The values of the restriction, Frobenius, and Verschiebung maps on the generators
Vu([1]s/n) are readily evaluated by using Lemma 1.5 (ii)(iv). To give a formula for
the Teichmiiller representative, we recall the Mobius inversion formula. Let g: N — 7Z
be a function and define the function f: N— Zby f(n) = Y,|, g(e). Then the original
function is given by g(n) = Y,|, tt(e)f(n/e), where p: N — {—1,0,1} is the Mobius
function defined by u(e) = (—1)", if e is a product of r > 0 distinct prime numbers,
and u(e) = 0, otherwise.

Addendum 1.7. If m is an integer and S a truncation set, then

Z Z“ n/e ]S/n)

nes eln
In particular; the square root of unity [—1]s is equal to —[1]s +V2([1]s/2).

Proof. 1t suffices to prove that the formula holds in Wg(Z). By Proposition 1.6, there
are unique integers r,, ¢ € S such that

S = Z reV e S/e
ecS
Evaluating the nth ghost component of this equation, we find that
m' = Zere
eln

from which the stated formula follows by Mobius inversion. Finally, defining g(n) to
be —1,if n=1;2,if n = 2; and 0, otherwise, we get f(n) = Ze|ng(e) = (—1)", which
proves the stated formula for [—1]s. O

If m = q is a prime power, then the coefficient of V;,([1]s/,) in [m]s is equal to the
number of monic irreducible polynomials of degree n over the finite field IF,,.



Lemma 1.8. If A is an IF y-algebra and S a truncation set, then

F, :Rg/pows((P)I Ws(A) — WS/p(A)a

where ¢ : A — A is the Frobenius endomorphism.

Proof. By definition F,(a) = (fp.(a) | e € S/p) with the elements f, . of the free
ring on {a, | n € S} characterized by the system of equations

Yefmlé=Y ea™*

elm elpm

indexed by m € S/p. The lemma is equivalent to the statement that for all m € S/p,
fpm = @y modulo p, which we proceed to prove by induction on m € S/p. Since
fp1 = ai + pay,, the statement holds for m = 1. So we let m > 1 and assume that
for all proper divisors e of m, f, . = af modulo p. This implies that e, [e = eal™

modulo p"»"*1 by the argument at the beginning of the proof of Lemma 1.1. We

now write
Zef"fée = Zea‘é’m/e—i— ) eat™
elm

elm e|pm,etm

and note that if e | pm and e {m, then v, (e) = v, (m) + 1. Therefore, we may conclude
that mf, ,, = maly modulo p"»"+1A. But the free ring on {a, | n € S} is torsion free,
SO fpm = ah, modulo p as desired. This completes the proof. O

Lemma 1.9. Let m be an integer, let A be a ring, and let S be a truncation set. If m
is invertible in A, then m is invertible in Wg(A); and if m is a non-zero-divisor in A,
then m is a non-zero-divisor in Wg(A).

Proof. As in the proof of Proposition 1.6, we may assume that S is finite. We proceed
by induction on S beginning from the trivial case S = 0. So let S be non-empty and
assume the statement for all proper sub-truncation sets of S. We let n € S be maximal,
and let T = S\ {n}. In this situation, we have exact sequence

0—— Wi (A)
from which the induction step readily follows, since W3 (A) = A. O
Let p be prime number. We say that a sub-truncation set of the truncation set
P={l,p,p?. ...} CN

is a p-typical truncation set. For instance, if S is any truncation set, then SN P is a
p-typical truncation set. The p-typical truncation sets T C Pare T =0, T = P, and
T ={1,p,...,p" '}, where n is a positive integer. The ring Wp(A) is called the ring
of p-typical Witt vectors and the ring Wy, .-1}(A) is called the ring of p-typical
Witt vectors of length n in A.
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Proposition 1.10. Let p be a prime number; let S be a truncation set, and let I(S) be
the set of k € S not divisible by p. If A is a ring in which every k € I(S) is invertible,
then the ring homomorphism
g
Ws(A) —— [ Wis/urr(A)
kel(S)

whose kth component is g; = Riéfk)ﬁ p © Fi is an isomorphism.

Proof. We have a commutative diagram of ring homomorphisms

Ws(A) ——— [T Ws/mnp(A)

S

45— Al

where the products on the right-hand side range over k € I(S) and where g% is the
map whose kth component g}’ is given by g}’ (a),» = apv. The map g" is a bijection
since the sets SNkP with k € I(S) partition S and since the maps SNkP — (S/k)NP
that take p"k to p" are bijections. Let 2" be the inverse of g". We claim that there
exists a natural function i: J[TWs/)np(A) — Wg(A) such that woh = h" o ([Tw).
Granting this, the equalities g" o h" = id and h" o g" = id imply that goh = id and
ho g =id, which proves the proposition.

To prove the claim, it suffices to show that, in the universal case, where A is the
free Z[I(S)']-algebra generated by {ay v | k € I(S),p" € (S/k) NP} and a = (ax)
with a; = (a,pv) € Ws/t)np(A), the element x = (1" o ([Tw))(a) is in the image of
w: Wg(A) — AS. The unique Z[I(S)~!]-algebra homomorphism ¢,: A — A that to
ay,pv associates ai o is a lift of the Frobenius of A/pA. Moreover, all prime numbers
£ € S different from p are invertible in A. Therefore, we conclude from Lemma 1.1
that the sequence x = (x, | n € S) is in the image of the ghost map if and only if
for all n = p'k € S with k € I(S) and v > 1, xpve = @p(x,-1;) modulo p’A. But
Xprk = wpr(ax) and @ (x,v-14) = @p(w,v-1 (ax)) which are congruent modulo p"A by
Lemma 1.1. Hence, there exists a vector k(a) € Wg(A) such that x = w(h(a)) and this
vector is unique, as A is torsion free. The vector A(a), in turn, uniquely determines
the desired natural map 4. This completes the proof. O

Example 1.11. IfS={1,2,...,n}, then (S/k)NP={1,p,...,p* '} where s = s(n, k)
is the unique integer with p*~'k < n < p°k. Hence, if every integer 1 < k < n not
divisible by p is invertible in A, then Proposition 1.10 gives an isomorphism

Wiin,. n(A) —— H Wiip,.p13(A)

where the product ranges over integers 1 < k < n not divisible by p and s = s(n, k).

Lemma 1.12. If A is an IF ,-algebra, then for every truncation set S,

VpoF,=p-id: Ws(A) = Wg(A).
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Proof. We first reduce to the case where S is a p-typical truncation set. It follows
from Lemma 1.5 that the following diagram, where the products range over k € I(S)
and where the vertical maps are the isomorphisms of Proposition 1.10, commutes,

Fp Y
Ws(A) WS//J(A) WS(A)

I I I

[1Fp IV
HW(S/k)mP(A) — HW(S/pk)mP(A) — HW(S/k)mP(A)~

Accordingly, it will suffice to prove the lemma for p-typical truncation sets S, and we
may further assume that S is finite. It follows from Lemma 1.5 (iii) that

VpOFp = Vp([l]s/p> -id: Ws(A) — W5<A)

and we proceed to prove that V,([l]s/,) = p[l]s by induction on the cardinality n

of S. The case n = 0 holds trivially, so we let S = {1,p,...,p" '} be the p-typical
truncation set of cardinality n > 0 and assume that the identity in question has been
proved for all proper sub-truncation sets 7 C S. The exact sequences

Vsl RS
0 —— W1 (A) 2 W(A) —2s Wy, (A) — 0

furnish an induction argument showing that Wg(A) is annihilated by p". In particular,
Vy([1]s/p) is annihilated by p"~!. Moreover, it follows from Addendum 1.7 that

Pls=plls+ ¥ gw’fpp“>vpx<[113/,,s>

0<s<n

and the left-hand side vanishes, since A is an [F,-algebra. The inductive hypothesis
shows that Vs ([1]5/,5) = p*~ 'V, ([1]s/,). so the formula above becomes

0=p[lls+(p” —DVup([1s/p)-

But p" ' —1>n—1,s0V,([l]s/,) = p[l]s which proves the induction step. O

nfl_l

Let A be a p-torsion free ring equipped with a ring homomorphism ¢ : A — A such
that ¢ (a) = a” modulo pA. By Lemma 1.1, there is a unique ring homomorphism

Aot A— Wp(A)

such that w,» o Ay = ¢". We define sy: A — Wp(A/pA) to be the composition of
Ay and the map induced by the canonical projection of A onto A/pA. We recall that
A/ pA is said to be perfect, if the Frobenius ¢: A/pA — A/pA is an automorphism.

Proposition 1.13. Let p be a prime number, let n be a non-negative integer, and let
S be the finite p-typical truncation set of cardinality n. Let A be a p-torsion free ring
equipped with a ring homomorphism ¢ : A — A such that ¢ (a) = aP modulo pA and
suppose that A/ pA is perfect. In this situation, the map sy induces an isomorphism

So
A/p"A —— Ws(A/pA).
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Proof. We claim that the map s¢ induces a map §y as stated. Indeed, the restriction
map RE: Wp(A/pA) — Ws(A/pA) has kernel V,Wp(A/pA), and

Vi Wp(A/pA) = Vi Wp(9"(A/pA)) = VpuFpp W(A/pA) = p"Wp(A/pA),

where the left-hand equality follows from A/pA being perfect, the middle equality
from Lemma 1.8, and the right-hand equality from Lemma 1.12. Now, the proof is
completed by an induction argument based on the commutative diagram

n—1
00— A/pA—" s A/pA—2 A/ IA———0

J((pnl Jg} Jf"’
Vool RS

00— A/pA — s W(A/pA) —2s W, (A/pA) —— 0,

where the top horizontal sequence is exact since A is p-torsion free, and where the
left-hand vertical map is an isomorphism since A/pA is perfect. O

We return to the ring of big Witt vectors. We prove that the underlying additive
group of the ring W(A) is naturally isomorphic to the multiplicative group

A(A) = (1+A[])”

of power series with constant term 1. We also view the set zA[[t]] of power series
with constant term 0 as an abelian group under coefficientwise addition. We recall
the following result from [8, Section 1]; see also [12, Proposition 17.2.9].

Proposition 1.14. The diagram of natural group homomorphisms

W(A) —— A(4)

Jw Jl % log
W

AN A,

where y(ay,az,...) = [Tus1(1 — ant") "' and y"(x1,x2,...) = L= Xut", commutes,
and the horizontal maps are isomorphisms.

Proof. 1t is clear that the maps in the diagram are natural transformations of functors
from the category of rings to the category of sets. Moreover, the calculation

i e i e ea,t°
- log(g(l ait)") = e;tdz log(1 —act )_e; 1 —a,t°
Y Y et~ ¥ (Y )

ex1g>1 n=l eln

shows that the diagram commutes. It is also clear that the two vertical maps are
group homomorphisms and that the map 7" is an isomorphism of abelian groups.
This implies that the map 7 is a group homomorphism. Indeed, if A is torsion free,
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then the vertical maps both are injective, and in general, we choose a surjective ring
homomorphism A’ — A from a torsion free ring and use that W(—) and A (—) both
take surjective ring homomorphisms to surjective group homorphisms.

It remains to show that 7 is a bijection. To this end, we write

[T —an) ' = +bit+b*+...)7"

n>1

where the coefficient b, is given by the sum b, = }.(—1)"a;, ...q;, that ranges over
all 1 <i; < -+ <i, <nsuch that iy +2ip +--- + ri, = n. It follows that the Witt
coordinates a, are uniquely determined, recursively, by the coefficients b,, and hence,
that y is a bijection as stated. O

Remark 1.15. We will always consider the set A(A) = 1 +tA[t] as a ring with the
unique ring structure that makes the map y: W(A) — A(A) aring isomorphism. This
ring structure is characterized by begin natural in A, by addition being given by power
series multiplication, and by the product satisfying

(I1—at) ' (1—bt) ' = (1 —abr)™!

for all a,b € A; compare [11, Section 4]. We note that (1 —¢)~! is the multiplicative
unit element in A (A). The reader is warned, however, that there exists four different
ring structures on the set 1+ A[[t] satisfying the first two of these requirements but
with the last requirement replaced by the four possible choices of signs in the product
formula (1+at)*! % (1 £bt)*" = (1+abt)*!. The choice ++ is used in [11,1,3],
while the choice —+ is used in [12, Section 17.2]. The four different rings A (A)++
are all naturally isomorphic, the natural isomorphism sy : A(A) — A(A) Ly given
by urs (f(t)) = (1£1)*! % f(¢), where the product is evaluated in A(A). We also
write Yrs: W(A) = A(A)1+ for the natural ring isomorphism Y+t = uit 07; in
particular, y =7y__.

Addendum 1.16. The map 7y induces an isomorphism of abelian groups

Ws(4) —2— As(A)

where As(A) is the quotient of the multiplicative group A(A) = (1+1tA[t])* by the
subgroup Is(A) of all power series of the form [T,cns(1 — ant™) L.

Proof. The kernel of the restriction map Ry : W(A) — Wg(A) is equal to the subset
of all vectors a = (a,, | n € N) such that a, = 0, if n € S. The image of this subset by
the map 7 is the subset Ig(A) C A(A). O

Example 1.17. 1f S = {1,2,...,n}, then Is(A) = (1 +¢""'A[t]])*. Hence, in this case,
Addendum 1.16 gives an isomorphism of abelian groups

Ts: Wiia, o (A) = (LHAf])*/(1+ 1" A"
For A a Z,)-algebra, the structure of this group was examined in Example 1.11.

Lemma 1.18. Let A be an arbitrary ring. For every prime number p, the natural ring
homomorphism F,: W(A) — W(A) satisfies that F,(a) = a” modulo pW(A).
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Proof. By naturality, it suffices to consider A = Z[aj,az,...] and a = (ay,az,...) and
show that there exists b € W(A) with Fj,(a) —a” = pb. We have

Wn(Fp(a) —a?) = Z ea?"/e — (Zeaz/e)p

elpn eln
which clearly is congruent to zero modulo pA. So we let x = (x, | n € N) with

Xp = %wn(Fp(a) —a”)

and employ Lemma 1.1 to show that x = w(b) with b € W(A). To this end, we must
show that for every prime number ¢ and every n € /N,

Xn = ¢€(xn/é)

modulo ¢"¢(W A, where ¢y A — A is the unique ring homomorphism that takes a, to
aﬁ. The congruence in question is equivalent to the statement that

wa(Fp(a) —a”) = 9e(wn/o(Fp(a) —a”))

modulo £*¢MA, if ¢ # p and n € /N, and modulo p"»"*+1A, if ¢ = p and n € pN. If
£ # p, the statement follows from Lemma 1.1, and if £ = p and n € pN, we find

Wn(Fp(a) - ap) - ¢p(wn/p(Fp(a) - ap))

= eaém/e - eaZ/e P_ eagn/e + eag/ )7,
)3

elpn eln eln el(n/p)

If e | pnand e{n, then v,(e) =v,(n)+1, so

Z ea?"/e = Zeafg"/e

elpn eln

modulo p*»("*1A. Similarly, if ¢ | n and e { (n/p), then v,(e) = v,(n), and hence,

Zeaz/ez Z eaz/e

eln el(n/p)

modulo pVP(”)A. But then

(Tealy'=( ¥ ey

eln el(n/p)
modulo pvp(”)“A as required; compare the proof of Lemma 1.1. O

We next recall the following result of Cartier from [12, Theorem 17.6.17].



Proposition 1.19. There exists a unique natural ring homomorphism
A=Ay W(A) > W(W(A))

such that for every positive integer n,
wpoA =F,: W(A) — W(A).

In addition, the following diagrams, where €4 = w1 : W(A) — A, commute.

wa) < wowa) S wia) W wa))) Y ww(a))

\ [ / [ [

W(A) W(W(A)) " W(A)

Proof. We first prove that a natural ring homomorphism as stated exists. It suffices to
prove that in the universal case A = Zaj,az,...] and a = (aj,az, . .. ), there exists an
element Ag(a) € W(W(A) whose image by the ghost map

w: W(W(A)) = WA

is the sequence (F,(a) | n € N). It follows from Lemma 1.9 that, in this case, the
ghost map is injective, so the element A4 (a) necessarily is unique. Now Lemmas 1.1
and 1.18 show that the sequence (F;,(a) | n € N) is in the image of the ghost map if
and only if for every prime number p and n € pN, the congruence

Fy(a) = Fy(F,/(a))  modulo p"»™W(A)

holds. But in fact equality holds by Lemma 1.5 (iv), so we conclude that the desired
element A4 (a) with wy,(A4(a)) = F,(a) exists. Hence, there exists a unique natural
ring homomorphism A such that w, o A = F, for every n € N. Finally, one readily
verifies the commutativity of the two diagrams in the statement by evaluating the
corresponding maps in ghost coordinates. O

Remark 1.20. The map A, : W(A) — W(A) given by the nth Witt component of the
map A is generally not a ring homomorphism. For example, for a prime number p,
the map A, is the unique natural solution to the equation

Fy(a) =a’ + pAp(a).
We also note that the map A has the property that for all a € A,

A([a]) = [[a]].
Indeed, we may assume that A = Z[a], in which case the ghost map is injective, and
applying w, on both sides, we get F,,([a]) = [a]" which holds by Lemma 1.5 (v).

The natural transformation A in Proposition 1.19 is called the universal A-operation.
Using it, we may restate Grothendieck’s definition of a A-ring from [11] as follows.
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Definition 1.21. A A-ring is a pair (4,A) of a ring A and a ring homomorphism
A: A — W(A) that makes the following diagrams commute.

A2 W(A) W(W(A)) 2 — W(A)
\ P TW(M P
A A

A morphism of A-rings f: (A,A4) — (B, Ap) is aring homomorphism f: A — B with
the property that Ago f = W(f) o 4.

If (A,1) is a A-ring (A, 1), then we write A,,: A — A for the map that to a assigns
the nth Witt component A, (a) of the Witt vector A (). The map A, is generally neither
additive nor multiplicative.

Remark 1.22. We recall the translation between the above definition of a A-ring and
the original definition by Grothendieck as stated in [3, Definition V.2.4] (or in [11]
and [1, Section 1], where a A-ring is called a special A-ring), emphasizing the choices
of signs; see also [12, E.2.1]. The commutativity of the diagrams in Proposition 1.19
express that the triple (W(—),A,€) is a comonad on the category of commutative
rings, and the commutativity of the diagrams in Definition 1.21 express that the
pair (A,1) is a coalgebra over this comonad. Similarly, in the original definition,
a A-ring is defined to be a coalgebra (A,4,) over the comonad (A(—)4++,4;,&),
where A (=) is the functor from the category of commutative rings to itself de-
fined in Remark 1.15; & 4: A(A)4+ — A is the natural ring homomorphism defined
byga(l4+ait+...)=aj;and A 40 A(A)4+ — A(A(A) 44 )4+ is the unique natural
ring homomorphism that is a section of & 4(4), , and satisfies that for all a € A,

Aa(l+at) =14+ 1+an).

We claim that the natural ring isomorphism 7y is an isomorphism of comonads
from (W(—),A,€) to (A(—)4+,4,&) in the sense that if (A, 1) is a coalgebra over
the former comonad, then (A, 7, oA ) is a coalgebra over the latter comonad. Indeed,
this follows immediately from the above characterization of A, and from the formula
Ax([a]) = [[a]] from Remark 1.20. This shows that the two definitions of a A-ring
agree. Finally, we remark that if (A,A) is a A-ring and if we expand A, = 7, oA as

(@) =1+ A @) + A (@) 4+ A @) + -

then A": A — A is called the nth exterior operation associated with (4,A); it should
not be confused with A,,: A — A. Similarly, if we expand o; = Yo A as

o;(a) = 1+Gl(a)t+0'2(ﬂl)t2+”'—|—O'n(a)t”-|-... 7
then 0”: A — A is called the nth symmetric operation associated with (A4, 1).

Definition 1.23. Let (A, 1) be a A-ring. The associated nth Adams operation is the
composite ring homomorphism Y, = w,ol: A — A.
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We note that, by Proposition 1.14, the series y;(a) = Y,>1 Wu(a)t" is given by
either one of the following formulas which are, perhaps, more familiar;

d d
vi(a) = IE logoy(a), voi(a) = _ta log4(a).
We recall the following standard properties of the Adams operations, and mention
Wilkerson’s result [28, Proposition 1.2] that, if A is a ring flat over Z equipped with
a family of ring endomorphisms ;, satisfying (i)—(iii) below, then there is a unique
A-ring structure on A for which the v, are the associated Adams operators.

Lemma 1.24. Let (A,A) be a A-ring. The associated Adams operations satisfy that

(1) the map y is the identity map of A;
(i) for all positive integers m and n, Wy, o W, = Wy, and
(iii) for every prime number p and a € A, yy,(a) = a” modulo pA.

Proof. The properties (i) and (iii) follow immediately from the definitions, and (ii)
follows from the identities
Y oWy =wpodow,od =wyuow,oW(A)oAd
=Wy oW, 0AoAd =wyoF,0A =Wy oA = Yy
Here, the second identity follows from the naturality of w,; the third identity from

the definition of a A-ring; the forth identity from the definition of the map A; and the
fifth identity from the definition of the map F;,. O

Finally, we recall the following general theorem which was proved independently
by Borger [6, Theorem B], [5, Corollary 15.4] and van der Kallen [27, Theorem 2.4].

Theorem 1.25. Let f: A — B be an étale morphism, let S be a finite truncation set,
and let n be a positive integer. Then the induced morphism

Ws(4) —, w(B)

is étale and the square diagram

Ws(4) —=, wy(B)

S
Wy /n (f)

WS/n(A) —_— WS/n(B)

is a cocartesian square of rings. O

We remark that in loc. cit., the Theorem 1.25 is stated only for the finite truncation
sets (n) that consist of all divisors of a given positive integer n. However, as explained
in [6, Section 9.5], the case of a general finite truncation set readily follows from the
special case.
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2 Modules and derivations over A-rings

In general, if € is a category in which finite limits exist and if X is an object of ¥,
then Beck, in his thesis [2, Definition 5], defines the category of X-modules to be the
category (€ /X)ap of abelian group objects in the category over X. He also defines
the derivations from X to the X-module (Y /X, +y,0y,—y) to be the set

Der(X, (Y/X,—‘ry,()y,—y)) = Hom%/x(X/X,Y/X)

of morphisms in the category % /X equipped with the abelian group structure induced
by the abelian group object structure on Y /X. In this section, we identify and study
these notions in the case of the category 7 of A-rings.

We recall that, in general, an adjunction from a category ¢ to a category ¥ is a
quadruple (F, G, e,n) of functors F: € — 2 and G: 9 — ¢ and natural transforma-
tions £: FoG = idg and n: idy = GoF such that the following composite natural
transformations are equal to the respective identity natural transformations,

FL0 FoGoF 2L F, G =% GoFoG =22 G

compare [23, Theorem I'V.1.2]. We refer to this requirement by saying that the triangle
identities hold. The natural transformations € and 7 are called the counit and the unit
of the adjunction, respectively, and the adjunction is said to be an adjoint equivalence
if they both are isomorphisms. A functor G: 2 — % is said to admit a left adjoint,
if there exists an adjunction (F, G, e,m) with G as its second component, and in this
case, the functor F is said to be a left adjoint of the functor G. If (F',G,€',n’) is
another such adjunction, then the composite

Fon' oF'
F—2y FoGoF 2L p/

is the unique natural transformation ¢ : F = F' with the property that the diagrams

FoG—=idy idy —— GoF
\H,GOG H,GOG
FloG == idy idy —— GoF'

commute and is an isomorphism; see [23, Theorem IV.7.2]. In this sense, a left adjoint
of a functor G, if it exits, is unique, up to unique isomorphism. Similar statements
hold for right adjoint functors.

Let <7 be the category of rings. We always assume rings to be commutative and
unital, unless otherwise stated. Given a ring A, we define an adjunction (F,G,€,n)
from the category (&7 /A),p of abelian group objects in the over-category .7 /A to the
category .# (A) of A-modules in the usual sense, following Beck [2, Example 8]. So
let f: B— A be an object of <7 /A, and let

0
Bx,B—24B A—"B

| !

B
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be abelian group object structure maps. The functor F associates to the abelian group
object (f,+p5,0p, —p) the A-module M given by the kernel of f with the A-module
structure a - x = Og(a)x. Conversely, if M is an A-module, then we let A x M be the
ring given by the direct sum A & M equipped with the multiplication

(a,x)-(d',x) = (ad,ax' +d'x)

and define G(M) to be the abelian group object (f,+,0,—), where f: AX M — A
is the canonical projection, and the abelian group object structure maps are given by
(a,x) + (a,x') = (a,x+x'), 0(a) = (a,0), and —(a,x) = (a,—x). Finally, we define
€: GoF = id by €(a,x) =0g(a)+xand n: id = F oG by n(x) = (0,x). For later
use, we include a proof of the following result of Beck [2, Example §].

Lemma 2.1. IfA is a ring, then the quadruple (F,G,n,€) defined above is an adjoint
equivalence of categories from (7 |A)ap to M (A).

Proof. 1t is clear that i is well-defined and a natural isomorphism, and it is also
clear that € is a natural isomorphism of underlying additive groups. We must show
that € is a multiplicative map and a map of abelian group objects; we first consider
the latter statement. So we fix an object (f: B — A,+5,05,—p) of (&//A), and
let M = ker(f) with the A-module structure defined above. By definition, we have
€(a,0) = O0g(a) which shows that € preserves zero maps. To see that € preserves
addition maps, we first note that, since +p is a ring homomorphism,

(u+v)+p (U +vV) = (u+pu') + (v +5V)
for all (u,u'),(v,v') € B x4 B. In particular, if x,y € M, then
xtpy=(x+0)+5(0+y) = (x+50) + (0+5y) =x+y,

where we also use that 0 = 05(0) is a common zero element for the two compositions
+ and +p on M. We therefore conclude that for all a € A and x,x’ € M,

€(a,x)+p€(a,x') = (0(a) +x) +5 (0(a) +x")
= (0(a) +50(a)) + (x+5x") = 0(a) + (x +x') = e(a,x +x'),

as desired. We have showed that € is compatible with the zero and addition maps; but
then it is also compatible with negation maps.

It remains to prove that the map € is multiplicative, or equivalently, that M C B
is a square-zero ideal. Since +p: B X4 B — B is a ring homomorphism, we have that
w+pgu'Vv = (u+gu')(v+pV), forall (u,u'),(v,v') € B x4 B. In particular,

xy+xy = (x+y)(x' +y)

for all x,x’,y,y’ € M, since +p = + on M. Taking y = x' = 0, we find that xy’ = 0 for
all x,y’ € M as desired. This completes the proof. O
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We will prove the analogous statement for A-rings in Proposition 2.10 below, but
first we examine the Witt vectors of A x M. The polynomials s,, p,, and i, that define
the sum, product, and opposite in the ring of Witt vectors all have constant term zero.
Therefore, the ring of Witt vectors is defined also for non-unital rings. Moreover,
modulo terms of higher degree, these polynomials are congruent to a, + b, a,b,, and
—ay, respectively, as one readily proves by induction. Therefore, if M is an abelian
group considered as a non-unital ring with zero multiplication, then the non-unital
ring Wg(M) has zero multiplication and its underlying additive group is equal to
MS with componentwise addition. In the same way, one shows that the polynomials
fne and dy, . that define the nth Frobenius and the universal A-operation all have
constant term zero and that they are congruent to na,, and a,,,., respectively, modulo
terms of higher degree. Therefore, for M as above, the map F,: Wg(M) — W/, (M)
takes (xy, | m € S) to (nxye | € € S/n) and the map Ay: W(M) — W(W(M)) takes
(xm |meN) to ((xye |e€N) | meN).

Lemma 2.2. Let S be truncation set, let A be a ring, and let M be an A-module. The
canonical inclusions induce a ring isomorphism

inp. +ing,: Wg(A) x We(M) — Ws(AX M),

provided that Wg(M) is given the Ws(A)-module structure, where for a € Wg(A) and
x € Wg(M), ax € Wg(M) has Witt components (ax), = wy(a)x,.

Proof. We consider the following diagram of rings and ring homomorphisms, whose
underlying diagram of additive groups is split-exact.

inz il‘l]
O*>M*>AD<M<7prl yA——0
It induces the following diagram of rings and ring homomorphisms, whose underly-
ing diagram of additive groups again is split-exact.
i ing
0 —— Wy(M) —s W(A x M) & Wg(A) —— 0
Pryx
It follows that the map of the statement is a ring isomorphism, if Wg(M) is given
the Wg(A)-module structure such that inp, (ax) = inj«(a)ing(x), for all a € Wg(A)
and x € Wg(M). It remains to prove that ax is equal to the Witt vector y with nth
component wy (a)x,. Since every ring admits a surjective ring homomorphism from a
torsion free ring, we may assume that A and M are both torsion free. Moreover, since
the ghost map is injective in this case, it will suffice to show that w,,(ax) = wy(y), or
equivalently, that iny (wy(ax)) = ina(wy,(y)), for all n > 1. Now, since wy, is a natural
ring homomorphism, we find that for all n > 1,

ing (wy(ax)) = wy(ing, (ax)) = wy(ing«(a) ing. (x)) = wy (in1«(a) )wy, (ing. (x))
= iny (wy(a))ing(wy(x)) = ina(wy(@)wn(x)) = ing (nwy,(a)xy)
=inp(ny,) = in2(Wn()’))

as desired. Here the fifth equality follows from the definition of the multiplication on
the ring A X M. O
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Addendum 2.3. Let S be a truncation set, let A be a ring, and let M be an A-module.
If a € Wg(A) and x € Wg(M), then the components b, = (an,y,) of the Witt vector
b =iny.(a) +inp.(x) € Ws(A x M) satisfy that for all n € S,

Zagn/e)il)’e = Xn-

eln
Proof. We may assume that A and M are torsion free and proceed to calculate w,(b)
in two different ways. First, since w, is a natural ring homomorphism, we have

wn(b) = wy(ing«(a)) + wy (ins (x)) = ing (wy(a)) + ing (wy, (%))
= (wu(a),wp(x)) = (Zea'g/e,nxn).
eln
Second, by the definition of the multiplication in A x M, we have
b) = Zebz/ Ze e, Ye) ”/e = Zean/e Znaen/e Ye)-
eln eln eln

The stated formula follows as M was assumed to be torsion free. O

Example 2.4. Let p be a prime number. Then y, = x, — a’l7 _lxl.

In general, if f: A — B is aring homomorphism and if M and N are modules over
A and B, respectively, then we define an f-linear map h: M — N to be an additive
map such that h(ax) = f(a)h(x), for all a € A and x € M. In the following, given
an A-module M and a truncation set S C N, we write Wg(M) for the Wg(A)-module
given by the set M5 with componentwise addition and with the scalar multiplication
of a € Wg(A) and x € Wg(M) defined by to be the element ax € Wg(M) with

(ax)n = Wa n(@)x,

for all n € S; compare Definition 1.23 and Lemma 2.2. We remark that if M is the ring
A considered a module over itself via multiplication, then the Wg(A)-module Wg(M)
defined above usually is not the same as the ring Wg(A) considered as a module over
itself via multiplication. To avoid confusion, we will use W(A) to indicate the ring
of Witt vectors only and will not use it indicate either module over this ring.
Definition 2.5. Let (A,A4) be a A-ring. An (A, A4)-module is a pair (M, Ay) of an
A-module M and a A4-linear map

Ay M — W(M)

with the property that the diagrams

M wW(M) W(W(M)) <2 wW(M)
\ Ao Twm PM
M WM) My

commute. A morphism A: (M, Ay) — (N,Ay) of (A,A)-modules is an A-linear map
h: M — N such that Ay o h = W(h) o Ay.
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Remark 2.6. Let (A,A4) be a A-ring, M an A-module, and Ayr: M — W(M) a map.
Then (M, Ay) is an (A, A4)-module if and only if the components Ay ,: M — M are
Wa p-linear and satisfy Ay1 = idyr and Apgm © Apsn = Apgmn, for all m,n € N. Hence,
we may identify the category .# (A, A4) with the category .# (AY[N]) of left modules
over the twisted monoid algebra AY[N] by associating to the (A, A4 )-module (M, A5s)
the left AY[N]-module given by the A-module M and with n € N acting through the
map Ay, : M — M. In particular, the category .# (A, A4) is abelian.

Example 2.7. Let (A,A4) be a A-ring. The functor that to an (A, A4 )-module (M, Ay)
assigns the underlying set of M has a left adjoint functor that to the set S assigns the
free (A, A4)-module (F(S),Az(s)) defined as follows. The A-module F(S) is defined
to be the free A-module generated by the symbols Az ) ,(s), where s € Sand n € N,
and Ap(g): F(S) — W(F(S)) is defined to be the map with mth component

A’F(S),m (Z aS,nﬂ'F(S),n (s)) = Z I//A.,m(am)7LF(S),mn ().

It follows from Remark 2.6 that the pair (F(S), A¢(s)) is an (A, 44 )-module. The unit
of the adjunction maps s € S to Ap(s) (s) € F(S), and the counit of the adjunction
maps Y. axnAp(m)(x) € F(M) t0 Y axnAun(x) € M. It is straightforward to verify
that the triangle identities hold.

Example 2.8. If (A,A4) is a A-ring, then there is an (A, A4 )-module (M, Ay) defined
by setting M = A and Ay, = Wa . This (A, 14)-module is not a free (A, A4 )-module
in the sense of Example 2.7, except in trivial cases. We warn the reader that the pair
(A, A4) is typically not an (A, A4 )-module, let alone a free (A, A4 )-module; compare
the discussion preceding Definition 2.5.

Example 2.9. Let A be a ring, unital and commutative, and let K, (A) be the graded
ring given by the Quillen K-groups. The ring Ko(A) has a canonical A-ring structure
defined by Grothendieck [11], and for all ¢ > 1, the group K, (A) has a canonical
structure of a module over this A-ring defined by Kratzer [21] and Quillen [18]. The
(Ko(A), Ag,(4))-module structure maps are given by

Ak (a)n = (*1)”_111'(",(/4) : Ky(A) = Ky(A)

with A? .. defined in [21, Théoréme 5.1].
Kq(A)

Let U: o) — o be the forgetful functor from the category of A-rings to the
category of rings that to a A-ring (A,A) assigns the underlying ring A. It admits the
right adjoint functor R: &/ — <7, defined by R(A) = (W(A),A4) with the counit
and unit maps defined by A: (A,A1) — (W(A),A4) and €4: W(A) — A, respectively.
The forgetful functor U also admits a left adjoint, but this will not be relevant for
the discussion below. Since W(—) preserves limits, the forgetful functor U creates
limits. Indeed, if {(A;,A;)} is a diagram of A-rings and if {p;: A — A;} is a limit
in & of the diagram {A;}, then {W(p;): W(A) — W(A;)} is a limit in < of the
diagram {W(A;)}. Therefore, we conclude that the pair (A,1), where A: A — W(A)
is defined to be the unique map with ith component A; 0 p;: A — W(A;), is a A-ring
and that the family {p;: (A,A) — (A;,A;)} is a limit in 27 of the given diagram. It
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follows that that for (A,A4) a A-ring, we obtain an adjunction

Uiaay)
D [(Ada) —— /A,
Riaag)

where the left adjoint functor Uy 3,) takes f: (B,Ag) — (A,44) to f: B — A, the
right adjoint functor R4 3,) takes f: B —Ato p2: (C,Ac) — (A, 4a), for

(C,Ac) —2— (W(B), Ag)

J/m lw( 1)

2,
(A, 24) —= (W(A),44)
a choice of a pullback, the counit is €g o p1, and the unit is the unique map with
components Az and f. Since the functors Ua ) and R 5, both preserve limits, this
adjunction, in turn, induces an adjunction

Uiaay)
(. /(A 24))ab o (A |A)ap
(A24)

between the associated categories of abelian group objects. Corresponding to this, we
have the following adjunction

U/
M (A y) M (A)
R/

where the left adjoint functor U’ takes (M,A) to M, the right adjoint functor R’
takes N to (Aa.(W(N)),An), and the counit and unit maps are defined to be the maps
en: Mx(W(N)) — N and Ayr: (M, Ay) — (Aa(W(M)), Ay ), respectively. Here we
write Aq(W(N)) for the W(A)-module W(N) considered as an A-module via A4.

Proposition 2.10. Let (A, A4) be a A-ring. There exists, up to unique isomorphism, a
unique adjunction (F* ,G* e* n*) from (o, /(A,Aa))ap to M (A, Ax) such that, in
the following diagram, the square of left adjoint functors commutes,

(o [A)ab # M (A)

U(AJLA)TJR(A.AA) UWlR’
F}k

([ (A 2))ab 2 M (A, An).
G/l

Moreover, the adjunction (F A Gr e, n’l) is an adjoint equivalence of categories.

‘We remark that, by the uniqueness statement for adjoints, which we recalled at the
beginning of the section, the commutativity of the square of left adjoint functors in
the diagram in Proposition 2.10 implies that the corresponding square of right adjoint
functors commutes, up to unique natural isomorphism.



26

Proof. If (f,+,0,—) is an object of (<7, / (A, A4))ap With underlying map of A-rings
f: (B,Ag) — (A, A4), then we define F*(f,+,—,0) to be the pair (M,Ay) of the
kernel M = F(f) of f and the induced map Ay : M — W(M) of kernels of the vertical
maps in the following diagram. We note that U’ o F* = F o Ua ) as stated.

> W
~
—
=
>

Conversely, if (M,Ay) is an (A, A4)-module, then we define G* (M, Ay) to be the
abelian group object G(M) in </ /A with the underlying ring B = A X M equipped
with the A-ring structure Ag: B — W(B) given by the composite map

Aa®Ay iny, +ing,

AxM———W(A) x W(M) W(AXM);

compare Lemma 2.2. To prove that G* (M, Ay) is well-defined, we must show (a) that
(B,Ap) is a A-ring; (b) that the canonical projection f: (B,Ag) — (A,A4) is a A-
ring homomorphism; and (c) that the abelian group object structure maps +p, Op,
and —p on f: B — A are A-ring homomorphisms. First, the map A4 @ Ay is a ring
homomorphism, since Ay is a A4-linear map. Moreover, Lemma 2.2 shows that also
iny, +iny, is a ring homomorphism, so Az is a ring homomorphism. To prove (a), it
remains to show that the diagrams in Definition 1.21 commute. The left-hand diagram
commutes, since & o A4 = idy and &y 0 Ayy = idy; and since iny, +iny, is the identity
map on the first Witt component. To see that the right-hand square commutes, we
consider the following larger diagram,

Asxm

W(W(A x M)) W(A X M)

TWGHI* +ing,) Tinl* +ing,

W(W(A) x W(M)) <2020 yw(W(A)) x WW(M)) <222 wy(4) x W(M)

TW(AA)@W()LM) TAA @lM
)LA 62,/\4

WA)x WM) +——— Ax M.

TW<AA@AM)
W(A X M)

inp, +inp,

Here, the lower right-hand square commutes, since (A,A4) is a A-ring and since
(M, Ay) is an (A, A4 )-module, and the lower left-hand square commutes by the natu-
rality of iny, +iny.. To prove the upper rectangular diagram commutes, it suffices to
show that the two compositions with the nth ghost map

W(W(A X M)) — W(Ax M)
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agree. This, in turn, follows from the calculation

Wy 0 Apspr © (N4 im0y ) = Fpy 0 (ing +ingy) = (ings +ingy) o (F & F,)

= (inys +ing.) o (W, @ wy) 0 (Ag B Ay)

= (iny, +ing) owy o (ing, +inz.) 0 (As ® Ayr)

=wy, o W(inp, +inp,) o (ing, +inp,) o (As B Ayr),
where the first and third equalities hold by the definition of A, where the second and
fourth equalities hold by the naturality of inj. +iny., and where the fifth equality

equality holds by the naturality of w,. This proves (a). Next, if i: (M, A4y) — (N, Ay)
is a map of (A, A4 )-modules, then the following diagram commutes,

A ® Ay inpy +ing,
EE—

A M2 W (A) x W(M)

lid ®h lid Bh
a DAy

AN —2EM L W(A) < W(N)

W(A X M)

l(id Dh)«

Rk W(A X N).

Taking (N, Ay) to be the trivial (A, A4)-module, (b) follows. We use other instances
of this diagram to prove (c). The maps Op and —p are induced by the (A, A4 )-module
maps Opr: (0,id) — (M, Ay) and —pr: (M, Apr) — (M, Ayr) that map O to O and x to
—x, respectively. Hence, the diagram shows that both are A-ring homomorphisms.
Finally, if we define Ay to be the composite map

Ay ®A
MoeM 222 W (M) & W (M)

iny, +ing,

W(M o M).

then (M & M, Ayan) is a direct sum of the (A, A4)-module (M, Ay) with itself. Now,
the addition map +p is given by the map

id®+y

(Ax (M®M), A mam)) (AXM,2axm),

where +p: (MO M, Ayam) — (M, Ay) takes (x,y) to x+y. To complete the proof
of (c), we must verify that 4+, is a map of (A, A4 )-modules, that is, that the diagram

A ®Ay inyy +ing,

MaoM 220 W(M) o W(M) W(M & M)
J(‘FM J{erw) J/W(JrM)
M W(M) ————— W (M)

commutes. But the left-hand square commutes, as Ay is an additive map, and the

right-hand square commutes, since the addition in W (M) is given by adding the Witt

components of vectors, so (c) follows. This completes the proof that the functor G*

is well-defined. We also note that, by construction, we have Uy 3, © G*=GoU'.
Finally, we claim that there are unique natural isomorphisms

A A
G*oF* =25 id id —— F* o G*
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such that U(A’;LA)(SA) =¢eoUyy,) and U'(n*) =noU’. Indeed, this amounts to the
following diagrams being commutative, where, in the bottom diagram, i: M — B is
the (chosen) of kernel of f: B — A;

M W(M) ———— W(M)

Jinz linz J{inz*
lA (DAM

Ax M ———— W(A) x W(M) W(A x M)

inp, +ing,

A M2 (a) W (M) W(A x M)

JOB—H lOB*'H* \L(OB-‘H’)*

B— ™  W(B)————— W(B).

inp, +ing,

The left-hand squares in the two diagrams commute by naturality and the right-hand
squares commute by the universal property of the direct sum. [

Remark 2.11. A map of A-rings f: (B,Ag) — (A, A4) gives rise to a functor
fur M(A,Ag) — M (B, Ap)

defined by viewing an (A, A4)-module (N, Ay) as a (B, Ag)-module f.(N,Ay) via the
map f. The functor f, has a left adjoint functor f* that to a (B, Az)-module (M, Ay)
associates the (A, A4)-module f*(M,Ay) = (A, A4) ®(p 1) (M, Ayr) defined by

(A7 )LA) ®(B7ZB) (M7 2'M) = (A ®B M7 )’A®BM)
where A4, is given by the composition of A4 ®,, Ay and the map
W(A) @z W(M) — W(AR5M),

that to a ® x associates the vector whose nth Witt component is w,(a) ® x;,.

Definition 2.12. Let (A,A4) be a A-ring and let (M,Ay) be an (A, A4)-module. A
derivation from (A, Ay) to (M, Ayr) is a map of sets

D: (A, M) — (M, Ay)

such that the following (1)—(3) hold.

(1) Foralla,b € A, D(a+b) = D(a)+D(b).
(2) Forall a,b € A, D(ab) = bD(a) +aD(b).
(3) Foralla€ Aand n €N, Ay »(D(a)) = Leja A e(@)OID(Ay o ().

The set of derivations from (A, 44) to (M, Ay) is denoted by Der((A,A4), (M, Apr)).

We next show that, under the equivalence of categories given in Proposition 2.10,
Definition 2.12 agrees with Beck’s general definition of a derivation.
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Proposition 2.13. Let (A, A4) be a A-ring, let (M, Ay) be an (A, Ax)-module, and let
[ (AX M, daxm) — (A, A4) be the canonical projection. The map

Der((A,A4), (M, Ay)) —— Homy, j(aa,)(id(an,)s f)
that to D assigns (ida, D) is a bijection.

Proof. The map from Der(A,M) to Hom,, 4 (ida, f) that takes D to (id4,D) is a
bijection, as is well-known and readily verified. We must show that D satisfies (3) if
and only if (id4,D): A — A x M is a A-ring homomorphism, and the latter means
that the following diagram commutes.

A M W(A)

l(idA,D) J/(idA,D)*
Aa DA
Ax M 22 W (A) x W(M) W(A x M)

inp, +inp,

Now, on the one hand, the map (id4,D) takes a to (a,Da) which by A4 @ Ay is
mapped to (A4, Ay (Da)) whose nth Witt component is (A4 ,(a), Ay »(Da)) and, on
the other hand, the eth Witt component of the image of a by the composite map
(ida,D)s 0 A4 is equal to (A4 .(a),DAs c(a)). Hence, Lemma 2.2 and Addendum 2.3
show that the diagram commutes if and only if D satisfies (3). O

Lemma 2.14. Let (A, A4) be a A-ring. There exists a derivation
d
(A, ) —— ('Q(A,M)’)LQ(A.AA))

which corepresents the functor that to an (A, As)-module (M, Ay) assigns the set of
derivations Der((A, Ay ), (M, Ay)).

Proof. We define the target of the map d to be the quotient of the free (A, A4 )-module
(F,Ar) generated by {d(a) | a € A} by the sub-(A, A4)-module (R, Ag) C (F,Ar) gen-
erated by d(a+b) —d(a) —d(b) with a,b € A; by d(ab) —bd(a) —ad (b) with a,b € A;
and by Ar,(da) — LojnAae(a)™/91d(Age(a)) with a € A and n € N. The map d
takes a € A to the class of d(a) in Q4 3,). It is clear from the construction that given
a derivation D: (A,A4) — (M, Ay), there is a well-defined map of (A, A4)-modules
f: (Q(AJ’A),A‘Q(A’AA)) — (M, Ap) such that D = fod and that f is unique with this
property. This proves the lemma. O

The map d: A — Q4 5,) in Lemma 2.14, in particular, is a derivation of the ring
A, and hence, it defines a map of A-modules 4 — €24 ;,). We call this map the
canonical map and now prove Theorem A, which states that it is an isomorphism.
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Proof of Theorem A. We consider the diagram of adjunctions

o |A <(7—+> (o JA)wp i M (A)

i G
U(AM)HR(A,AM A U(AM)HRM.AA) U/HR/
(_)ab FA

Ml/(AaAA) <: (ﬂl/(A7lA))ab <:> %(A,AA),
2 G

where the functors i and i* forget the abelian group object structure maps, and where
(—)ab and (—)A are the respective left adjoint functors which we now define. In
the right-hand square, the top and bottom adjunctions are adjoint equivalences of
categories by Lemma 2.1 and Proposition 2.10, respectively. Hence, the composition
of the top adjunctions in the diagram determine the top adjunction in the left-hand
square, up to unique natural isomorphism, and similarly for the bottom adjunctions.
Now, we define an adjunction (H,K,€,7n) with K = io G as follows. The functor
K takes the A-module M to the canonical projection f: A x M — A, and we let H
be the functor that to f: B — A assigns the A-module A ®p Qp, and let € and 7] be
the natural transformations given by €(1 ® d(a,x)) = x and n(b) = (f(b),1 ® db),
respectively. We must show that the two composite natural transformations

Ho o, oK o
H— HoKoH = g, K —=s KoHoK =255 k

are equal to the respective identity natural transformations. But H o ) maps a ® db
inH(f: B—>A)toa®d(f(h),1®db)in (HoKoH)(f: B— A) and €oH, in turn,
maps this element to a- (1®db) =a®db in H(f: B— A); and 11 o K maps (a,x)
in K(M) to (a,1®d(a,x)) in (KoHoK)(M) and K o &, in turn, maps this element
to (a,x) in K(M). This shows that (H,K,€,1n) is an adjunction. Similarly, we define
an adjunction (H A,Kl,el,nk) with K* = i* o G* as follows. The functor K* takes
the (A, A4)-module (M, A4) to the canonical projection f: (A X M, Aanxp) — (A, A4),
and we let H* be the functor that to f: (B,Az) — (A, A4) assigns the (A, A4)-module
(A, 24) @ (B 45) 2(B,2y)> and let g* and n* be the natural transformations given by
e*(1®d(a,x)) =x and n*(b) = (f(b),1®db), respectively. The change-of-rings
functor that we use here was defined in Remark 2.11. The proof that the triangle
identities hold follows mutatis mutandis from the calculation in the case of the ad-
junction (H,K,€,1n). This shows that (H* ,K* €* n*) is an adjunction.

Having established the diagram of adjunctions at the beginning of the proof, we
note that the composite functors R4 3,) oK and K*oR' agree, up to unique natural
isomorphism. Indeed, the following diagram is cartesian,

Aa®id inp, +inp,

Ax A W(M) W(A) x W(M) W(A & M)

A4

A W(A) ——————— W(A).
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By the uniqueness of left adjoint functors, up to unique natural isomorphism, we
conclude that also the composite functors Ho Uy 3,) and U "o H agree, up to unique
natural isomorphism. It follows that the canonical natural transformation

ARpQp —— U/((A,A«A) ®(377LB) -Q(B,)Lg))

is an isomorphism, and taking (B,Ag) = (A, A4 ), the theorem follows. O

Theorem 2.15. Let A be a ring. There are natural maps Fy: Qyya) — Qyy(a) that
are F,-linear and satisfy that for all a € W(A),

ZAA n/e ldAA()

eln
Moreover, the following (1)—(3) hold.

(1) Forallm,n €N, F,F,, = F,,;,, and F; = id.
(2) Foralln e Nand a € W(A), dF,(a) = nF,(da).
(3) Foralln € Nand a € A, F,(d[a)) = [a]""'d]a].

Proof. Applying Theorem A to the universal A-ring (W(A),As), we conclude that
the canonical map Qyy(4) = 2(w(a),a,) 18 an isomorphism. Since the target of this
map is a (W(A), A4 )-module, we have the natural map

Fn = Ay ap i 20w(a),80) = (wia).a0)

defined to be the nth Witt component of the (W(A), A4 )-module structure map; com-
pare Remark 2.6. It is an F;,, = w,, 0 A4-linear map and Definition 2.12 (3) implies that
it is given by the stated formula. Properties (1) and (2) follow immediately from the
definition of a (W(A),A4)-module and from the calculation

=d(Y eApo(a)”) =Y nApe(a) 9" dA  (a) = nF,(da),

eln eln

where the first and last equality follow from the definition of A4. Finally, to prove
property (3), it suffices to show that A4 .([a]) is equal to [a], if e =1, and is equal to 0,
if e > 1, or equivalently, that A ([a]) = [[a]], and this was proved in Remark 1.20. [

3 The anticommutative graded algebras QW( n and QW( n

We next introduce the anticommutative graded W(A)-algebra QW( A It agrees with
the alternating algebra Qg ) = Aw(a) (4)° if the element

dlog[—l] = [_1]*151[—1] € -Q\xlw(A)

is zero, but is different, in general. We note that 2dlog[—1] = dlog[1] = 0 and that,
by Lemma 1.5 (v) and Theorem 2.15 (3), F,(dlog[—1]) = dlog[—1] for all n € N.
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Definition 3.1. Let A be a ring. The graded W(A)-algebra
A . 1 .
i) = Towa)yLway/J

is defined to be the quotient of the tensor algebra of the W(A)-module .Q\';V( n by the
graded ideal generated by all elements of the form

da®da—dlog[—1]® F»(da)
with a € W(A).

We remark that the defining relation da - da = dlog[—1] - F2(da) is analogous to
the relation {a,a} = {—1,a} in Milnor K-theory.

Lemma 3.2. The graded W(A)-algebra QW( 4) I8 anticommutative.

Proof. It suffices to show that the sum da-db+db-da € Q%%V( A) is equal to zero for
all a,b € W(A). Now, on the one hand, we have

d(a+Db)-d(a+Db) =dlog|—1]-Fad(a+b) = dlog[—1] - Fada+dlog[—1] - F2db,
since F>d is additive, and on the other hand, we have

d(a+b)-d(a+b)=da-da+da-db+db-da+db-db
=dlog|—-1]- Fhbda+da-db+db-da+dlog[—1]- F,db

This shows that da - db+db - da is zero as desired. O
Proposition 3.3. There exists a unique graded derivation
d: me) - QW(A)
that extends the derivation d: W(A) — Q{W( n and satisfies the formula
ddw =dlog[—1]-do
forall ® € QW(A). Moreover, the element dlog[—1] is a cycle.

Proof. The relation ddw = dlog[—1] - dw implies that dlog[—1] is a cycle for the
desired derivation d. Indeed,

d(dlog[-1]) = d([-1]d[-1]) = d[-1]-d[-1] +[-1] -dd[ 1]
= dlog[—1]- Fpd[—1] + [~1]dlog[-1] -d[-1]
= dlog[—1]- [-1]d[-1] +dlog[-1] - [-1]d[-1]

which is zero by Lemma 3.2. This proves that the desired derivation d necessarily is
unique in that for all ag,ay,...,a, € W(A), the following formula must hold,

d(aoday ...day) = daoday - --day + qdlog[—1] -apday ... day.
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Here gdlog[—1] is equal to either dlog[—1] or 0 as ¢ is odd or even. To complete the
proof, it remains to prove that the map d given by this formula is (a) well-defined,
(b) a graded derivation, and (c) satisfies ddw = dlog[—1] - dw. First, we have

d(aoda1 .. .da,, -b()db1 .. .dbq) = d(aoboda1 .. .dapdbl .. .dbq)
=d(aobo)da; ...daydb; ...dby+ (p+q)dlog|—1]-apboday ...daydb; ...db,
= daoda1 .. .dap . bodbl .. .dbq +pdlog[—1] -aoda1 .. .dap . bodb1 .. .dbq
+ (—I)P(aodal .. .dap -dbydb; .. .dbq +apday .. .dap -qdlog[—l] -bodb .. .dbq)
= d(aoda1 .. .da,,) . b()dbl .. .dbq + (—1)pa0da1 o .da,, ‘d(b()dbl .. .dbq)
which proves (b). Next, using that > + ¢ is always even, we find that
dd(aoda ...day) = d(daoda ...dag + qdlog[—1] -apda; .. .dagy)
= (q+1)dlog[—1]-daoda; ...da, — qdlog[—1]-daoda; ...da,
—qdlog|—1]-qdlog[—1]-apday ...da,
=dlog[—1]-(daoday ...das+ qdlog|—1]-apda ...day)
=dlog[—1]-d(aoday ...day)
which proves (c). Finally, to prove (a), we must show that for all a,b € W(A), the
elements d(d(ab) — bda — adb) and d(dada — dlog[—1] - Fada) of Ly, are zero.
First, using Lemma 3.2 together with (b) and (c), we find that
d(d(ab) — bda — adb) = dd(ab) — dbda — bdda — dadb — addb
=dlog[—1]-d(ab) — dlog[—1]-bda —dlog[—1] - adb
=dlog[—1]- (d(ab) — bda— adb)

which is zero, since d: W(A) — _(A)WIV( 4) is a derivation. This shows that the first type
of elements are zero. Next, (b) and (c) show that

d(dada) = 2dlog[—1]-dada
which is zero as is
d(dlog|—1]- Fda) = dlog[—1]-dFyda = dlog[—1] -d(ada+ dA;(a))
=dlog[—1]- (dada+ dlog[—1] - F>da)

by the definition of Q%W( A Hence also the second type of elements are zero. This
completes the proof of (a) and hence of the proposition. [

Remark 3.4. In general, there is no W(A)-algebra map f: QW( ) 7 Qi) that is
compatible with the derivations.

Proposition 3.5. Let A be a ring and let n be a positive integer. There is a unique
homomorphism of graded rings
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that is given by the maps F,: W(A) — W(A) and F,,: Q\IMA) — Q\\}V(A) in degrees 0
and 1, respectively. In addition, the following formula holds.

dF, = nk,d
Proof. The uniqueness statement is clear: The map F;, is necessarily given by
Fy(aoday ...dag) = F,(ao)F,(day) ... Fy(dag)

where ag, ...,a; € W(A). We show that this formula gives a well-defined map. To
prove this, we must show that for every a € W(A),

F,(da)F,(da) = F,(dlog[—1])F,(Fada).
It will suffice to let n = p be a prime number. In this case, we find that

F,(da)Fy(da) = (@ 'da+dA,(a))- (a"'da+dA,(a))
= (a" "2da-da+dA,(a)-dA,(a) = dlog[—1]- ((a" ") Fada+ FadA,(a))
=dlog[~1]- (F(a’"")Fda+ FdAy(a)) = dlog[—1] - F-F,da
= F,(dlog[—1] - F>da)
where we have used that F>(a) is congruent to a> modulo 2W(A). This shows that
the map F,, is well-defined. It is a graded ring homomorphism by definition.

We next prove the formula dF, = nF,d. Again, we may assume that n = p is a
prime number. We already know from the definition of F;,: 9%1&/( A le&'( n that for

alla € W(A), dF,(a) = pF,(a). Now, for all a € W(A),
dF,(da) = d(a"'da+dA,(a)) = (p— 1)aP*dada+ dlog[—1] - F,da

which is equal to zero for p = 2, and equal to dlog[—1] - F,da for p odd. Hence, for
every prime p and every a € W(A), we have

dF,(da) = pdlog[—1]- F,da = pF,(dlog[—1]-da) = pF,d(da)
as desired. Now, let ay,...,a, € W(A). We find

dFy,(aoday ...dag) = d(F,(ao)Fyday ... Fyday)
=dF,(ao)Fpday ... Fydag+ Y, (—1)"'Fy(ao)Fpday ...dFyda;. .. Fydag

1<9<q
= pF,d(ao)Fyda ... Fyda, + Z (—l)ilep(ao)deal ...pFyd(da;) ... Fyday
1<i<q

= pFyd(aoda; ...da,)
as stated. This completes the proof. O

We next define the quotient graded algebra QW( n of the graded algebra QW( n
and show that the Frobenius F;, and derivation d descend to this quotient.
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Definition 3.6. Let A be a ring. The graded W(A)-algebra
QW(A) = QW(A)/K'
is defined to be the quotient by the graded ideal K~ generated by the elements
F,dV,(a) —da—(p—1)dlog[—1]-a
where p ranges over all prime numbers and « over all elements of W(A).

We remark that the element F,dV,(a) —da — (p — 1)dlog[—1] - a is annihilated
by p. In particular, it is zero, if p is invertible in A, and hence, in W(A).

Lemma 3.7. The Frobenius F, : QW( a7 QW( n induces a map of graded algebras

v

F: Q) = Qiia)-

Proof. Tt will suffice to let n = ¢ be a prime number and show that for all prime
numbers p and all a € W(A), the element

Fy(FpdVy(a) —da—(p—1)dlog[—1]-a) € Q\\}V(A)

maps to zero in Q{W - To this end, we will repeatedly use that for every prime
number p and every b € W(A), Theorem 2.15 and Remark 1.20 shows that

Fp(b) —b"

Fpdb = b""'db+dA,(b) = b"'db+d( )

as elements of QQ;W A)- We also use that, by Lemma 1.5 (ii)—(iii), we have

Vm(a)n _ mnflvm(an>7

for all m,n € N and a € W(A). Now, suppose first that £ = p. For p odd, we find that
Fpr(“) - Vp(a)P)

Fy(F,dV,(a) —da) = F,(Vy(a)"'dV,(a) +d( —da)
=Fp (Ppizvp(apil )dVp(a) — Ppizdvp(ap»
= ppflaplepde(a) — ppszpde(ap),
where we also use that F,,V, = p-id. But this element maps to zero Q“IW( e since,

as maps from W(A) to !V)Q)V(A), we have F,dV, = d, and since the common map is a

derivation. Similarly, for p =2, we find that

Fz(deVQ(a) —da— dlog[—l} ~a) =" (Vz(a)de(a) - de(az) - dlog[—l] . a)
= 2aF>dVs(a) — FdVs(a®) — dlog[—1] - F>(a),

where we further use that F,,(dlog[—1]) = dlog[—1], for every m € N. The image of
this element in Qéw( n is equal to

2ada—d(a?) —dlog[—1]- (F>(a) —a?),
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which, in turn, is zero, since d is a derivation and since F>(a) — a? is divisible by 2 by
Lemma 1.18. We next suppose that p # £. In this case, we further use that ¢ divides
p!~1 —1 and that, by Lemma 1.5 (ii), F; V), = V,,F;. If p and £ both are odd, then

Fy(FydV,(a) —da) = F,(FydV,(a)) — Fyda

FVy(a) = Vpy(a)* Fy(a)—a"
:FHWA@”*M@@)+dG££@%TJ&QJ)—%*Wa—dpig%—i)
F =10 F 4
= p"1a" Fydv,(a) +devp(W) _dda—a(FlO =y
and the image of this element in Q@W( 4) is equal to
pﬁfl -1
(P! =" da— = —d(d"),

which is zero since d is a derivation. Similarly, if p = 2 and ¢ # p, then

Fy(F>dVs(a) —da—dlog[—1]-a) = F>(F,dVs(a)) — Fida — dlog[—1] - Fy(a)
_ a L

= Fz(VZ(Cl)hldVZ(a) +d(w))

Fi(a) —d'

-1
—a"'da—d
a” da—d( 7

) —dlog[—1]-Fy(a)
F 72€—1 0
=214 FRdvs(a) +F2dV2(W)

F A
—a#]da—d(ig(a)g a

) —dlog[—1]-Fy(a),
and the image of this element in Qxiv( A) is equal to

-1 _ A1,
2 ld(lle)-i‘leg[—]}.(Fé(a)#

2" —1)a"'da— —Fy(a)),

which is zero since d is a derivation and since ¢ is congruent to 1 modulo 2. Finally,
if £ =2 and p # ¢, then we find that
F>(FpdVy(a) —da) = Fy(F>dVy(a)) — Fada

BV, (a)—V,(a)? Fy(a)—a
%))—ada—d(%)

F(a) — pa® P (a) —a?

2
= Fp(Vp(a)dVp(a) +d(

= paF,dV,(a) + F,dV,( )
whose image in !V)Q)V( 4) s equal to

(p—1)ada — pT_ld(az),

which again is zero since d is a derivation. O
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Lemma 3.8. For all positive integers n and a € W(A), the relation
F,dV,(a) =da+ (n—1)dlog[—1]-a
holds in Q“{V(A).

Proof. We argue by induction on the number r of prime factors in # that the stated
relation holds for all a € W(A). The case r = 1 follows from Definition 3.6. So we let
n be a positive integer with > 1 prime factors and assume that the relation has been
proved for all positive integers with less than r prime factors. We write n = pm with
p a prime number and use the inductive hypothesis to conclude that

F,dVy,(a) = F,F,dV,,V,(a) = F,(dVy(a) + (m— 1)dlog[—1] - V,(a))
= FpdV,(a)+ (m—1)dlog[—1]-F,V,(a)
=da+ (p—1)dlog|—1]-a+ p(m—1)dlog[—1]-a
=da+ (n—1)dlog[—1]-a

which proves the induction step. O
Lemma 3.9. The graded derivation d : QW( TV _QW< ) induces a graded derivation
Proof. We must show that for all prime numbers p and a € W(A), the element

d(F,dV,(a) —da— (p—1)dlog|—1]-a) € Q%W(A)

maps to zero in .(VZK%V( 4)° First, for p =2, we have

d(FdVsy(a) —da—dlog[—1]-a) = dF,dVa(a) —dda+dlog|—1] -da
= 2F2ddV2 (a) =2d log[—l] -deVz(a)

which is even zero in Q%M 4 For p odd, we recall from Theorem 2.15 that
F,dV,(a) —da = Vy(a)"~'dV,(a) +dA,V,(a) — da,
and using that d is a derivation, we find that
d(F,dVy,(a) —da) = d(V,(a)P~'dV,(a) +dA,V,(a)) — dda
= (p—1)Vy(a)’2dV,(a)dV,(a) + V,(a)" 'ddV,(a) + ddA,V,(a) — dda.
Now, the first summand in the bottom line vanishes, since p — 1 is even and
dVy,(a)dV,(a) = dlog[—1]- F»dV,(a),
and by Proposition 3.3, the sum of the remaining three summands is equal to
dlog[—1]- (v,,(a)l’—ldv,, (a) +dA,Vy(a) —da) = dlog|—1] - (F,dV,(a) — da),

. . X 2 . .
which maps to zero in .QW( 4)» Since p — 1 is even. O
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Definition 3.10. Let A be aring, let S C N be a truncation set, and let Is(A) C W(A)
be the kernel of the restriction map Ry : W(A) — Wg(A). The maps

5. RS . < Ry .
Qiay — Ly
are defined to be the quotient maps that annihilate the respective graded ideals gener-
ated by Ig(A) and dIg(A).

v

Remark 3.11. The kernel K of the canonical projection QWS( a7 QWS( n is equal
to the graded ideal generated by the elements

PP 2V, (RS (@~ )V, RS, (@) —dV,RS, (")) — (p— Ddlog[~1]s-a

with p a prime number and a € Wg(A). Indeed, letting b = V,,(a), the formula for
F,db in the beginning of the proof of Lemma 3.7 shows that for all prime numbers p
and a € W(A), the following identity holds in .Q%IW( )

F,dV,(a) —da= p"2(Vy(aP~")dV,(a) —dV,(a")).

Remark 3.12. 1f p is a prime number and A a Z,)-algebra, then for every truncation
set S, the ideal V, W/, (A) C W(A) has a divided power structure defined by

n—1

Vpla) = Ev ().

If pis odd, thend: Wg(A) — .(VZQWS ) is a divided power derivation in the sense that
d(Vp(@)") = V(@) av,(a)
and it is universal with this property; see [22, Lemma 1.2].

Lemma 3.13. The derivation, restriction, and Frobenius induce maps

d: QWS(A) — QWS(A) (resp. d: QWS(A) — QWS(A))
R+ Qi a) = Ly (resp. RT: Dy ia) = iy )
E,: QWS(A) — _QWS/”(A) (resp. Fy,: QWS(A> — QWS/n(A))

Moreover, the maps d are graded derivations, the maps R; and F, are graded ring
homomorphisms; the maps R; and d commute; and dF,, = nF,d.

Proof. To prove the statement for d, we note that as d is a derivation, it suffices to
show that Ry (ddIs(A)) C 'Q%%VS(A) is zero. But if x € I5(A), then

R (ddx) = R (dlog[—1] - dx) = RY (dlog[—1]) - RY (dx)

which is zero as desired. It follows that R} (dIs(A)) = dRY (Is(A). Hence, also the
statement for R. follows as RY(Is(A) is trivially zero. Finally, to prove the statement
for F,, we show that both R§/n(Fn(IS(A))) and RLIQ\I/n(Fn(dIS(A))) are zero. For the
former, this follows immediately from Lemma 1.4, and for the latter, it will suffice to
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show that for divisors e of n, A.(Is(A)) C Is/.(A). Moreover, to prove this, we may
assume that A is torsion free. So let e be a divisor of n and assume that for all proper
divisors d of e, Ay(Is(A)) C Is/q(A). Since F,(Is(A)) C Is/.(A), the formula

Fo(a) =Y dAq(a)*/?
dle

shows that eA.(I5(A)) C Ig/.(A). This completes the proof of the first part of the
statement and the second part is clear. O

Finally, we record the following result concerning the case S = {1}.

Lemma 3.14. For every ring A, the differential graded algebras QA and Q, are
equal and the canonical projection 2, — €2, is an isomorphism.

Proof. Since d log[—l}{l} is zero, QA = Q, as stated. Moreover, Remark 3.11 shows
that the kernel K1y of the canonical projection €2, — €2 is zero. 0

4 The big de Rham-Witt complex

In this section, we construct the big de Rham-Witt complex. We let J be the category
with objects the truncation sets S C N and with a single morphism from 7 to S if
T C S.If A is a ring, then there is a contravariant functor from J to the category of
rings that to S assigns Wg(A) and that to T C S assigns R} : Wg(A) — Wy (A); it takes
colimits in J to limits in the category of rings. For every n € N, there is an endofunctor
on J that takes S to S/n, and the ring homomorphism F,,: Wg(A) — W/, (A) and the
abelian group homomorphism V,,: Wy/,(A) — Wg(A) are natural transformations
with respect to S.

We proceed to define the notion of a Witt complex over A. The original definition
givenin [15, Definition 1.1.1] is not quite correct unless the prime 2 is either invertible
or zero in A. The correct definition of a 2-typical Witt complex was given first by
Costeanu [9, Definition 1.1]. The definition given below was also inspired by [25].

Definition 4.1. A Witt complex over A is a contravariant functor that to every trunca-
tion set S C N assigns an anticommutative graded ring Eg and that takes colimits to
limits together with a natural ring homomorphism

Ns

Ws(A) —— E?

and natural maps of graded abelian groups

d F,
El < I El " E!

Va
Sn Eg/n —— E{ (neN)

such that the following (i)—(v) hold.
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(i) Forallx € E{ andx’' € Egl,

d(x-x)=d(x)- X'+ (—1)x-d(x'),
d(d(x)) = dlogns([—1]s) -d(x),

where dlogns([—1]s) = ns([~1])~'dns([~1]s).
(i1) For all positive integers m and n,
=V :id, EnFn:me Van:me
F.V,=n-id, F,V,=V,F, if(mmn)=1,
anS:nS/nFm NsVa :VnnS/n'

(iii) For all positive integers n, the map F, is a ring homomorphism and the maps F;,
/!
and V,, satisfy the projection formula that for all x € Eg andy € Eg In

x-Vo(y) = Va(Fu(x)y).

(iv) For all positive integers n and all y € Eg I

Fnan(y) = d<y) + (I’L— l)dlognS/n([_l]S/n) Y

(v) For all positive integers n and a € A,
Eadns([als) = ns/n([al, )dsyn[alsn)-

A map of Witt complexes is a natural map of graded rings f: E; — Eg such that
fm=n'.fd=df, fF,=F,f,and fV, = V,f.

Remark 4.2. (a) For T C S a pair of truncation sets, we write R;: Eg — E; for the
map of graded rings that is part of the structure of a Witt complex and call it the
restriction from S to 7'.

(b) Every Witt complex is determined, up to canonical isomorphism, by its value on
finite truncation sets. Indeed, for every truncation set S and non-negative integer ¢,
the maps in (a) defined a bijection from Eg to the limit with respect to the restriction
maps of the E7, where T C S ranges over the finite sub-truncation sets. In particular,
if we write a € W(A) as a convergent sum a = ¥.,,cs Vu([an]s/,) as in Lemma 1.5 (i),
then the element dns(a) € E!, too, admits the convergent sum expression

dns(a) =) dVa(lan]syn)-

nes

(c) The element dlogns([—1]s) is annihilated by 2. Indeed, since d is a derivation,

2dlogns([—1]s) = dlogns([1]s) =0.

Therefore, dlogns([—1]s) is zero if 2 is invertible in A and hence in Wg(A). It is also
zero if 2 =0 in A since, in this case, [—1]s = [1]s. Finally, it follows from the general
formula [—1]s = —[1]s + V2([1]s/2) proved in Addendum 1.7 that dlog ns([—1]s) is
zero if every n € S is odd.
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(d) Let A be a ring and let Eg be a Witt complex over A. For every non-negative
integer g, the pair (Ef, Ags) consisting of Ef} considered as a W(A)-module via the
ring homomorphism 7y : W(A) — EY} and of the maps Agqa, = F,: Ef; — Ef; is a
module over the A-ring (W(A),A4) in the sense of Definition 2.5. Moreover, we may
substitute the axiom (v) in Definition 4.1 by the statement (v’) that the map

(W(A), An) —L (EL, A1)

is a derivation in the sense of Definition 2.12. Indeed, it follows from Theorem 2.15
that (i)—(iv) and (v’) imply (v), and we will show in Proposition 4.4 below that (i)—(v)
imply (v’).

Lemma 4.3. Let m and n be positive integers, let ¢ = (m,n) be the greatest common

divisor, and let i and j be any pair of integers such that mi+nj = c. The following
relations hold in every Witt complex.

dF, =nk,d, V,d=ndV,,

FndVy = idFy )V e+ jBncVjed + (¢ = 1)d1og Mg ([ s /m) - Fn/cVajes
dlogns([—1]s) = X,=12" 'dVarngor ([1]s)2r),
dlogns([—1]s)-dlogns([~1]s) =0, ddlogns([-1]s) =0,
Fu(dlogns([—1]s)) = dlog /([ 1ls/n),

Proof. The following calculation verifies the first two relations.

AFy(x) = FudVyFa(x) — (n — Dl logn[~1]- Fy(x)
— Bd(Vn([1)) ) — (n— Ddlogn([(~1])- Fu(x)
= V(1)) -x-+ V(1)) -dx) — (n — D logn((—1]) Fo(x)
= FdVan ([1]) - Fa(x) + FVan ([1]) - Fud (x) — (n = 1)dlogn ([=1]) - Fu(x)
— (n— )dlogn([~1]) Fa(x) + nFad(x) — (n— dlogn (| 1)) Fa(x
= nF,d(x)

Vad(x) = Vo (FadVi(x) — (n— 1)dlogn ([-1]) -x)
V(1) - dVi(x) — (1~ 1Vadlog (1)) -x)
=d(Van((1]) - Va(x)) = dVan([1]) - Va(x) — (n = Vi (dlogn ([-1]) - x)
= WV (EV([1)) ) —Va(EadVan([1]) ) — (n— 1)V (dlogn([~1]) )
— ndVy(x) ~2(n— 1)Va(dlogn([~1]) x)
= ndV,(x)

Next, the last formula follows from F,([—1]) = [—1]™ and the calculation

Fu(dlogn([~1]s)) = Fa(n([=1]")dn([~1])) = Fan([=1]7") Fadn ([-1])
=n([=1"")n (1" dn([-1])
~1]7Ydn([-1]) = dlogn([-1]).
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Using the three relations proved thus far together with the projection formula, we find

FndV(x) = Fy o FedVeVy, o (x)
= Fy)cdVyye(x) + (e = 1)dlogn ([—1]) - BV, e (x)
= ((m/c)i+(n/c)j)Fp/cdVnse(x) + (c — )dlogn([—1]) - BV, e (x)
=idF, V(%) + jF Vaed(x) + (e — Ddlogn ([—1]) - B Ve (x).

Next, to prove the stated formula for dlogn([—1]s), we use that, by Addendum 1.7,
we have [—1]g = —[1]s +V2([1]s/2) to see that

dlogn([—1]s) = n([-1]s)dn([-1]s)
=n(—[1s+V2([1s/2)dn(=[1]s +Va([l]5/2)
= —dVan([1]s/2) +V2(F2dVan([1]s/2))
= —dVan([1]g2) +Va(dlogn([—1]s/2))
=dVan([1]s/2) +Va(dlogn([—1ls/2)),

from which the stated formula follows by easy induction. Here, in the last equality,
we have used that 2dVan([1]s/2) = V2dn([1]s/2) = 0. Using this, we find that

dva(dlogn([—1]s2)) = ) 2'ddVyrain([1g/pr1)

r=1

= Z 2"dlogn([—1]s) - dVyri1 n([l]S/er )

r=1

which is zero, since 2dlogn ([—1]s) = 0. Now, using Addendum 1.7, we find that

(dlogn([—1]5))* = (dn([~1]s))* = (@Van([1]s;2))?
=d(Van([l]ss2) -dvan([l]ss2)) = Van([l]ss2) -ddVan([1]s/2)
=dVa(dlogn([—1]s/2)) —Van([l]s/2) - dVadlogn([—1]s/»)
=dVa(dlogn([—1]s/2))-n([1]s = Va([l]5/2)),

which is zero, since the first factor in the bottom line is zero, by what was just proved.
This, in turn, shows that (dn([—1]s))? = 0, from which we find that

ddlogn([=1]s) = d(n([-1]s)-dn([-1]s))

=dn([ 1]s)-dn([=1ls) +n([=1]s) -ddn([-1]s)
ddn([-1]s)
dlogn([~1]s)dn([-1]s)
=d11([ 1]s)dn([-1]s) = 0.

This completes the proof. O
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Proposition 4.4. For every Witt complex Eg over A and every m € N, the diagram

1 1
Q) Eg
\\/Fm JF’T!
MNs / m
1 1
Wem(a) " Esjm

commutes. Here, the horizontal maps take agday to 1(ao)dn(ay).

Proof. Since the restriction map RN QW( 4 QW S(4) is surjective and satisfies that
both FmR§] = R S/m F,, and nSRS = RS Ny, we may assume that S = N. In addition, by
Remark 4.2 (b), it will suffice to show that for every n € Nand a € A,

FpdVan([alv) = NvEFpdVa(laln)

as elements of Eé;. To ease notation, we suppress the subscript N. We first suppose
that p does not divide n and set k = (1 —nP~!) /p and [ = nP~2 such that, in particular,
kp+In=1. By Lemma 4.3, we have

FydVin)([a)) = k-aV,Fypn (a]) 41 VaFydn ([a)

=k-av,n(la)’)+1-V,(n([a))?~'dn([a)))
=k-aVyn(la”) +1-Vun ([a]’~ " d[a])

Moreover, arguing as in the proof of Lemma 3.7 above, we find that

NFpdVa(la]) =1 (Va([a])"™" - dVa([a]) + dA,Va([a)))
=1 -Va([a)’~") - dVa([a]) +k-aV,([a]?))
=1-Van([a)’") -aVan(la]) +k-aVin ([a)?)
=1-Va(([a)’™") - FadVan ([a))) + k- aVan ([a)?)
=1-V,n([a]"'d[a]) +k-dVun([a]")

where the last equality uses that n”~2(n — 1)dlogn([—1]) is zero. This proves that
the desired equality holds if p does not divide n. Suppose next that p divides n and
write n = pr. We consider the cases p = 2 and p odd separately. First, for p odd,
FpaVun (la]) = aVn([al)
F,V,(la]) — V,(la])?
NEYa () = V() i) +a 220Dl
N(Va(la))?~" - aV,([a]) +aV,([a]) = pP2rP " aV([a]?))
Va(m([a)))?~" - aVum ([a]) +aV,n ([a]) — p?~ 2P~ aV,(n([a))?),
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and the following calculation shows that the first and third terms cancel,
P2 lav,(n((a))?) = pP e "2 Vad(n([a])?)
=p" P2, (n(la))? dn ([a)))
=n""2V,(n((a])""") -aVum([a])
=Va(n((a])"~" - aVun ([a)).

Here, the third equality follows from Definition 4.1 (iii)—(iv) and from the fact that
nP~2(n — 1)dlog[—1] vanishes. Finally, if p = 2, then

Faavin(la]) = avin((a]) +dlogn([-1])- Vi ([4])

a)) — V,([a))?
nEsdV, () = 1V (la) -dvy([a)) + a2l =Vl

[ ]
1 (Va(la]) - aVa([a)) +aV,([a]) = rdV([a]*))
=V,n([a]) - dVun ([a)) +aV,n((a]) — rdVa(n ([a))*),

and hence, we must show that

dlogn([~1])-V,n([a]) = Van ([a]) - dVan ([a]) — raV(n ([a]?).
Suppose first that r = 1. By Addendum 1.7, [—1] = —[1] + V»([1]), so that

dlogn([-1]) = Va(n([1])) -aVan([1]) —aVan([1]),

and hence, using the Witt complex axioms, we find

dlogn([~1])-n([a]) = Va(n([a])*) -aVan([1]) =1 ([a]) -aVan ([1])
=Va(n((a])? - FaVan([1])) —d(n(la]) - Van([1])) +d(n ([a])) - Van ([1])
=V2(n(la])* - dlogn([~1])) —dVa(n([a))*) + Va(n([a])dn [a]))
=Va(n([a))) -dVan(la)) —aVa(n([a])*)

as desired. In general, we apply V; to the formula that we just proved. This gives

dlogn([~1])-Vi(n(la])) = V,(Va(n([a])) - dV2n ([a])) — rdVa(n ([a])?)
Va(n(la]) - F2dVan([a])) — rdVa(n ([a])?)
Va(n(la]) - EaVan ([a])) — rdVa(n ([a])?)

=Vun([a])-aVan([a]) — raVa(n([a))?),

where we have F,dV, = F,dV,, since n is even. This completes the proof. O

Corollary 4.5. Let Eg be a Witt complex over the ring A. There is a unique natural
homomorphism of graded rings
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that extends the natural ring homomorphism ng: Wg(A) — Eg and commutes with
the derivations. In addition, for every positive integer m, the diagram

X Ns .
“QWS(A) ’ ES

JFm JFm
Q' nS/m A
WS/m (4) S/m
commutes.

Proof. The map ng necessarily is given by

T]S(aodal .. .daq) = T]S(a())dng(al) .. .dT]S(aq).

We show that this formula gives a well-defined map. First, from Proposition 4.4, we
find that for all a € W(A),

Fydny(a) = NyFd(a) = ny(ada+dAz(a)) = Nn(a)dnn(a) +dnnda(a).
Applying d to this equation, the left-hand side becomes
dFdny(a) = 2Fddny(a) =0
while the right-hand side becomes

dnn(a)dnn(a) +dlog Ny ([—1])n - (Mn(a)dnn(a) +dnnaa(a))
= dnn(a)dny(a) +dlogny([—1])n - Fadnn(a).

Hence, there is a well-defined map of graded rings 7ng: QWS( 4 E given by the
formula stated at the beginning of the proof, and by axiom (iv) in Definition 4.1,
this map factors through the canonical projection from QWS (4) ONto f)ws (4)" Finally,
Proposition 4.4 shows that the diagram in the statement commutes. O

Proof of Theorem B. We recall that, in the diagrams in the statement, the left-hand
vertical maps were defined in Lemma 3.13. We define maps of graded rings

W,

L a)
as quotients by graded ideals N and verify that, in the diagrams in the statement,
the right-hand vertical maps R;, F,, and d making the respective diagrams commute

exist. We further define maps of graded abelian groups

Vi .
WS/nQA — W5,
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that make the following diagrams commute,

nS/n 0 . Va .

W/ (A) —— Wy, 2 We/n2) —— Wsf2)
Jvn lvn Jki//’fl JR%
Ws(4) —=— WsQY Wy ——s Wr Q2

deF, Va®id
W2, ® W, Q0 Wy, 2, @ We —oos Wy, @ Ws2,

| Vn |

WS/nQA WsQ,.

The definition of these maps, as S ranges over all finite truncation sets, T C S over
all sub-truncation sets, and n over all positive integers, will be by induction on the
cardinality of S and will take up most of the proof. Once this is completed, we will
show that the combined structure is a Witt complex over A and that it is initial among
Witt complexes over A.

We define Wy, to be the terminal graded ring, which is zero in all degrees,
and define 1y to be the unique map of graded rings. So let S be a finite non-empty
truncation set and assume, inductively, that the maps 17, RE, F,, d, and V,, have been
defined, for all proper truncation sets 7 C S, all truncation sets U C T, and all positive
integers n, with the properties listed at the beginning of the proof. In this situation,
we define ng: QWS( a7 Ws£2, to be the quotient map that annihilates the graded
ideal Ng generated by all sums

ZVn(xa)dYLa . -d)’q,aa d(ZVn(xa)dYI,a .- -d)’q,ot)a
o o

where the Witt vectors x4 € Wy, (A) and y| o,...,y5.a € Ws(A) and the integers
n > 2 and g > 1 are such that the sum

ns/n(ZXQFndyLa . Fndyq,a)
o
in Wg /n.QZ is zero; and for every positive integer n, we define the map of graded
abelian groups V,: Wy, Q, — W€, by
VnnS/n (andyl ce Fndyq) = ns(Vn (x)dyl e dyq).

Here we use that every element of W /,,QZ can be written as a sum of elements of
the form 7, (xF,dy1 ... Fudy,) with x € Wy, (A) and y1,...,y, € Ws(A). Indeed,

dx = F,dV,(x) — (n = 1)dlog[—1]g/, - x = F,dVy(x) — (n — 1)xFpd ([~ 1]s).

To prove the existence of the necessarily unique right-hand vertical maps R‘%, d, and
F, making the diagrams in the statement of the theorem commute, we must show that
the left-hand vertical maps in these diagrams satisfy 07 (R§-(N¢)) = 0, ns(d(N{)) =0,
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and 7/, (Fn(N{)) = 0, respectively, and to this end, we use the properties of the latter
maps established in Lemma 3.13. So we fix a positive integer n and an element

0= ZVn(xoc)dyl,Oc dyga € Q\‘«?VS(A)
a

with
Ns/n(Y xaFndy1a .. Fadyga) € Wy, Q2
o

equal to zero and show that 7R} (@), Ns(dd®), Ns/pFn(®), and g/, Fp(dw) all
are zero. First, in order to show that

MR} (@) =M (L VoY () AR (v1.0) - AR} ()

is zero, it suffices by the definition of the ideal N} to show that
nT/,,@Ri/;, (x0) FudR (31,0 - - Fad RS (vg.))
is zero. But this element is equal to
MRy (Y XaFady1 a - Fadyg.o)
a
which, by the inductive hypothesis, is equal to
Ry 115/ (Y xaFudyt - Fadygc)
a

which we assumed to be zero. Similarly, we have

Ns(ddw) = ns(dlog([—1]s) - d) = ns(d(dlog([-1]s) - @))
=ns(d ZV Yo~ s/n )d([—1]s)dy1,a-..dyga)),
and by the definition of N, this element is zero, since
1Ns/n Zxa S/nF d([—1]s)Fdyt,q ... Fadyga)
= dIOgnS/n([_ ]S/n) ’ nS/n(ZxaFndyl,a e Eldyq,a)
o
is zero. Next, to prove that 1g,,Fn(®) and g/, F;(d®) are zero, we may assume
that m = p is a prime number. Indeed, if m = kp, then, by the inductive hypothesis,

we have N/, Fin = Ng/mFiFp = FiMs/pF)p. Suppose first that n = [p is divisible by p.
We remark that we have

nS/p(ZVl(xa)deYLa o Fpdyga)
o
- ZVI(nS/n(xa))nS/p(deyl,a = -deyq,a)
o
=Y Vi(s/u(xa) Fi(Ns)p(Fpdy1,a - - - Fpdyga)))
o

=Vsn(Y_xaFadyia- - Fadyge)
o

(4.6)
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which is zero. Indeed, the three equalities hold since, by the inductive hypothesis,
the maps V;: W/, Q{ — W/,Q7 and F;: Wy,,Q1 — W, Q7 exist and have the
properties listed at the beginning of the proof. Now,

nS/pr(w) = nS/p(ZFan(th)Fdel,a .. -deYq,a)
o
= pnssp (Y Vilxa) Fpdyra - Fpdyg,a)
o
which is zero by (4.6). Similarly, using Proposition 3.3, we have

nS/pr(dw) = nS/pr(Zan(xoc)dyl,a . 'dyq.,oc) +é€- nS/pFﬂ(a))
o

with € = gdlogns;,([—1]s/,), and we have just proved that ng,,F,(®) is zero. By
Lemma 3.8, we may rewrite the first summand as the sum

nS/p(ZdVl(xa)de)’l,a .. ~de)’q.oc) +€- nS/p(ZVl(xa)deyl,a .. -deyq,a)
o o

with € = (p — 1)dlogns,([—1]s/,). Here, the second term is zero by (4.6), and we
rewrite the first summand as

ns/p(d(ZVl(xa)deYLa - Fpdyga) — ZVl(xa)d(deYI,a o Fpdyga))
a o
= nS/pd(ZVl(xa)deyl,a .- ~deyq,oc) —&- 77S/p<zvl(xa)deyl,a . ~de)’q,a)
a o

= dnS/p(ZVl<xa)deYI,a .. -de)’q,a) —8'TIS/p(Z"z(Xa)dey1,a .. -de)’q,ot)
o o

with € = pgdlogng,,([—1]s/,). Here, the last equality uses that 7/, by definition,
commutes with d. It follows from (4.6) that both summands in the last line vanish, so
Ns/ »Fp(dw) = 0 as desired. Next, suppose that p does not divide n. We have
Ns/pFp(®) = Zns/anFp(xa) MNs/pFp(dyia - dyga)
[0
= ZVannS/n(xa) ’ nS/pr(dyl,O! e 'dyq,lx)
a
= ZVn(Fan/n(xa) 'ans/pr(dyl,a .- «dyq,oc))
[0
ZVn(Fan/n (xa) - nS/onnp(d)’l,a <dyga))
a

= ZVn(Fan/n(xa) 'Fan/nFn(d)’l,a cdyga))
o

=VaFps/u(Y xaFndyia - .. Fadyg.a)
04

which is zero. Here the second, third, and forth equalities use that, by the inductive
hypothesis, the maps F,: Wg/,Qf — W, , QY and V,,: W/, 21 — W/, Q1 exist
and have the properties listed at the beginning of the proof, and similarly, the fifth
equality uses that the map F,: Wy, Q7 — Wy, Q1 with Fyng/, = Ns/upF) exists.
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We proceed to show that also ng,F, »(dw) vanishes, and to this end, it suffices to
show that both p1g/,Fp(d®) and nns,,F,(d®) vanish. First,

an/prd(w) = nS/dep(w) = dnS/pr(w)a

which is zero by what was just proved. Here the two equalities hold by Proposition 3.5
and by the definition of 7/, respectively. Next,

nns;pFpd(0 Z””Is/pF d(Va(xa)dy1a - dyga)
—Z’msm (dVa(xa)dy1a---dyg.a) +€-Ng/pFp(@)

with € = ngdlogng,,([~1])s/,, and we have already proved that 7/, F,(®) is zero.
Moreover, we may rewrite the first term in the lower line as

Z’”Is/p S/n) n(Xa)dV1 0 - - dYg.a)
+Z775/p ([ ]S/n)dv (xd)dyl o- dyq,a)’
since, by Lemma 1.5 and by d being a derivation,
ndVy(x) = dV,F,Vy(x) = d(Va([1]s/n) - Va(x))

= dVa([Usn) - Va(x) +Va([ls/n) - dVa ().

Now, since both 7/, and F), are graded ring homomorphisms, we have
ZT’S/[) ([1s/n)Va(xa)dy1.a - - dyga) = Ns/pFpdVa([ls/n) - Ns/pFp(®)

which is zero, since ns/pr(a)) is zero, and

Zns/p ([1s/n)dVa(xa)dY1.0 - - dyg.e)

= Zalns/pr"fz([ Is/n) - Ns/pFp(dVa(xa)dy1 - -dVg.a)

= ;nS/anFﬂ([l]S/n) “MNs/pFp(dVa(Xa)dy1 o - dyg.a)

= ;VnUS/onp(MS/n) “MNs/pFp(dVa(xa)dy1 o ---dYg.a)

= ;Vn(ns/onp([l]S/n) Eans/pFp(dVa(xa)dyra - dyg.a))

= ;Vn(WS/onp([l]S/n) “Ns/npFrp(@Va(xa)dy1,a - --dYg.a))

= Zvn(ns/onp([l]S/n) 'Fan/nFn(an (xa)dyl,a x -d}’q,a)),
a

where the third and forth equalities hold, since, by the inductive hypothesis, both the
maps F;: WS/pQ — Wg/np€24 7 and V,: WS/an — WS/qu exist and have the
properties listed at the beglnnlng of the proof, and where the fifth and sixth equalities
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hold, since the maps Fp,: W, 27 — Wy, Q% and V,,: Wy, Q8 — Wy, Q7 exist
and have the properties listed at the beginning of the proof. Since 1g/,,,F([1]s/,) is
the identity and F,,dV,,(x¢) = dxoq + (n — 1)dlog([—1]s) - X, this becomes

VaFpns/n(Y. d(xa) Fadyra - .- Fadyga) + € VaFyllsjn(Y XaFadyia - .- FadYg.o)
o o

with € = (n—1)dlogng/,([—1]s/p), where the second term is zero. Finally, since d
is a derivation, we may rewrite the first term as

VaFpls/nd (Y xaFndyi o ... Fadyga) — € VaFyls /() XaFadyi o - - Fadyga)
[0 [0

with € = ngdlogng,,([~1]s/,), and these terms both are zero. Hence, nF,d(®) is
zero, and therefore, we conclude that F,,d(®) is zero as desired.

In order to complete the recursive definition of the maps 7, R;, F,,d,and V,, we
must show that the three diagrams at the beginning of the proof commute. The top
left-hand diagram commutes by the definition of V,,, and the calculation

RgVnnS/n (XFnd)’I .- 'FndYq) = RgnS(%1 (x)dy1 . ~dyq)

= TITRL;(Vn(x)dﬂ x -d)’q) =nr (VnR;//nn (x)dR‘; 1) -dRL; ()’q))

= Vil o (R () Fud R (31) . Fud RS (3) = VRS, 15 (cFdy s .. Fodlyy)

shows that the top right-hand diagram commutes. Finally, the following calculation
shows that the bottom diagram commutes,

Valls/n(XEadyn ... Fudyg) - ns(zdwy ...dw,)
=Ns(Va(x)dy1 ...dyg) - Ns(zdwi ...dwy)
=Ns(Va(x)dyi ...dyg-zdwi ...dw,)

= Ns(Va(xF,(2))dy1 .. .dygdwi ...dw,)

= VaNs/n(XFu(2) Fadyn . .. FydygFudwi . .. Fydw,)

= Va(Ns/n(XFndy1 ... Fadyy) - N jnFu(zdwy .. dw,))
= Vu(Ns/n(xFudy1 ... Fady,) - Fans(zdwy ...dwy)).

Here the first and fourth equalities hold by the definition of the map V,,; the second
and fifth equalties hold by the multiplicativity of the maps ns, 7g/,, and F,; the third
equality holds by Lemma 1.5; and the sixth equality holds by the existence of the
map F, with F,ns = nNg/,Fn. This completes the recursive definition of the graded
rings W€, and the maps 7s, R%, F,, d, and V), for finite truncation sets S. We extend
to infinite truncation sets as discussed in Remark 4.2 (b).

To show that the structure defined above forms a Witt complex over A, it remains
to prove that V| =id; V,,V,, = Vs F,V,, = n-id; and F,,,V,, = V,,F,,,, if (m,n) = 1. The
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first identity holds by definition, and the second identity holds, since

Viur N fmn (CFundy1 - - - Byndygq) = Ns(Vinn (x)dy1 - .. dyg)

= Ns(Vin(Va(x))dy1 ... dyg) = Viu N jim(Va (X) Fudy1 - . . Frndyy)

= Vin(Va (M (X)) Emd s (1) - - - Fnd M5 (v4))

= Vin(Va (M un (X) Fund s (1) - - - Fnd M5 (vg)))

= Vin(Vanls mn (¥Fmndy1 - - Fndyy) ).
Here the first and third equalities hold by the definition of V,,, and V},, respectively;
the fourth equality holds by the existence of the map F,, with Ng/,,Fin = FnNs; the

fifth equality holds by the inductive hypothesis; and the last equality holds by the
existence of the map F,,, with ng /mnan = F,unMs. Similarly, we have

FnVnnS/n(XFnd}’l .. ~Fndyq) = anS(Vn(x)dyl . ~d)’q)
= T]S/,ZF,,(Vn(x)dyl cdyy) = nns/n(andyl . Fudyg),

which shows that F,,V,, = n - id; and finally, if (m,n) = 1, we have

EnVuls n(x- Fydy ... Fadyg) = Fus(Va(x) - dy1 ... dyg)

= nS/mFm(Vn(x) “dyp .. -d)’q) = nS/mFm(Vn(x)) ) nS/mFm(d)’I cdyg)

= Ns/mVn(Fm (X)) - Ns/mFm(dy1 ... dyg) = Va(Ns/mnFn (X)) - Ns/mFm(dy1 - .. dyg)
= Va(Ns/mnFn (X) - FaNs jmFn(dY1 - . dyq)) = Vil jynFon (X - Fu(dy1 - . .dyy))

= VaFulls/n(x- Fu(dy1 ... dyg)) = VaFusn(x - Fadyn ... Fadyg),

which shows that F;,,V,, = V,,F,, as desired.
Finally, let E be a Witt complex over A and let nf : Qyga) — Eg be the map in
Corollary 4.5. We claim that this map factors as

s W@, ELEN E;.

s (a)
Since the left-hand map 7y is surjective, the right-hand map fs necessarily is unique.
We may further assume that the truncation set S is finite. To prove the claim, we
proceed by induction on the cardinality of S, the case S = @ being trivial as 7g is a
bijection. So we let S be a finite non-empty truncation set and assume that for every
proper sub-truncation set 7 C S, the factorization n¥ = frnr exists. To prove that
also the factorization nSE = fsMs exists, we must show that whenever 7 is a positive
integer and xo € W/, (A) and y1 q, - -, Y40 € Ws(A) are Witt vectors such that

ns/n(Z.X(andyLa .. -FndquX) S WS/”Q‘Z
o

vanishes, then so does

T]?(ZVH (xa)dy1,0---dyga) € Eg.

o
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Now, using that E§ is a Witt complex over A, we find

N5 (Y Valxa) -dyra---dyga) = Y 05 (Valxa)) - 05 (dy1a---dyg.a)
a o
= ZVn(ng/,l(xa)) : nsE(dyl,oc dyga) = ZVn(nsE/n(xoc) -anf(dyl,a cdyga))
o o
=Y Va5, (xa) - N5 Fnldyia- - dyga)) = Vg, (Y xaFadyia - - Fudyga)
o o

= nfS/nnS/n (ZxaFndyl,oc o Fudyga),
o

which vanishes as required. Here the last equality holds by the inductive hypothesis.
This shows that, for every truncation set S, the map 1755 factors as fsns. Finally, to
show that W€, is initial among Witt complexes over A, it remains to verify that
the maps fs constitute a map of Witt complexes. In view of Corollary 4.5, the only
statement that needs proof is that for every truncation set S and for every positive
integer n, we have fsV, =V, fs/,, and this follows from the calculation

fSVnnS/n(x~Fndy1 . Fudyg) = fsns(Va(x) -dy: ...dy,)
=15 (Va(x) -dyi ... dyg) = 05 (Va(x)) -1 (dy1 ... dyy)
= Va(n5), (%)) - 1§ (dy1 - dyg) = Va(1§),(x) - Funi§ (dys .. dyg))
= Va(N5), (%) - NG, Fu(dyr .. dyg)) = Vang), (x- Fudyi ... Fudy,)
= Vals/nNs/n(x - Fady1 ... Fudy,),
since every element in WgQ{ can be written as a convergent sum of elements of the

form ng/, (x- Fudyi ... Fady,) withn € N, and x € Wg(A), and yy,...,y, € W, (A).
This completes the proof of Theorem B. O

Definition 4.7. The initial Witt complex WgQ, over the ring A is called the big
de Rham-Witt complex of A.

Addendum 4.8. (i) For all g, the map 1y : .Qg — W{l}QX is an isomorphism.
(i) For all S, the map ns: Ws(A) — WsQ{ is an isomorphism.

Proof. This follows immediately from the proof of Theorem B and Lemma 3.14. [

The statement (i) in Addendum 4.8 is a special case of the question raised at the
top of page 133 in [15]. The explicit construction of the big de Rham-Witt complex
given in the proof of Theorem B answers this question in the affirmative.

Remark 4.9. Suppose that (k,A) is a A-ring and that f: k — A is a k-algebra. We let
fs: k— Wg(A) be the composite ring homomorphism RY o W(f) oA and define the
big de Rham-Witt complex of A relative to (k,A) to be the quotient

W€} /) = WsQ, /R

of the big de Rham-Witt complex W€, by the graded ideal R generated by the
images of Nso fo.: Q! — WsQ) and dongo fs.: Q) — WsQ32. It is initial among
Witt complexes over A in which the map d is k-linear when its domain and target are



53

viewed as k-modules via the map 1sfs: k — EJ. In the particular case, where (k, 1)
is (W(R),Ar) and where A is an R-algebra viewed as a k-algebra via €g: k — R, we
obtain (a big version of) the Langer-Zink relative de Rham-Witt complex [22].

5 Etale morphisms

The functor that to the ring A associates the Wg(A)-module WsQ{ defines a presheaf
of Wg(&)-modules on the category of affine schemes. In this section, we use the
theorem of Borger [6] and van der Kallen [27] which we recalled as Theorem 1.25 to
show that for S finite, this presheaf is a quasi-coherent sheaf of W(&')-modules for
the étale topology. This is the statement of Theorem C which we now prove.

Proof of Theorem C. We fix an étale morphism f: A — B and consider the map
Ws(B) ®WS(A) Ws.QA L) Ws.QB

that to b ® @ assigns b - fi.(®). To show that this map is an isomorphism, we define a
structure of Witt complex over B on the domain E§ of o. By Theorem 1.25, the map

Ws(f): Ws(A) — Ws(B)

is étale. Hence, the graded derivation d: W,Q¢ — WsQ¢"! extends uniquely to a
graded derivation d* : E{ — EgH defined by

df (b®x) = (d'b)x+b®dx
with d'b the image of b by the composition

d 1 id®ng

Ws(B) QWIIVS(B) = Wy (B) Qwy(a) QWS(A) — Wg(B) Bwg(a) WsQA,

where the middle map is the canonical isomorphism. We further define the maps
R?S t El —» El and FF: El > E], to be R} @R} and Ff = F, ® F,,, respectively.
Next, to define the map V£ : Eg n Eg, we use that, since the square in the statement
of Theorem 1.25 is cocartesian, the map

F,®id
Ws(B) @uwy(a) Ws/n2] —— W/, (B) ®wg,(4) Ws/n24

is an isomorphism, and we then define V* to be the composition of the inverse of this
isomorphism and the map

id@V,
Ws(B) @wy(a) We/n 2] —— Ws(B) @yyy(a) Ws .-

Finally, we define the map n¥ : Wg(B) — EJ to be the composition

W(B) —— Ws(B) Qyyg(a) Ws(A) —— Ws(B) Quyg(a) Ws 2]
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of the canonical isomorphism and the map id ®ng. We proceed to show that the maps
defined above make Eg a Witt complex over B. The axioms (i)—(iii) of Definition 4.1
are readily verified. For example, we have d®d* (—) = dlogn§ ([—1]s)d* (—), since
both sides are derivations which agree on W and the calculation

VEF,(h)®0) Voo =baV,(0) b ®ae =bb oV, (0)o
= bb' @V, (0F,(0')) = VE(F,(bV) @ oF,(0')) = VE(F,(b) @ 0 FE (b @ o))

verifies axiom (iii), since every element of Eg , can be written as a sum of elements
of the form F,,(b) ® ® with b € Wg(B) and & € W, Q1.

It remains to verify axioms (iv)—(v) of Definition 4.1. To prove axiom (iv), we
must show that for all ® € E{ /- the equality
Ffd"V, (@) + (n—1)dlogng), ([~1]s/n) - @ = d* (o)

holds in Egtll. On the right-hand side, dE, by definition, is the unique graded deriva-
tion on Eg, that extends the graded derivation d on W,,€2,; and, on the left-hand
side, D also extends d. Hence, it will suffice to show that D, too, is a graded deriva-
tion. Moreover, since the square diagram of rings in Theorem 1.25 is cocartesian, and
since D is an additive function, it suffices to show that D is a graded derivation on
elements of the form @ = F,(b) ® T with b € Wg(B) and T € Wy, Q,. We claim that

D(F,(b)®7) = EE(d®b) -nt+ F,(b) ®dt

as elements of Eg, . Granting this, it follows that axiom (iv) holds, as the right-hand
side clearly is a graded derivation of F,(b) ® t. Now,

D(F,(b)® 1) = F; d"V, (Fy(b) ©7) + (n— 1)dlog g, ([~ 1]sn) - Fa(b) ® T
= Frd" (b @V, (7)) + Fu(b) © (n— 1)dlogngy,([—1])T

= F; (d"(b) - Vi(7) +b®dV (7)) + Fu(b) @ (n— 1)dlog N ([—1])7

= FE(d"b) - nt+ Fo(b) ® (FudVa(T) + (n— 1)dlog g ([~ 1])7)

= FE(d®b) -nt+ Fo(b) ®@dr,

which proves the claim. Here the first two equalities follow from the definitions; the
third equality holds, since d” is a derivation; the fourth equality holds, since FF is
a ring homomorphism and satisfies FFVE = nid; and the last equality holds, since
axiom (iv) holds in the de Rham-Witt complex over A.

In order to prove axiom (v), we consider the following diagram, where the left-
hand horizontal maps are the canonical isomorphisms,

1 id®ng
iy Ws(B) @wya) Qg Eg

an an ®Fy anE

1 1 id ®Tls/,, 1
Wsu(B)  Ws/n(B) @vig,, (4) Qg (a) — Egjn
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Here, the left-hand square commutes, since Fj,: Qxxlw B~ Qslw( p) 18 Fp-linear and a
natural transformation; and right-hand square commutes by Proposition 4.4. Hence,
also the outer square commutes and this immediately implies axiom (v); compare
Remark 4.2 (d).

We have proved that the domains of the canonical map o at the beginning of the
proof form a Witt complex over B. Therefore, there exists a unique map

B: Ws.Qg — Ws(B) Qwg(A) Ws.QZ

of Witt complexes over B. The composition & o is a selfmap of the initial object
W/, and therefore, is the identity map. The composition o o is a map of Witt
complexes over B. In particular, it is a map of Wg(B)-modules, and therefore, is
determined by the composition with the map of Witt complexes

l: Ws.QZ — WS(B) ®WS(A> WS-QZ

that takes x to [1]s ® x. But ¢ and 8 o ot o1 both are maps of Witt complexes over A
with domain the initial Witt complex over A. Therefore, the two maps are equal, and
hence, also 3 o & is the identity map. This completes the proof. O

6 The big de Rham-Witt complex of the ring of integers

We finally evaluate the absolute de Rham-Witt complex of the ring of integers. If m
and n are positive integers, we write (m,n) and [m,n] for the greatest common divisor
and least common multiple of m and n, respectively. We define (m,#] to be the unique
integer modulo [m,n] such that (m,n] = 0 modulo m and (m,n] = (m,n) modulo n,
and define {m,n} to the unique integer modulo 2 that is non-zero if and only if both
m and n are even. We note that (m,n] + (n,m] = (m,n) modulo [m,n]. We also remark
that, by Lemma 4.3 and by d being a derivation, in any Witt complex, the element
dVuNs/n([1]s/a) is annihilated by n.

Theorem 6.1. The big de Rham-Witt complex of Z is given as follows:

WS-Q% = HZ ' VnnS/n([l]S/n)

nes

WsQy =[] Z/nZ-aVangu([Lsn)

nes

and the groups in degrees q > 2 are zero. The multiplication is given by

anS/m([l]S/m) VnnS/n([l]S/n) = (man) ’ V[m,n] nS/[m,n]([l]S/[m,n])
anS/m([l]S/m) 'annS/n([l]S/n) = (m,n] 'dv[m,n]nS/[m,n]([I]S/[m,n])
—l—{m7n} er_l[mﬂn] 'de’[m,n]n([”S/T[m,n])’

r=1
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and the mth Frobenius and Verschiebung maps are given by

EnVanis/n((Us/n) = (m,10) - Vi jmMs ) (U /o))
EndVus n([(Us/n) = (myn]/m-dVi  jmMs i) ([ s/ imn))
+ {m,n} Z (2r71 [ma n]/m) 'dV2’[m,n]/mnS/2’[m,n] ([I]S/Zr[m,n])

r=1
Vm(VnnS/mn([l]S/mn)) = annS/mn([l}S/mn)
Vm(annS/mn([l]S/mn)) =m: dennS/mn([uS/mn)'
Proof. We claim that there is a Witt complex E§ over Z with

ES=T1Z Vanssu([1sn):

nes

E; = HZ/nZ 'annS/n([l]S/n)v
nes
with E;I = 0 for ¢ > 2, and with the Witt complex structure maps defined to be the
unique additive maps satisfying the formulas listed in the statement. For instance,
the map 1s: Wg(Z) — E is defined to be the unique additive map that to V,([1]s /n)
assigns VyMg/n([1]s/,); it is a ring isomorphism by Proposition 1.6. Granting this
claim, the map ng extends uniquely to a map

W, s, Ej

of Witt complex over Z. It is an isomorphism in degree ¢ = 0, as noted above, and it
is also an isomorphism in degree g = 1. For it is clearly surjective in degree g = 1,
and since Lemma 4.3 shows that, in every Witt complex over Z,

nannS/n([l]S/n) = VndnS/n([l]S/n) =0,

it is also injective in degree ¢ = 1. Finally, to prove that 1ng is an isomorphism in
degrees g > 2, we must show that WSQ% is zero, and to this end, it suffices to show
that, for every finite truncation set S and every n € S, the element ddV, 15/, ( 1] /n) Of
WS.Q% vanishes. Now, using Lemma 4.3 and the projection formula, we find

ddVansn([1sn) = dlogns([—1]s) - dVanss([1]s/n)

= d(dlogns([—1]s) - Vants/u([1]s/n)) = dVa(dlogns/u([—1]s/n))

=Y 2 avudVar s or([s/2ra) = nddVanMis o, ([1s)20)

rz1
and since S was assumed to be finite, this furnishes an induction argument showing
that ddV,m([1]s/,) is zero.
It remains to prove the claim. For notational convenience, we will suppress the

subscript S. We first show that the product on E is associative. Since [—1] is a square

root of one in Wg(Z) which, by Addendum 1.7, is equal to —[1]+V»([1]), the formula
defining the product in E¢ shows that, as elements of E 5

dlogn([—1]) = (= ([1]) + Van(())d(=n([1]) + Van([1]))
— (=0 () +Van([1])avan((1]) = ¥ 2" 'avarn([1)). 6.2)

r=1
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Using this formula, we find

Ven([1]) -dlogn([-1]) = Y 2" 'Ven([1])avarn([1])

r=1

=Y 27 (e, 21V ([1]) +{e,2} Y. 2 [e, 2]aVasp g ([1]).

r>1 s>1

Moreover, 2”1 (m,2'] is congruent to 2"~ modulo [,2"]. For 2"~'m is congruent
to 0 modulo m and to 2"~! (m,2") modulo 2". Hence, if e is odd, the lower left-hand
summand is equal to ¥~ 2" 'edVsr,n([1]) and the lower right-hand summand is
zero, and if e is even, the lower left-hand summand is zero and the lower right-hand
summand is equal to ¥~ 2°'edVas.n([1]). So for any positive integer e, we have

Ven([1)) - dlogn([-1]) = Y 2" 'edVaren([1]). (6.3)

r=1
We conclude that the product in E satisfies
an([l]) 'ann([l]) = (mﬂﬂ 'dV[m,n]n([l])
+{m,n} - Vi un((1]) - dlogn([-1)),

where we use (6.3) to identify the second term on the right-hand side. A similar
calculation shows that for all positive integers a and b,

Van([1]) - (Ven([1]) - dlogn([-1])) = (Van([1]) - Von ([1])) - dlog n ([1]).
Using this identity, we find, on the one hand, that
Vzﬂ([l]) : (Vm([l]) 'ann([l])) = (17 [manﬂ(m’n] 'dV[l,[m,n]]n([l])
+ ({1, [m,n]}(m,n] + (1, [m, n]){m,n}) - Vi jmay n ([1])dlog n ([-1]),
and, on the other hand, that
(Vln([l]) 'Vm([l]» 'ann([l]) = (l,m)([l,m},n] 'dv[[l,m]m]n([l])
+ (L,m){[l,m],n} - Vi ym ([1])dlogn ([1]).

Here [I,[m,n]] = [[/,m],n] and to prove that (I, [m,n]](m,n] and (I,m)([l,m],n] are
congruent modulo [/, [m,n]], we use that [, [m,n]]Z is the kernel of the map

(6.4)

7 — )17 Z./mZ x Z./nZ.

that takes a to (a+1Z,a+ mZ,a+ nZ). So it will suffice to verify that the desired
congruence holds modulo /, m, and n, respectively. By definition, both numbers are
zero modulo [ and m, and the congruence modulo n follows from the identity

(L, [m,n]) - (m,n) = (I;m) - ([, m],n)

which is readily verified by multiplying by [l, [m,n]] = [[{,m],n] on both sides. We
also note that {/, [m,n|}(m,n] + (I, [m,n]){m,n} and (I,m){[l,m],n} are well-defined
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integers modulo 2 which are non-zero if and only if n and exactly one of / and m are
even. This shows that the product in Ej is associative.
We proceed to verify the axioms (i)—(v) of Definition 4.1. First, we note that since
the sum (m,n] 4 (n,m] is congruent to (m,n) modulo [m,n] = [n,m], we have
dVunn ([(1]) - Vann (1)) + Viun ([1]) - @V ([1])

= (n,mdV, mm([l])Jr{n m}Vim N ([1])d logn ([-1])

+ (m, n]dViyyn ([1]) + {m, n} Vi n ((1])d log n ([=1])

= (m,n)dViyyn ([1]) = d(Van ([1]) - Van ((1]))

which verifies axiom (i).
To verify axiom (iv), we first show that for all positive integers m,

Fin(dlogn([—1])) = dlog([-1]). (6.5)

It follows from formula (6.2) that

Fy(dlogn([-1])) = ). 2" 'FudVarn([1])

r=1
= Z 21‘71 (mazr]/m : dV[mZ’]/mn([l]) + {maz} Z 257] [m72]/m : dVZ‘[mZ]/mn([l])
r=1 s>1
= Z 2r—1 'dv[m,Z’]/mn([lD + {maz} Z 2S_1 [mvz]/m ! dVZA[mZ]/mn([l])
r>1 s=>1

where the second equality follows from the definition of F,, and the last equality uses
that 21 (m,2"] is congruent to 2"~ 'm modulo [m,2"]. Now, if the integer m is even,
then the lower the left-hand term is zero, since [m,2"]/m = 2" with ¢ < r, and the
lower right-hand term is equal to ¥~ | 2~ 'dVasn([1]); and if m is odd, then the lower
left-hand term is equal to ¥, 2"~ 'dV>-n([1]) and the lower right-hand term is zero.
Hence, using (6.2) again, we conclude that (6.5) holds. By using this equality, we
may restate the definition of the Frobenius on E/ in the form

Fdenn([l]) = (m>n]/mdv[mn]/mn([1]>
+{m,n} - Vip iy ([(1]) - dlogn ([—1]),

and taking n = mk and y = V;n([1]), this verifies axiom (iv).
We next consider axiom (ii) which is easily verified on E°. We first show that the
identity F;F,, = F;,,, holds on E!. Using (6.6), we have, on the one hand, that

Fy(FndVam ([1])) = (1, [m,n) /m]/1- (m,n] /m - dV}y fy n) ) i ([1])
+ ({1, [m,n]/m}(m,n] /m~+ (1, [m,n] /m){m,n}) - Vi f.n) )M ([1]) - d Tog n ([—1]),
and, on the other hand, that

Fldenn(“]) = (lman]/lm : dV[lm,n]/lmn([l])
+{lm,n} - Vi 1w ([1]) - dlog n ([=1]).

(6.6)
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Here, we have [l,[m,n]/m]/l = [Im,n]/Im, since both are equal to n/(Im,n), and
moreover, (Im,n] and (I, [m,n]/m](m,n] are congruent modulo [Im,n], since both are
congruent to 0 modulo /m and congruent to (Im,n) = (I,[m,n]/m)(m,n) modulo n.
Finally, the two factors {Im,n} and {l,[m,n|/m}(m,n]/m+ (I,[m,n]/m){m,n} are
well-defined integers modulo 2 which are non-zero if and only if /m and n are even.
Indeed, for the first factor, this is the definition, and for the second factor, it is seen
as follows. If n is odd, then both summands in this factor are zero, so suppose that
n is even. If /m is odd, then again both summand are zero; if / is odd and m is even,
then the first summand is zero and the second summand is non-zero; if / is even and
m is odd, then the first summand is non-zero and the second summand is zero; if [
and m are both even and if the 2-adic valuation of m is strictly less than that of n,
then [m,n]/m is even and (m,n]/m is not divisible by 2 modulo [m,n]/m, so the first
summand is non-zero and the second summand is zero; and, finally, if / and m are
both even and the 2-adic valuation of m is greater than or equal to that of n, then
[m,n]/m is odd, so the first summand is zero and the second summand is non-zero.
This completes the proof that F;F;,, = Fj,,. The formulas V,V,,, =V,,, and F,,V,,, = m-id
are readily verified, so we next show that F;V,, = V,,,F; if [ and m are relatively prime.
To this end, we first note that by (6.3) and by the definition of V,, on E Sl, we have

Vn(Ven([1]) - dlogn([=1])) = Vimen ([1]) - dlogn ([-1]), (6.7)

for all positive integers m and e. Using this identity, (6.5), and (6.6), we find that

+m{l,mn} Vi im([1]) - dlogn ([—1])
VmFlann([l]) = m(lvn]/l 'de[l,n]/ln([ID
+ {lvn} : Vm[l,n]/ln([lD dlogn([_u)
But if / and m are relatively prime, then [/,mn] and m|[l,n] are equal; m(l,mn| and
m(l,n] are congruent modulo [/, mn] = m|[l,n], as both are congruent to 0 modulo /m
and to m(l,mn) = m(l,n) modulo mn; and m{l/,mn} = {l,n}, as is easily checked.

This shows that F;V,, = V,,,F;, concluding the proof of axiom (ii).
To verify axiom (iii), we first note that for all positive integers [, m, and n,

Vin([1]) - FudVam ([1]) = Vi(n([1]) - FimdVan ([1])).
Indeed, by (6.4) and (6.6), the identity becomes
(L, [m,n]/m](m,n]/m-dVj . m/mn([1])

+ ({1, [m,n}/m}(m,n] /m (1, [m,n] /m){m,n}) - Vy .0 jmy 0 ((1]) - dlogm ([—1])
= (lm,n]/lm ’ dv[lmn]/mn([l]) + {lman} ’ V[lm,n]/mn([l]) dlogﬂ([*l]),

and hence, the proof of the identity F;F,, = Fj,, above shows that the two sides are
equal. Now, from this equation and from the definition of V,, on Eg, we find that

VitVun ([1])) -aVam ([1]) = Vi(Van ([1]) - FdVan ([1])).
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It remains to prove that also

Vi@V (1)) - Van ([1]) = Vi(@Vun ([1]) - EVan ([1]))-
Using (6.4), the left-hand side becomes

l(”alm] dv[nlm]n([l]) + l{n,lm} : V[nlm]n([l]) : dlogn([fl])

and the right-hand sides becomes

I(L,n)([L,n]/1;m] - dVigg 1 ([1])
+ (L) {[Ln]/Lmy - Vi jrmm (1)) - dlogn ([—1]).

We have seen above that [n,Im] = I[[l,n]/l,m], and I(n,Im] and [(I,n)([l,n]/I,m)] are
congruent modulo [r,/m], since both are congruent to 0 modulo n and congruent to
I(n,Im) modulo Im. Here we use that ([/,n]/l,m] is congruent to ([/,n]/l,m) modulo
m and that (I,n)([l,n]/l,m) = (n,Im). Moreover, [{n,Im} and (I,n){[l,n]/l,m} are
well-defined integers modulo 2 which are non-zero if and only if / is odd and m and n
are both even. This completes the proof that axiom (iii) holds. Indeed, it is clear that
axiom (iii) holds on E°.

Finally, to verify axiom (v), it suffices to consider the case S = N. Since the for-
mula for [a] in Addendum 1.7 is quite complicated, it would be a rather onerous task
to verify this axiom directly. By axiom (i), the map dn: W(A) — EI%I is a derivation,
provided that we view EJ; as a W(A)-module via n° = 1: W(A) — EY, and hence,
there is a unique W(A)-linear map n': 'QW])V(A) — E}; such that dn° = n'd. We will
show that, for every positive integer m, the diagram

n]
Qyya) — Eny

lF m JFM
1

1 n 1
Quyay — Ex

commutes. Granting this, we find that

Frdn([a]) = Fudn®([a)) = Fun'd([a]) = n'Fud([a]) = n'((a]" 'd]a])
=1°([a]""")n'd([a]) = n°([a])""'dn°([a]) = n([a)""dn([a)),

which verifies axiom (v). Here, the first and last equalities are identities; the third
equality holds by the commutativity of the diagram above; the fourth equality holds
by Theorem 2.15; and the remaining equalities hold by the properties of the maps 1n°
and n'. It remains to prove that the diagram above commutes, and by Theorem 2.15
and axiom (i), we may assume that m = p is a prime number. It further suffices to
show that for every positive integer n, the image of the element dV,([1]) by the two
composites in the diagram are equal. We consider three cases separately. First, if p is
odd and n = ps is divisible by p, then

Epn'aV(([1]) = FpdVim°([1]) = aVin°([1]),



61

while
' EpdVa([1]) = n' (Va([1])7 aVa([1]) +d( )
=0 (0" 2 (Vu((1))aVa([1]) +aVi([1]) =" 2saV, ([1])))
=n'avy([1]) = aVyn°([1])
as desired. Here we used that ndV,,([1]) = 0. Second, if p =2 and n = 2s is even, then

Bn'av,([1]) = Rdvan° (1) = avan® (1)) + Y 27 saVarn°([1))

r=1

EpVa([1]) = Va([1])”

while
' FdV,([1]) = 0" @Vi([1]) + Va([(1])dVa([1]) — sdVu([1]))
=avn°([1]) +Van°([1)avan°([1]) — sdVun°([1])
= avin (1)) + Y 2" 'nd Vo, m°([1]) — sdVun°([1]),

t>1

so the desired equality holds in this case, too, since 2sdV,n°([1]) = 0. Third, if 7 is
not divisible by p, then (p,n] is congruent to 1 —n”~! modulo [p,n] = pn, since both
are congruent to 0 modulo p and to 1 modulo n, and {p,n} is zero. Hence,

1 —np1

avan°([1)).

Eyn'dvi([1]) = FpdVin (1)) =
We wish to prove that this is equal to

EpVa((1]) = Va([1D)?

' Eydvu([1]) = 0 (1) av([1]) + d( ; )
_pp-1
— 0 (P 2V () aV([1]) + 2 av, (1))
= 2 (v (1) + = av,no((1),

or equivalently, that n7=2V,,n°([1])d@V,n°([1]) is zero. If p is odd, then this holds,
since ndV,n°([1]) is zero; and if p = 2, then it holds, since V,n°([1])aV,n°([1]) is
zero, for n odd. This completes the proof of the claim made at the beginning of the
proof, and hence, of the theorem. O

Addendum 6.8. Let S be a finite truncation set. The kernel of the canonical map

is equal to the graded ideal generated by the following elements (1)—(ii) together with
their images by the derivation d.

(i) Forall m,n € S, the element

Vm([l]S/m)an([l]S/n) - (mvn]dv[m,n]<[1]5/[m,n])
- {mvn} Z 2r—1 [mvn]dVZr[m,n] ([I]S/Zr[m,n])

r=1
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(ii) Foralln € S, the element ndV,([1]s/,).

Proof. This follows from the proof of Theorem 6.1. O

We remark that in Addendum 6.8, the graded ring QWS (z) May be replaced by the

graded ring QWS @)
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