
On the Whitehead Spectrum of the Circle
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Abstract The seminal work of Waldhausen, Farrell and Jones, Igusa, and Weiss
and Williams shows that the homotopy groups in low degrees of the space of home-
omorphisms of a closed Riemannian manifold of negative sectional curvature can be
expressed as a functor of the fundamental group of the manifold. To determine this
functor, however, it remains to determine the homotopy groups of the topological
Whitehead spectrum of the circle. The cyclotomic trace of Bökstedt, Hsiang, and
Madsen and a theorem of Dundas, in turn, lead to an expression for these homotopy
groups in terms of the equivariant homotopy groups of the homotopy fiber of the
map from the topological Hochschild T-spectrum of the sphere spectrum to that of
the ring of integers induced by the Hurewicz map. We evaluate the latter homotopy
groups, and hence, the homotopy groups of the topological Whitehead spectrum of
the circle in low degrees. The result extends earlier work by Anderson and Hsiang
and by Igusa and complements recent work by Grunewald, Klein, and Macko.

Introduction

Let
 be a closed smooth manifold of dimension( 	 c. Then, the stability theorem
of Igusa [22] and a theorem of Weiss and Williams [35, Theorem A] show that, for
all integers � less both �(� b��� and �( � d���, there is a long-exact sequence

� � � 
 H�		�=	� G�	 WhTop�
��
 ���Homeo�
��
 ����Homeo�
��
 � � �

where the middle group is the �th homotopy group of the space of homeomorphisms
of
 . In particular, the group���Homeo�
�� is the mapping class group of
 . The
right-hand term is the �th homotopy group of the space of block homeomorphisms
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of 
 and is the subject of surgery theory. The left-hand term is the �� � ��th
homotopy group of the Borel quotient of the �-connective cover of the topologi-
cal Whitehead spectrum of 
 by the canonical involution. It is one of the great past
achievements that the left-hand term can be expressed by Waldhausen’s algebraic
�-theory of spaces [32–34].

Suppose, in addition, that 
 carries a Riemannian metric of negative, but not
necessarily constant, sectional curvature. Another great achievement is the topolog-
ical rigidity theorems [11, Remark 1.10, Theorem 2.6] of Farrell and Jones which,
in this case, give considerable simplifications of the left and right-hand terms in the
above sequence. For the right-hand term, there are canonical isomorphisms

����Homeo�
��
��
 ����HoAut�
��

��� ���HoAut�
���

where HoAut�
� and �HoAut�
� are the spaces of self-homotopy equivalences
and block self-homotopy equivalences of 
 , respectively. We note that, as 
 is
aspherical with ���
� centerless [27, Theorems 22, 24], it follows from [13, Theo-
rem III.2] that the canonical map from HoAut�
� to the discrete group Out����
��

is a weak equivalence. For the left-hand term, there is a canonical isomorphism!

Q �

WhTop
� ����

��
 WhTop
� �
��

where the sum ranges over the set of conjugacy classes of maximal cyclic subgroups
of the torsion-free group ���
�; see also [24, Theorem 139]. Hence, in order to
evaluate the groups ���Homeo�
��, it remains to evaluate

WhTop
� ���� 
 ���WhTop�����

and the canonical involution on these groups. We prove the following result.

Theorem 1. The groups WhTop
� ���� and WhTop

� ���� are zero. Moreover, there are
canonical isomorphisms

WhTop
	 ����

��

!
)��

!
��Z�	Z

Z��Z

WhTop
� ����

��

!
)��

!
��Z�	Z

Z��Z .
!
)��

!
��Z�	Z

Z��Z�

The statement for � 
 � and � 
 � was proved earlier by Anderson and Hsiang
[1] by different methods. It was also known by work of Igusa [21] that the two sides
of the statement for � 
 � are abstractly isomorphic. The statement for � 
 � is
new. We also note that in recent work, Grunewald et al. [15] have proved that for ,
an odd prime and � 
 b, � d, the ,-primary torsion subgroup of WhTop

� ���� is a
countably dimensional F�-vector space, if � 
 �,�� or �,��, and zero, otherwise.
Hence, we will here focus the attention on the �-primary torsion subgroup.
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We briefly outline the proof of Theorem 1. The seminal work of Waldhausen
establishes a cofibration sequence of spectra

��
	  ��S�

��
 ��S������
 WhTop����
 �
 9��

	  ��S��

which identifies the topological Whitehead spectrum of the circle as the mapping
cone of the assembly map in algebraic �-theory [33, Theorem 3.3.3], [34, The-
orem 0.1]. Here S is the sphere spectrum and S����� is the Laurent polynomial
extension. If we replace the sphere spectrum by the ring of integers, the assembly
map

����
	  ��Z�
 ��Z������

becomes a weak equivalence by the fundamental theorem of algebraic �-theory
[28, Theorem 8, Corollary]. Hence, we obtain a cofibration sequence of spectra

��
	  ��S� P �

��
 ��S������ P ������
 WhTop����
 �
 9��

	  ��S� P ��

where the spectra ��S� P � and ��S������ P ������ are defined to be the homotopy
fibers of the maps of �-theory spectra induced by the Hurewicz maps ^� S 
 Z and
^� S�����
 Z�����, respectively. The Hurewicz maps are rational equivalences, as
was proved by Serre. This implies that��S� P � and��S������ P ������ are rationally
trivial spectra. It follows that, for all integers �,

WhTop
� �����Q 
 ��

Therefore, it suffices to evaluate, for every prime number ,, the homotopy groups
with ,-adic coefficients,

WhTop
� ���%Z�� 
 ���WhTop�������

that are defined to be the homotopy groups of the ,-completion [6].

The cyclotomic trace map of Bökstedt et al. [4] induces a map

tr���S� P �
 TC�S� P %,�

from the relative �-theory spectrum to the relative topological cyclic homology
spectrum. It was proved by Dundas [8] that this map becomes a weak equivalence
after ,-completion. The same is true for the Laurent polynomial extension. Hence,
we have a cofibration sequence of implicitly ,-completed spectra

��
	 TC�S� P %,� ��
 TC�S������ P �����%,�
 WhTop����

 �
 9��
	 TC�S� P %,��

There is also a “fundamental theorem” for topological cyclic homology which was
proved by Madsen and the author in [19, Theorem C]. If % is a symmetric ring
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spectrum whose homotopy groups are Z
��-modules, this theorem expresses, up
to an extension, the topological cyclic homology groups TC��%��

���%,� of the
Laurent polynomial extension in terms of the equivariant homotopy groups

TR�
��%%,� 
 ���  �T�=�����	� < �%��T

of the topological Hochschild T-spectrum < �%� and the maps

S�TR�
��%%,�
 TR���

� �%%,� (restriction)

/ �TR�
��%%,�
 TR���

� �%%,� (Frobenius)

6 �TR���
� �%%,�
 TR�

��%%,� (Verschiebung)

- �TR�
��%%,�
 TR�

�	��%%,� (Connes’ operator)

which relate these groups. Here T is the multiplicative group of complex numbers
of modulus �, and =���� � T is the subgroup of the indicated order. We recall
the groups TR�

��%%,� in Section 1 and give a detailed discussion of the fundamen-
tal theorem in Section 2. In the following Sections 3 and 4, we briefly recall the
cyclotomic trace map and the skeleton spectral sequence which we use extensively
in later sections. A minor novelty here is Proposition 4 which generalizes of the
fundamental long-exact sequence [17, Theorem 2.2] to a long-exact sequence

� � � 
 H��=�� � TR ��%%,��
 TR�	�
� �%%,� @�

�
 TR�
� �%%,�
 � � �

valid for all positive integers ( and $.

The problem to evaluate WhTop
� ���� is thus reduced to the homotopy theoretical

problem of evaluating the equivariant homotopy groups TR�
��S� P %,� along with

the maps listed above. In the paper [15] mentioned earlier, the authors approx-
imate the Hurewicz map ^� S 
 Z by a map of suspension spectra W � S��
�
 S

and use the Segal-tom Dieck splitting to essentially evaluate the groups
TR�

��S� P %,�, for , odd and � 
 b, � d. However, this approach is not available,
for � 5 b,� d, where a genuine understanding of the domain and target of the map

TR�
��S%,�
 TR�

��Z%,�

appears necessary. We evaluate TR�
��S� P % ��, for � 
 �, and we partly evaluate

the four maps listed above. The result, which is Theorem 25, is the main result of
the paper, and the proof occupies Sects. 5–7. The homotopy theoretical methods we
employ here are perhaps somewhat simple-minded and more sophisticated methods
will certainly make it possible to evaluate the groups TR�

��S� P %,� in a wider range
of degrees. In particular, it would be very interesting to understand the correspond-
ing homology groups. However, to evaluate the groups TR�

��S� P %,� is at least as
difficult as to evaluate the stable homotopy groups of spheres. In the Section 8, we
apply the fundamental theorem to the result of Theorem 25 and prove Theorem 1.
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This paper was written in part during a visit to Aarhus University. It is a pleasure
to thank the university and Ib Madsen, in particular, for their hospitality and support.
Finally, the author would like to express his gratitude to Marcel Bökstedt for the
proof of Lemma 17.

1 The Groups TR�
����	�

Let % be a symmetric ring spectrum [20, Section 5.3]. The topological Hochschild
T-spectrum < �%� is a cyclotomic spectrum in the sense of [17, Definition 2.2]. In
particular, it is an object of the T-stable homotopy category. Let =) � T be the
subgroup of order B , and let �T�=)�	 be the suspension T-spectrum of the union of
T�=) and a disjoint basepoint. One defines the equivariant homotopy group

TR�
��%%,� 
 ���  �T�=�����	� < �%��T�

to be the abelian group of maps in the T-stable homotopy category between the
indicated T-spectra. The Frobenius map, Verschiebung map, and Connes’ operator,
which we mentioned in the Introduction, are induced by maps

� ��T�=�����	 
 �T�=�����	

v��T�=�����	 
 �T�=�����	

Æ�9�T�=�����	 
 �T�=�����	

in the T-stable homotopy category defined as follows. The map � is the map of
suspension T-spectra induced by the canonical projection pr�T�=���� 
 T�=���� ,
and the map v is the corresponding transfer map. To define the latter, we choose an
embedding K�T�=���� "
 Q into a finite dimensional orthogonal T-presentation.
The product embedding �K� pr��T�=���� 
 Q � T�=���� has trivial normal bun-
dle, and the linear structure of Q determines a preferred trivialization. Hence, the
Pontryagin–Thom construction gives a map of pointed T-spaces

�1  �T�=�����	 
 �1  �T�=�����	

and v is the induced map of suspension T-spectra. Finally, there is a unique homo-
topy class of maps of pointed spaces Æ����� 
 �T�=�����	 such that image by
the Hurewicz map is the fundamental class �T�=���� � corresponding to the counter-
clockwise orientation of the circle T � C and such that the composite of Æ�� and the
map �T�=�����	 
 �� that collapses T�=���� to the non-base point of �� is the
null-map. The map Æ�� induces the map of suspension T�=����-spectra

Æ��9�T�=�����	 
 �T�=�����	

which, in turn, induces the map Æ.
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The definition of the restriction map is more delicate. We let � be the unit sphere
in C� and consider the cofibration sequence of pointed T-spaces

�	 
 �� 
 &� 
 9�	

where the left-hand map collapses � onto the non-base point of ��; the T-space &�
is canonically homeomorphic to the one-point compactification of C�. It induces a
cofibration sequence of T-spectra

�	  < �%�
 < �%�
 &�  < �%�
 9�	  < �%��

and hence, a long-exact sequence of equivariant homotopy groups. By [17, Theo-
rem 2.2], the latter sequence is canonically isomorphic to the sequence

� � � 
 H��=���� � < �%��
.�
 TR�

��%%,�
@�
 TR���

� �%%,�
 � � �

which is called the fundamental long-exact sequence. The left-hand term is the
group homology of =���� with coefficients in the underlying =����-spectrum of
< �%� and is defined to be the equivariant homotopy group

H��=���� � < �%�� 
 ��� � �	  < �%��Q���� �

The isomorphism of the left-hand terms in the two sequences is given by the
canonical change-of-groups isomorphism

��� � �	  < �%��Q
����

��
 ���  �T�=�����	� �	  < �%��T

and the resulting map ) in the fundamental long-exact sequence is called the norm
map. The isomorphism of the right-hand terms in the two sequences involves the
cyclotomic structure of the spectrum < �%� as we now explain. The =�-fixed points
of the T-spectrum < �%� is a T�=�-spectrum < �%�Q� . Moreover, the isomorphism

@� �T 
 T�=�

given by the ,th root induces an equivalence of categories that to the T�=�-
spectrum E associates the T-spectrum @�

�E. Then the additional cyclotomic struc-
ture of the topological Hochschild T-spectrum < �%� consists of a map of T-spectra

B � @�
���

&�  < �%��Q��
 < �%�

with the property that the induced map of equivariant homotopy groups

���  �T�=�����	� @
�
���

&�  < �%��Q���T 
 ���  �T�=�����	� < �%��T
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is an isomorphism for all positive integers $. The right-hand sides of the two
sequences above are now identified by the composition

���  �T�=�����	� &�  < �%��T
��� ���  �T�=�����	� � &�  < �%��Q� �TIQ�

��
 ���  �T�=�����	� @
�
���

&�  < �%��Q���T
��
 ���  �T�=�����	� < �%��T

of the canonical isomorphism, the isomorphism @�
� , and the isomorphism induced

by the map B . By definition, the restriction map is the resulting map S in the fun-
damental long-exact sequence. Since B is a map of T-spectra, the restriction map
commutes with the Frobenius map, the Verschiebung map, and Connes’ operator.

We mention that, if the symmetric ring spectrum % is commutative, then < �%�

has the structure of a commutative ring T-spectrum which, in turn, gives the graded
abelian group TR�

��%%,� the structure of an anti-symmetric graded ring, for all
$ 	 �. The restriction and Frobenius maps are both ring homomorphisms, the
Frobenius and Verschiebung maps satisfy the projection formula

�6�.� 
 6�/���.��

and Connes’ operator is a derivation with respect to the product.

In general, the restriction map does not admit a section. However, if % 
 S is the
sphere spectrum, there exists a map

&�< �S�
 @�
��< �S�

Q��

in the T-stable homotopy category such that the composition

< �S�
��
 @�

��< �S�
Q��
 @�

���
&�  < �S��Q��

)�
 < �S�

is the identity map [25, Corollary 4.4.8]. The map & induces a section

� 
 ���TR���
� �S%,�
 TR�

��S%,� (Segal-tom Dieck splitting)

of the restriction map. The section � is a ring homomorphism and commutes with
the Verschiebung map and Connes’ operator. The composition /�� is equal to
����/ , for $ 	 �, and to the identity map, for $ 
 �. It follows that, for every
symmetric ring spectrum %, the graded abelian group TR�

��%%,� is a graded mod-
ule over the graded ring TR�

��S%,� which is canonically isomorphic to the graded
ring given by the stable homotopy groups of spheres. It is proved in [16, Section 1]
that Connes’ operator satisfies the following additional relations

/-6 
 - � �, � ��2�

-- 
 -2 
 2-�
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where 2 indicates multiplication by the Hopf class 2 � TR�
��S%,�. It follows from

the above that /6 
 ,, -/ 
 ,/- , and 6- 
 ,-6 .

The zeroth space %� of the symmetric spectrum % is a pointed monoid which is
commutative if % is commutative. There is a canonical map

��������%��
 TR�
��%%,� (Teichmüller map)�

which satisfies S��7��� 
 �7���� and /��7��� 
 �7� ����; see [19, Section 2.5]. If %
is commutative, the Teichmüller map is multiplicative and satisfies

/-��7��� 
 �7�
���
���-��7������

2 The Fundamental Theorem

Let % be a symmetric ring spectrum, and let : be the free group on a generator �.
We define the symmetric ring spectrum %����� to be the symmetric spectrum

%����� 
 %  :	

with the multiplication map given by the composition of the canonical isomorphism
from% :	 % :	 to % % :	 :	 that permutes the second and third smash
factors and the smash product D2  DC of the multiplication maps of % and : and
with the unit map given by the composition of the canonical isomorphism from S to
S �� and the smash product L2 LC of the unit maps of % and : . There is a natural
map of symmetric ring spectra � �%
 %����� defined to be the composition of the
canonical isomorphism from % to %  �� and the smash product id2  LC of the
identity map of % and the unit map of : . It induces a natural map

���TR�
��%%,�
 TR�

��%��
���%,��

Moreover, there is a map of symmetric ring spectra �� S����� 
 %����� defined
to be the smash product L2  idC of the unit map of % and the identity map of : .
The map � makes%����� into an algebra spectrum over the commutative symmetric
ring spectrum S�����. It follows that there is a natural pairing

#�TR�
��%��

���%,�� TR�
���S��

���%,�
 TR�
�	���%��

���%,�

which makes the graded abelian group TR�
��%��

���%,� a graded module over the
anti-symmetric graded ring TR�

��S��
���%,�. The element ���� � TR�

��S��
���%,� is

a unit with inverse �����
� 
 ������ and we define

- log���� 
 �����
� -���� � TR�

��S��
���%,��
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It follows from the general relations that

/�- log����� 
 S�- log����� 
 - log�������

Now, given an integer + and element 7 � TR�
��%%,�, we define

7����� 
 #����7�� ������ � TR�
��%��

���%,�
7�����- log���� 
 #����7�� �����- log����� � TR�

�	��%��
���%,��

The following theorem, which is similar to the fundamental theorem of algebraic�-
theory, was proved by Ib Madsen and the author in [19, Theorem C]. The assumption
in loc. cit. that the prime , be odd is unnecessary; the same proof works for , 
 �.
However, the formulas for / , 6 , and - given in loc. cit. are valid for odd primes
only. Below, we give a formula for the Frobenius which holds for all primes ,.

Theorem 2. Let , be a prime number, and let % be a symmetric ring spectrum
whose homotopy groups are Z
��-modules. Then every element\ � TR�

��%��
���%,�

can be written uniquely as a (finite) sum	
��Z

�
7��� ���

�
� � 8��� ���

�
�- log����


� 	
���8�
��Z��Z

�
6 ��7��� ���

�
����� -6 ��8��� ���

�
����




with 7��� 
 7��� �\� � TR���
� �%%,� and 8��� 
 8��� �\� � TR���

����%%,�. The cor-
responding statement for the equivariant homotopy groups with Z�-coefficients is
valid for every symmetric ring spectrum %.

It is perhaps helpful to point out that the formula in the statement of Theorem 2
defines a canonical map from the direct sum!

��Z

�
TR�

��%%,�. TR�
����%%,�


. !
���8�
��Z��Z

�
TR���

� �%%,�. TR���
����%%,�




to the group TR�
��%��

���%,� and that the theorem states that this map is an
isomorphism. We also remark that the assembly map

��TR�
��%%,�. TR�

����%%,�
 TR�
��%��

���%,�

is given by the formula

��7� 8� 
 7����� � 8�����- log�����

where ����� 
 ���� � TR�
��S��

���%,� is the multiplicative unit element.
The value of the restriction and Frobenius maps on TR�

��%��
���%,� are readily

derived from the general relations. Indeed, if \ � TR�
��%��

���%,� is equal to the
sum in the statement of Theorem 2, then
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S�\� 

	
��Z

�
S�7��� ����

�
��� � S�8��� ����

�
���- log������



�

	
���8���
��Z��Z

�
6 ��S�7��� ����

�
������� -6 ��S�8��� ����

�
������




/�\� 

	
���Z

�
/�7���I�����

�
��� � /�8���I�����

�
���- log������



�

	
��Z��Z

�
�,7��� � -8��� � �, � ��28��� ����

�
���

� �������+8��� ���
�
���- log������



�

	
���8���
��Z��Z

�
6 ���,7�	��� � �, � ��28�	��� ����

�
������

� -6 ��8�	��� ���
�
������



�

We leave it to the reader to derive the corresponding formulas for the Verschiebung
map and Connes’ operator. The following result is an immediate consequence.

We recall that the limit system �
�	 satisfies the Mittag-Leffler condition if, for
every $, there exists ( 	 $ such that, for all ! 	 (, the image of 
� 
 
� is
equal to the image of 
� 
 
�. This implies that the derived limit S� lim�
�

vanishes.

Corollary 3. Let , be a prime number, let % be a symmetric ring spectrum whose
homotopy groups are Z
��-modules, and let � be an integer. If both of the limit
systems �TR�

��%%,�	 and �TR�
����%%,�	 satisfy the Mittag-Leffler condition, then

so does the limit system �TR�
��%��

���%,�	. Moreover, the element

\ 
 �\
��� � lim
@

TR�
��%��

���%,�

lies in the kernel of the map � � / if and only if the coefficients

7

��
��� 
 7��� �\


��� � TR���
� �%%,�

8

��
��� 
 8��� �\


��� � TR���
����%%,�

satisfy the equations

7

����
��� 


�����
/�7


��

���I�
� �& 
 � and + � ,Z�

,7

��
��� � -8


��
��� � �, � ��28


��
��� �& 
 � and + � Z 3 ,Z�

,7

��
�	��� � �, � ��28


��
�	��� �� 
 & J $ � � and + � Z 3 ,Z�
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8

����
��� 


�����
/�8


��

���I�� �& 
 � and + � ,Z�

�������+8

��
��� �& 
 � and + � Z 3 ,Z�

8

��
�	��� �� 
 & J $ � � and + � Z 3 ,Z�

for all $ 	 �. The corresponding statements for the equivariant homotopy groups
with Z�-coefficients is valid for every symmetric ring spectrum %.

We do not have a good description of the cokernel of � � / . In particular, it is
generally not easy to decide whether or not this map is surjective.

3 Topological Cyclic Homology

Let % be a symmetric ring spectrum. We recall the definition of the topological
cyclic homology groups TC��%%,� and refer to [17, 18] for a full discussion.

We consider the T-fixed point spectrum

TR��%%,� 
 /��T�=�����	� < �%��
T

of the function T-spectrum /��T�=�����	� < �%��. There is a canonical isomor-
phism

K����TR��%%,�� ��
 TR�
��%%,�

and maps of spectra

S9� / 9�TR��%%,�
 TR����%%,�

such that the following diagrams commute

���TR�������
�

��

�

TR�
������

�

���TR�������
�

� �

�

TR�
������

�

���TR���������
� TR���

� ����� ���TR���������
� TR���

� ������

The map / 9 is induced by the map of T-spectra � � �T�=�����	 
 �T�=�����	
and the map S9 is defined to be the composition of the map

/��T�=�����	� < �%��
T 
 /��T�=�����	� &�  < �%��T

induced by the canonical inclusion of �� in &� and the weak equivalence

/��T�=�����	� &�  < �%��T
��� /��T�=�����	� � &�  < �%��Q��TIQ�

��
 /��T�=�����	� @
�
���

&�  < �%��Q���T
��
 /��T�=�����	� < �%��

T



142 L. Hesselholt

defined by the composition of the canonical isomorphism, the isomorphism @�
� , and

the map induced by the map B which we recalled in Section 1. We then define
TC��%%,� to be the homotopy equalizer of the maps S9 and / 9 and

TC�%%,� 
 holim
�

TC��%%,�

to be the homotopy limit with respect to the maps S9. We also define

TR�%%,� 
 holim
�

TR��%%,�

to be the homotopy limit with respect to the maps S9 such that we have a long-exact
sequence of homotopy groups

� � � 
 TC��%%,�
 TR��%%,� ��H���
 TR��%%,�  �
 TC����%%,�
 � � � �

We recall Milnor’s short-exact sequence

�
 S� lim
�

TR�
�	��%%,�
 TR��%%,�
 lim

�
TR�

��%%,�
 ��

In the cases we consider below, the derived limit on the left-hand side vanishes.
The cyclotomic trace map of Bökstedt–Hsiang–Madsen [4] is a map of spectra

tr���%�
 TC�%%,��

A technically better definition of the cyclotomic trace map was given by Dundas–
McCarthy [10, Section 2.0] and [9]. From the latter definition it is clear that every
class � in the image of the composite map

���%�
tr�
 TC��%%,�
 TC�

��%%,�
 TR�
��%%,�

is annihilated by Connes’ operator. It is also not difficult to show that, for %

commutative, the cyclotomic trace is multiplicative; see [12, Appendix].
The spectrum TR��%%,� considered here is canonically isomorphic to the under-

lying non-equivariant spectrum associated with the T-spectrum

TR��%%,� 
 @�
�����< �%�

Q
���� ��

Moreover, the fundamental long-exact sequence of [17, Theorem 2.2] has the fol-
lowing generalization which is used in the proof of Lemma 26.

Proposition 4. Let % be a symmetric ring spectrum, and let ( and $ be positive
integers. Then there is a natural long-exact sequence

� � � 
 H��=�� � TR ��%%,�� .��
 TR�	�
� �%%,� @�

�
 TR�
� �%%,�
 � � �



On the Whitehead Spectrum of the Circle 143

where the left-hand term is the group homology of =�� with coefficients in the
underlying =��-spectrum of TR��%%,�.

Proof. A map of T-spectra � �< 
 < � is defined to be an F�-equivalence if it
induces an isomorphism of equivariant homotopy groups

��� ���  �T�=�v�	� < �T 
 ���  �T�=�v�	� <
��T

for all integers � and v 	 �. The cofibration sequence of pointed T-spaces

�	
4�
 �� 9�
 &�  �
 9�	�

which we considered in Section 1, induces a cofibration sequence of T-spectra

�	 @�
� �< �%�

Q� �
 @�
� �< �%�

Q� �
 &� @�
� �< �%�

Q� �
9�	 @�
� �< �%�

Q� ��

We show that with & 
 $ � �, the induced long-exact sequence of equivariant
homotopy groups is isomorphic to the sequence of the statement. The isomorphism
of the left-hand terms in the two sequences is defined as in Section 1. To define the
isomorphism of the right-hand terms in the two sequences, we first show that the
cyclotomic structure map B gives rise to an F�-equivalence

B �� &�  @�
�����< �%�

Q
���� �

��
 &�  < �%��

Since the map � ��	 
 �� induces a weak equivalence

�	  @�
� ���	  < �%��Q� �

��
 @�
� ���	  < �%��Q� ��

a diagram chase shows that the map K��� 
 &� induces a weak equivalence

&�  @�
� �< �%�

Q� �
��
 &�  @�

� � &�  < �%�Q� ��

The cyclotomic structure map B induces an F�-equivalence

&�  @�
� � &�  < �%�Q� �

��
 &�  @�
� �� �< �%�

Q� �� ��

which, composed with the former equivalence, defines an F�-equivalence

&�  @�
� �< �%�

Q� �
��
 &�  @�

� ���< �%�
Q� �� ��

The composition of theseF�-equivalence as & varies from $�� to � gives the desired
F�-equivalence B �. The isomorphism of the right-hand terms in the two sequences
is now given by the composition of the isomorphism
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���  �T�=���	� &�  @�
�����< �%�

Q���� ��T
��
 ���  �T�=���	� &�  < �%��T

induced by the map B � and the isomorphism

���  �T�=���	� &�  < �%��T
��
 ���  �<�=�����	� < �%��T

defined in Section 1. �

4 The Skeleton Spectral Sequence

The left-hand groups in Proposition 4 are the abutment of the strongly convergent
skeleton spectral sequence which we now discuss in some detail. Let 
 be a finite
group, and let < be a 
-spectrum. Then we define

H��
� < � 
 ��� � �	  < �: �

where� is a free contractible
–CW-complex. The group H��
� < � is well-defined
up to canonical isomorphism. Indeed, if also � � is a free contractible 
–CW-
complex, then there is a unique homotopy class of 
-maps u�� 
 � �, and the
induced map u�� ��� � �	  < �: 
 ��� � � �

	  < �: is the canonical isomorphism.
The skeleton filtration of the 
–CW-complex � gives rise to a spectral sequence

�	
��� 
 ���
%�� �< ��� H�	� �
� < �

from the homology of the group 
 with coefficients in the 
-module �� �< �. We
will need the precise identification of the �	-term below. The augmented cellular
complex of � is the augmented chain complex F�� 
 Z defined by

�� 
 &����������%Z�

with the differential - induced by the map > in the cofibration sequence

��������	 
 ������	 
 �������

 �
 9��������	�

and with the augmentation given by F��� 
 �, for all � � ��. It is a resolution of
the trivial 
-module Z by free Z�
�-modules. We define

���
� �� �< �� 
 ����� � �� �< ��
: � - � id��

The ��-term of the spectral sequence is defined by

��
��� 
 �� �	� � ���������  < �:
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with the - �-differential induced by the boundary map > in the cofibration sequence
above. The quotient ������� is homeomorphic to a wedge of &-spheres indexed by
a set on which the groups 
 acts freely. Therefore, the Hurewicz homomorphism

�����������
 &���������%Z��

the exterior product map

������������ �� �< �
 ��	� ����������  < ��

and the canonical map

�� �	� � ���������  < �: 
 ���	� ����������  < ��:

are all isomorphisms. These isomorphisms gives rise to a canonical isomorphism

 � ��� � �� �< ��
: ��
 ��

��� �

which satisfies  Æ�-� id� 
 - �Æ . The induced isomorphism of homology groups
is then the desired identification of the �	-term.

We consider the skeleton spectral sequence with
 
 =���� and < 
 TR v�%%,�.
Since the action by =���� on TR v�%%,� is the restriction of an action by the circle
group T, the induced action on the homotopy groups TRv

� �%%,� is trivial. Moreover,
it follows from [16, Lemma 1.4.2] that the - 	-differential of the spectral sequence
is related to Connes’ operator - in the following way.

Lemma 5. Let % be a symmetric ring spectrum. Then, in the spectral sequence

�	
��� 
 ���=���� �TRv

� �%%,��� H�	��=���� � TR v�%%,���

the - 	-differential - 	��	
��� 
 �	

��	��	� is equal to the map of group homology
groups induced by - � 2, if & is congruent to � or � modulo b, and the map induced
by - , if & is congruent to � or � modulo b.

The Frobenius and Verschiebung maps

/ �H��=���� � TR v�%%,��
 H��=���� � TR v�%%,��
6 �H��=���� � TR v�%%,��
 H��=���� � TR v�%%,��

induce maps of spectral sequences which on the �	-terms of the corresponding
skeleton spectral sequence are given by the transfer and corestriction maps in group
homology corresponding to the inclusion of =���� in =���� .

Let � � =���� be the generator � 
 exp���'�,����, and let F�? 
 Z be the
standard resolution which in degree & is a free Z�=���� �-module of rank one on a
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generator �� with differential -�� 
 )����, for & even, and -�� 
 ��� ������, for
& odd, and with augmentation F���� 
 �.

Lemma 6. Let B and $ be positive integers, and let , be a prime number.

(1) If B 
 $ � �, then

���=���� �Z�,)Z� 
 Z�,)Z � z� �

where z� 
 z��,� $� B� is the class of )�� � �.
(2) If B 	 $ � �, then

���=���� �Z�,)Z� 


�����
Z�,)Z � z� (& 
 �)

Z�,���Z � z� (& odd)

Z�,���Z � ,)�
����z� (& 5 � and even)

where z� 
 z��,� $� B� and ,)�
����z� 
 ,)�
����z��,� $� B� are the classes of
)�� � � and ,)�
����)�� � �, respectively.

(3) The transfer map

/ ����=���� �Z�,)Z�
 ���=���� �Z�,)Z�

maps z� to z� , if & is odd, maps z� to ,z� , if & 
 � or if & 5 � is even and
B 
 $ � �, and maps ,)�
����z� to ,)�
��	�z� , if & 5 � is even and B 	 $ � �.

(4) The corestriction map

6 ����=���� �Z�,)Z�
 ���=���� �Z�,)Z�

maps z� to ,z� , if & is odd, maps z� to z� , if & 
 � or if & 5 � is even and
B 
 $ � �, and maps ,)�
����z� to ,)�
����z� , if & 5 � is even and B 	 $ � �.

Proof. The statements (1) and (2) are readily verified. To prove (3) and (4), we write
F�? 
 Z and F��? � 
 Z for the standard resolutions for the groups =���� and
=���� , respectively. Then F�? 
 Z is a resolution of Z by free =����-modules.
The map  �? 
 ? � defined by

 ��=�	)��� 

�
��)��

� (& even)

Æ)�����
�=��

� (& odd),

where � 
 B J , and � 
 - J $ � �, is a =����-linear chain map that lifts the
identity map of Z, and the =����-linear map !�? � 
 ? defined by

!���
�� 


�
�� (& even)

��� � � � � � ������� (& odd)
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is a chain map and lifts the identity of Z. Now the transfer map / is the map of
homology groups induced by the composite chain map

�? � Z�,)Z�
Q���� "
 �? � Z�,)Z�

Q����
�����
 �? � � Z�,)Z�

Q���� �

where the left-hand map is the canonical inclusion. One verifies readily that this
map takes )�	� � � to ,) ���

	� � � and )�	��� � � to ) ���
	��� � �. Similarly, the

corestriction map 6 is the map of homology groups induced by the composite chain
map

�? � � Z�,)Z�
Q����

�����
 �? � Z�,)Z�
Q����

.I. ����
 �? � Z�,)Z�
Q���� �

where the right-hand map is multiplication by �� � � � � � � ����. This map takes
) ���

	� � � to )�	� � � and ) ���
	��� � � to ,)�	��� � �. �

Lemma 7. Let $ be a positive integer and let , be a prime number. Then

���=���� �Z� 


�����
Z � z� (& 
 �)

Z�,���Z � z� (& odd)

� (& 5 � even)

�

where z� 
 z��,� $� is the class of )�� � �. The transfer map

/ ����=���� �Z�
 ���=���� �Z�

maps z� to ,z� and z� to z� , for & 5 �, and the corestriction map

6 ����=���� �Z�
 ���=���� �Z�

maps z� to z� and z� to ,z� , for & 5 �.

Proof. The proof is similar to the proof of Lemma 6. �

5 The Groups TR�
��S� ��

In this section, we implicitly consider homotopy groups with Z	-coefficients. The
groups TR�

��S% �� are the stable homotopy groups of spheres. The group TR�
��S% ��

is isomorphic to Z	 generated by the multiplicative unit element K 
 ����; the group
TR�

��S% �� is isomorphic to Z��Z generated by the Hopf class 2; the group TR�
	�S% ��

is isomorphic to Z��Z generated by 2	; the group TR�
��S% �� is isomorphic to Z�eZ

generated by the Hopf class # and 2� 
 b#; the groups TR�
��S% �� and TR�

��S% ��
are zero; the group TR�

;�S% �� is isomorphic to Z��Z generated by #	, and the group
TR�

R�S% �� is isomorphic to Z��OZ generated the Hopf class V .
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We consider the skeleton spectral sequence

�	
��� 
 ���=	��� �TR�

� �S% ���� H�	��=	��� � < �S���

This sequence may be identified with the Atiyah–Hirzebruch spectral sequence that
converges to the homotopy groups of the suspension spectrum of the pointed space
�	=	����	 [14, Proposition 2.4]. Therefore, the edge-homomorphism onto the line
& 
 � has a retraction, and hence, the differentials - ) ��)

)�� 
 �)
���	)�� are all zero.

Suppose first that $ 
 �. Then the �	-term for & � � 
 d is takes the form

Z��OZ

Z��Z Z��Z

0 0 0
0 0 0 0

Z�eZ Z��Z bZ�eZ Z��Z bZ�eZ

Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z

Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z

Z	 Z��Z � Z��Z � Z��Z � Z��Z�

where & is the horizontal coordinate and � the vertical coordinate. The group �	
���

is generated by the class Kz� , the group �	
��� by the class 2z� , the group �	

��	 by the
class 2	z� , the group �	

��� with & 
 � or & an odd positive integer by the class #z� ,
the group�	

��� with & an even positive integer by the class b#z�, the group�	
��; by the

class #	z� , the group �	
��R with & 
 � or & an odd positive integer by the class Vz� ,

and the group�	
��R with & an even positive integer by the class eVz� , where z� are the

classes defined in Lemmas 6 and 7. We recall from Lemma 5 that the - 	-differential
is given by Connes’ operator and by multiplication by 2. Since Connes’ operator on
TR�

��S% �� is zero, we find that the ��-term begins

Z��OZ

Z��Z Z��Z

0 0 0
0 0 0 0

Z�eZ Z��Z 0 Z��Z bZ�eZ

Z��Z Z��Z 0 0 0 Z��Z

Z��Z Z��Z Z��Z 0 0 0 Z��Z

Z	 Z��Z 0 Z��Z 0 0 0 Z��Z�

Since the differential - ����
��� 
 ��

��	 is zero, the ��-term is also the ��-term. The
following result is a consequence of Mosher [26, Proposition 5.2].

Lemma 8. Let $ be a positive integer. Then, in the spectral sequence

�	
��� 
 ���=	��� �TR�

� �S% ���� H�	� �=	��� � < �S���

the - �-differential - ����
��� 
 ��

�����	� is equal to the map of sub-quotients induced
from the map of group homology groups induced from multiplication by #, if & is
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congruent to �, �, �, �, e, f, ��, or �� modulo �O, by �#, if & is congruent to O, d, ��,
or �� modulo �O, and by �, if & is congruent to b, c, �b, or �c modulo �O. �

In the case at hand, we find that the - �-differential is zero, for & � � 
 d. For
degree reasons, the only possible higher non-zero differential all have target on
the fiber line & 
 �. However, we argued above that these differentials are zero.
Therefore, for & � � 
 d, the ��-term is also the ��-term.

The �	-term of the skeleton spectral sequence for H��=�� < �S�� for &� � 
 d is

Z��OZ

Z��Z Z��Z

0 0 0
0 0 0 0

Z�eZ Z�bZ �Z�eZ Z�bZ �Z�eZ

Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z

Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z

Z	 Z�bZ � Z�bZ � Z�bZ � Z�bZ�

The generators of the groups �	
��� are as before with exception that the groups ��

���

and�	
��R with & an even positive integer are generated by �#z� and bVz� , respectively.

We find as before that the ��-term for & � � 
 d takes the form

Z��OZ

Z��Z Z��Z

0 0 0
0 0 0 0

Z�eZ Z�bZ �Z�bZ Z�bZ �Z�eZ

Z��Z Z��Z 0 0 0 Z��Z

Z��Z Z��Z Z��Z 0 0 0 Z��Z

Z	 Z�bZ � Z�bZ � �Z�bZ � Z�bZ�

The only possible non-zero - �-differential for & � � 
 d is - ����
;�� 
 ��

���. Since
the corresponding differential in the previous spectral sequence is zero, a compar-
ison by using the Verschiebung map shows that also this differential is zero. The
- �-differentials are given by Lemma 8. Hence, the ��-term begins

Z��OZ

Z��Z Z��Z

0 0 0
0 0 0 0

Z�eZ Z�bZ �Z�bZ Z��Z �Z�eZ

Z��Z Z��Z 0 0 0 Z��Z

Z��Z Z��Z Z��Z 0 0 0 Z��Z

Z	 Z�bZ � Z�bZ � �Z�bZ � �Z�bZ�

We see as before that the ��-term is also the ��-term.
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Finally, we consider the skeleton spectral sequence for H��=	��� � < �S��, where
$ 	 b. The �	-term for & � � 
 d, takes the form

Z��OZ

Z��Z Z��Z

0 0 0
0 0 0 0

Z�eZ Z�eZ Z�eZ Z�eZ Z�eZ

Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z

Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z Z��Z

Z	 Z�����Z � Z�����Z � Z�����Z � Z�����Z�

The generators of the groups �	
��� are the same as in the skeleton spectral sequence

for H��=	� < �S�� with the exception that the groups �	
��� and �	

��R are generated by
the classes #z� and Vz� , respectively, for all & 	 �. The - 	-differential is given by
Lemma 5. We find that the ��-term for & � � 
 d becomes

Z��OZ

Z��Z Z��Z

0 0 0
0 0 0 0

Z�eZ Z�eZ Z�bZ Z�bZ Z�eZ

Z��Z Z��Z 0 0 0 0
Z��Z Z��Z Z��Z 0 0 0 Z��Z

Z	 Z�����Z � Z�����Z � �Z�����Z � Z�����Z�

A comparison with the previous spectral sequence by using the Verschiebung map
shows that the - �-differential is zero. The - �-differential is given by Lemma 8.
Hence, the ��-term for & � � 
 d becomes

Z��OZ

Z��Z Z��Z

0 0 0
0 0 0 0

Z�eZ Z�eZ Z�bZ Z��Z Z�eZ

Z��Z Z��Z 0 0 0 0
Z��Z Z��Z Z��Z 0 0 0 Z��Z

Z	 Z�����Z � Z�����Z � �Z�����Z � �Z�����Z

and, for & � � 
 d, this is also the ��-term.

Lemma 9. (1) There exists unique homotopy classes

3����� � H��=	��� � < �S�� �$ 	 ��

such that 3����� represents Kz� � ��
���, /�3������ 
 3����	, and 3��� 
 2.

(2) There exists unique homotopy classes

3����� � H��=	��� � < �S�� �$ 	 ��

such that 3����� represents Kz� � ��
���, /�3������ 
 3����	, and 3��� 
 #.
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(3) There exists unique homotopy classes

3����� � H��=	��� � < �S�� �$ 	 ��

such that 3����� represents �Kz� � ��
��� and /�3������ 
 3����	.

Proof. We consider the inverse limit with respect to the Frobenius maps of the skele-
ton spectral sequences for H��=	��� � < �S��. By Lemmas 6 and 7, the map of spectral
sequences induced by the Frobenius map is given, formally, by /�z�� 
 �z� , if & is
even, and /�z�� 
 z� , if & is odd. Hence, the ��-term of the inverse limit spectral
sequence for & � � 
 d takes the form

0
0 Z��Z

0 0 0
0 0 0 0
0 Z�eZ 0 Z��Z 0
0 Z��Z 0 0 0 0
0 Z��Z 0 0 0 0 0
0 Z	 � Z	 � �Z	 � �Z	� �

+

We now prove the statement (1). There is a unique class

3� 
 �3�����	 � lim
H

H��=	��� � < �S��

such that 3����� represents the generator Kz� � ��
���, for all $ 	 �. We can write

3����� 
 7���-6
������� 8���6

����2��

where 7��� � Z�����Z and 8��� � Z��Z. Since the class 3����� represents Kz�, the
proof of [18, Proposition 4.4.1] shows that 7��� 
 �. The calculation

3����� 
 /�3���� 
 /�-6 ����� 8���6
��2�� 
 -6 ������� 6 ����2�

shows that also 8��� 
 �. Finally,

3��� 
 /�3���� 
 /�-6���� 6�2�� 
 2�

which proves (1). To prove (2), we must show that there is a unique class

3� 
 �3�����	 � lim
H

H��=	��� � < �S��

such that 3����� represents Kz� and such that 3��� 
 #. There are two classes 3� and
3 �� that satisfy the first requirement and

3����� � 3 ������ 
 -6 ����2	��
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Moreover, if $ 	 �, then / ����H��=	��� � < �S��
 TR�
��S% �� induces a map

/ �������=	��� �TR�
��S% ���
 TR�

��S% ���bTR�
��S% ���

Indeed, / ���6 ����#� 
 ����# and / ���-6 ����2	� 
 2� 
 b#. The map / ���

is surjective by [36, Table 4]. One readily verifies that it maps the generator Kz� to
the modulo b reduction �# of the Hopf class #. Hence, / ��� maps one of the classes
3����� and 3 ������ to # and the other class to c#. The statement (2) follows.

Finally, the statement (3) follows immediately from the inverse limit of the
spectral sequences displayed above. �

The group H��=S� < �S�� is equal to the direct sum of the subgroup generated by
the class 3��� and a cyclic group. We choose a generator @ this cyclic group.

Proposition 10. The groups H��=	��� � < �S�� with � 
 c are given by

H��=	��� � < �S�� 
 Z	 � 6 ����K��

H��=	��� � < �S�� 

�

Z��Z � 2 �$ 
 ��

Z�����Z � 3����� . Z��Z � 6 ����2� �$ 	 ��
�

H	�=	��� � < �S�� 

�

Z��Z � 2	 �$ 
 ��

Z��Z � 23����� . Z��Z � 6 ����2	� �$ 	 ��
�

H��=	��� � < �S�� 


���������
Z�eZ � # �$ 
 ��

Z�eZ � 3��� . Z�eZ � 6�#� �$ 
 ��

Z���Z � 3����� . Z��Z � 2	3����� �$ 	 ��

.Z�eZ � 6 ����#�

�

H��=	��� � < �S�� 

�

Z�����Z � #3����� �$ 
 ��

Z�eZ � #3����� �$ 	 b�
�

H��=	��� � < �S�� 


�����
� �$ 
 ��

Z�bZ � 3��	 �$ 
 ��

Z�����Z � 3����� . Z��Z � 6 ����@� �$ 	 b�

�

In addition, /�3������ 
 3����	, where 3��� 
 2 and 3��� 
 #, and /�@� 
 �.

Proof. We have already evaluated the ��-term of the spectral sequence

�	
��� 
 ���=	��� �TR�

� �S% ���� H�	� �=	��� � < �S���

for & � � 
 d. We have also defined all the homotopy classes that appear in the
statement. Hence, it remains only to prove that these homotopy classes have the
indicated order. First, the edge homomorphism of the spectral sequence is the map

6 ����TR�
� �S% ��
 H� �=	��� � < �S���
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Since this map has a retraction, the classes 6 ����2� and 6 ����2	� both generate a
direct summand Z��Z and the class 6 ����#� generates a direct summand Z�eZ as
stated. This completes the proof for � 
 �. Next, the Frobenius map

/ �H��=	� < �S��
 TR�
��S% ��

is surjective by [36, Table 4]. This implies that the class 3��� has order e and that the
group H��=	� < �S�� is as stated. We note that b3��� is congruent to -6�2	� modulo
the image of the edge homomorphism.

Next, we show by induction on $ 	 � that the class 3����� has order ��. The class
3��	 has order either e or �O, because /�3��	� 
 3��� has order e. If 3��	 has order
�O, then the quotient of H��=�� < �S�� by the image of the edge homomorphism is
equal to Z��OZ generated by the image of 3��	. But then 6�3���� has order e which
contradicts that, modulo the image of the edge homomorphism,

b6�3���� 
 6�b3���� ' 6-6�2	� 
 �-6 	�2	� 
 ��

Hence, 3��	 has order e, and the group H��=�� < �S�� is as stated. So we let $ 	 b and
assume, inductively, that 3����	 has order ����. The class ���	3����	 is represented in
the spectral sequence by 2z	. Now, by Lemma 6(4), we have 6�2z	� 
 2z	, which
shows that the class ���	6�3����	� 
 6����	3����	� is non-zero and represented
by 2z	. This implies that ����3����� is non-zero, and hence, 3����� has order �� as
stated.

Next, we show that, for $ 	 �, the class 3����� has order ����. If $ 	 b, the
spectral sequence shows that there is an extension

�
 Z�bZ 
 H��=	��� � < �S��
 Z����	Z 
 ��

The Verschiebung map induces a map of extensions from the extension for $ to the
extension for $ � �, and Lemma 6 shows that the resulting extension of colimits
with respect to the Verschiebung maps is an extension

�
 Z�bZ 
 colim
T

H��=	��� � < �S��
 Q	�Z	 
 ��

It follows from [25, Lemma 4.4.9] that there is a canonical isomorphism

Ext�Q	�Z	� colim
T

H��=	��� � < �S���
��
 lim

H
H;�=	��� � < �S��

and, by the proof of Lemma 9, the right-hand group is cyclic of order �. This implies
that the extension for $ 	 b is equivalent to the extension

�
 Z�bZ

���	��"�������
 Z��Z. Z�����Z

	��"	������
 Z����	Z 
 ��
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It follows that, for $ 	 b, the class 3����� has order ���� as stated. It remains to
prove that 3��	 has order b. If this is not the case, the map of extensions induced by
the Verschiebung map 6 �H��=�� < �S��
 H��=S� < �S�� takes the form

� Z��Z

����

	

Z��Z. Z��Z
�	�

T

Z��Z

	

�

� Z�bZ

���	�

Z��Z. Z�eZ
		�

Z�bZ ��

where the middle map 6 takes ��� �� to ��� b� and ��� �� to either ��� �� or ��� b�.
The class 3��	 corresponds to either ��� �� or ��� �� in the top middle group. In either
case, we find that the class 6�3��	� has order � and reduces to a generator of the
quotient of H��=S� < �S�� by the subgroup Z�eZ � 3���. It follows that the class

6�3��	� � �3��� � H��=S� < �S��

generates the kernel of the edge homomorphism onto Z�bZ � �Kz�. Then, Lemma 6
shows that the class /�6�3��	� � �3���� generates the kernel of the edge homomor-
phism from H��=�� < �S�� onto Z��Z � �Kz�. But /�6�3��	� � �3���� 
 � which is a
contradiction. We conclude that the group H��=�� < �S�� is cyclic as stated.

Finally, the Frobenius map / �H��=S� < �S�� 
 H��=�� < �S�� induces a map of
extensions which takes the form

� Z�bZ

���	�

�

Z��Z. Z�eZ
		�

�	�

Z�bZ

�

�

� Z��Z
	

Z�bZ
�

Z��Z ��

The class @ corresponds to one of the elements ��� �� or ��� b� of the top middle
group both of which map to zero by the middle vertical map. It follows that /�@� is
zero as stated. �

We define 3��� � TR�
��S% �� to be the image of 3��� � H��=	 � < �S�� by the

composition of the norm map and the iterated Segal-tom Dieck splitting

H��=	 � < �S��
 TR�
��S% ��
 TR�

��S% ���

Similarly, we define @ � TR�
��S% �� to be the image of @ � H��=S� < �S�� by the

composition of the norm map and the iterated Segal-tom Dieck splitting

H��=S� < �S��
 TR�
��S% ��
 TR�

��S% ���

Then we have the following result.
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Theorem 11. The groups TR�
��S% �� with � 
 c are given by

TR�
��S% �� 


!
���8�

Z	 � 6 ����

TR�
��S% �� 


!
���8�

Z��Z � 6 ��2�.
!
���8�

Z���Z � 3���

TR�
	�S% �� 


!
���8�

Z��Z � 6 ��2	�.
!
���8�

Z��Z � 23���

TR�
��S% �� 


!
���8�

Z�eZ � 6 ��#�.
!
���8�

Z��uZ � 3��� .
!
	��8�

Z��Z � 2	3���

TR�
��S% �� 


!
���8�

Z��vZ � #3���

TR�
��S% �� 


!
	��8�

Z���Z � 3��� .
!
���8�

Z��Z � 6 ����@�

where u 
 u�&� is the larger of � and & � �, and where v 
 v�&� is the smaller of �
and &. The restriction map takes 3��� to 3��� , if & J $ � �, and to zero, if & 
 $ � �,
and takes @ to @, if $ 	 c, and to zero, if $ 
 b. The Frobenius map takes 3��� to
3�����, where 3��� 
 2 and 3��� 
 #, and takes @ to zero. Connes’ operator takes
6 ���� to 3��� � 6 ��2�, and takes 3��� to zero.

Proof. The Segal-tom Dieck splitting gives a section of the restriction map. Hence,
the fundamental long-exact sequence

� � � 
H��=���� � < �S��
.�
 TR�

��S%,�
@�
 TR���

� �S%,�  �
H����=���� � < �S��
 � � �

of Proposition 4 breaks into split short-exact sequences and Proposition 10 then
shows that the groups TR�

��S% �� are as stated. Since the Frobenius map and the
Segal-tom Dieck splitting commute, the formula for the Frobenius also follows
form Proposition 10. Finally, from the proof of Proposition 10, we have 3��� 

-6 ����� 6 ��2�. This implies that

-3��� 
 --6 ����� -6 ��2� 
 -6 ��2�� -6 ��2� 
 �

as stated. �

Remark 12. We have not determined 23��� and -3��� .

6 The Groups TR�
��Z� ��

In this section, we again implicitly consider homotopy groups with Z	-coefficients.
The groups TR�

��Z% �� were evaluated by Bökstedt [3]; see also [23, Theorem 1.1].
The group TR�

��Z% �� is equal to Z	 generated by the multiplicative unit element
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K 
 ����, and for positive integers �, the group TR�
��Z% �� is finite cyclic of order

�TR�
��Z% ��� 


�
�v�
�� �� 
 �' � � odd�

� �� even��

We choose a generator Q of ���Z� such that �Q 
 #. Then, by [5, Theorem 10.4],
the image of Q by the cyclotomic trace map generates the group TR�

��Z% ��. We also
choose a generator 4 of the group TR�

R�Z% ��. We first derive the following result
from Rognes’ paper [27].

Proposition 13. The group TR�
��Z% �� is zero, for every positive even integer � and

every positive integer $.

Proof. The group TR�
��Z% �� is finite, for all positive integers � and $. Indeed, this is

true, for $ 
 � by Bökstedt’s result that we recalled above and follows, inductively,
for $ 	 �, from the fundamental long-exact sequence of Proposition 4, the skeleton
spectral sequence, and the fact that the boundary map

>�TR���
� �Z% ��
 H��=	��� � < �Z��

in the fundamental long-exact sequence is zero [17, Proposition 3.3]. Moreover, the
group TR�

��Z% �� is a free Z	-module. It follows that, in the strongly convergent
whole plane Bockstein spectral sequence

�	
��� 
 TR�

�	� �Z% �� ���Z���
����Z�� TR�
�	��Z% ��Q	�

induced from the �-adic filtration of Q	, all elements of total degree � survive to the
��-term and all elements of positive total degree are annihilated by differentials.
The differentials are periodic in the sense that the isomorphism ��Q	 
 Q	 induces
an isomorphism of spectral sequences

���)
���

��
 �)
�����	��

We recall from [27, Lemma 9.4] that, for all positive integers $ and ' ,

dimF� TR�
	����Z% ��F	� 
 dimF� TR�

	� �Z% ��F	��

Using this result, we show, by induction on ' 	 �, that every element of total degree
�'�� is an infinite cycle and that every non-zero element of total degree �' supports
a non-zero differential. The proof of the case ' 
 � and of the induction step are
similar. The statement that every element in total degree �' � � is an infinite cycle
follows, for ' 
 �, from the fact that every element of total degree � survives to
the ��-term, and for ' 5 �, from the inductive hypothesis that every non-zero
element of total degree �' � � supports a non-zero differential. Since no element
of total degree �' � � survives to the ��-term, it is hit by a differential supported



On the Whitehead Spectrum of the Circle 157

on an element of total degree �' . Since the differentials are periodic and �	
��	�����

and �	
��	��� have the same dimension, we find that non-zero every element of total

degree �' supports a non-zero differential as stated.
Finally, we consider the strongly convergent left half-plane Bockstein spectral

sequence induced from the �-adic filtration of Z	,

�	
��� 
 TR�

�	� �Z% �� ���Z���
����Z�� TR�
�	� �Z% ��Z	��

The differentials in this spectral sequence are obtained by restricting the differentials
in the whole plan Bockstein spectral sequence above. It follows that in this spectral
sequence, too, every non-zero element of positive even total degree supports a non-
zero differential. This completes the proof. �

Remark 14. The same argument based on Bökstedt and Madsen’s paper [5], shows
that, for an odd prime ,, the groups TR�

��Z%,� are zero, for every positive even
integer � and every positive integer $.

We next consider the skeleton spectral sequence

�	
��� 
 ���=	��� �TR�

� �Z% ���� H�	��=	��� � < �Z���

The �	-term, for & � � 
 d, takes the form

Z�bZ

0 0
0 0 0
0 0 0 0

Z��Z Z��Z Z��Z Z��Z Z��Z

0 0 0 0 0 0
0 0 0 0 0 0 0
Z	 Z�����Z 0 Z�����Z 0 Z�����Z 0 Z�����Z.

The group�	
��� is generated by Kz� and the group�	

��� is generated by Qz� . The group
�	

��R is generated by 4z� , if & 
 � or if & is odd of if $ 5 �, and is generated by �4z� ,
if $ 
 � and & is positive and even. It follows from [27, Theorem 8.14] that the
group H��=	��� � < �Z�%F	� is an F	-vector space of dimension �. This implies that
- ��Kz�� 
 Qz�. On the other hand, - ��KzR� 
 �, since KzR survives to the ��-term of
the skeleton spectral sequence for H��=	��� � < �S�� and is a - �-cycle. This shows
that the ��-term for & � � 
 d is given by

Z�bZ

0 0
0 0 0
0 0 0 0

Z��Z 0 Z��Z Z��Z Z��Z

0 0 0 0 0 0
0 0 0 0 0 0 0
Z	 Z�����Z 0 Z�����Z 0 �Z�����Z 0 Z�����Z.
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We claim that the differential - ����
��� 
 ��

��R is zero. Indeed, let

/���� ��)
��� 
 �)

���

be the map of spectral sequences induced by the iterated Frobenius map

/ ����H��=	��� � < �Z��
 H��=	��� � < �Z���

It follows from Lemma 6 that the map /���� ���
��� 
 ��

��� is an isomorphism and
that, for ( 	 $� �, the map /���� ���

��� 
 ��
��� is zero. Hence, the differential in

question is zero as claimed. It follows that the ��-term of the spectral sequence is
also the ��-term.

We choose a generator 1 of the infinite cyclic group ���Z� and recall the gener-
ator Q of the group ���Z�. We continue to write Q and 1 for the images of Q and 1

in TR�
��Z% �� and TR�

��Z% �� by the cyclotomic trace map. The norm map

H��=	� < �Z��
 TR	
��Z% ��

is an isomorphism, and we will also write 1 for the unique class on the left-hand
side whose image by the norm map is the class 1 on the right-hand side. Finally, we
continue to write 3��� � H��=	��� � < �Z�� for the image by the map induced from
the Hurewicz map ^� S 
 Z of the class 3��� � H��=	��� � < �S��.

Proposition 15. The groups H��=	��� � < �Z�� with � 
 O are given by

H��=	��� � < �Z�� 
 Z	 � 6 ����K��

H��=	��� � < �Z�� 

�
� �$ 
 ��

Z�����Z � 3����� �$ 	 ��
�

H	�=	��� � < �Z�� 
 �

H��=	��� � < �Z�� 

�

Z��Z � Q �$ 
 ��

Z���Z � 3����� �$ 	 ��
�

H��=	��� � < �Z�� 
 �

H��=	��� � < �Z�� 


�����
� �$ 
 ��

Z��Z � 1 �$ 
 ��

Z����	Z � 3����� . Z��Z � 6 ��	�1� �$ 	 ��

�

H;�=	��� � < �Z�� 

�
� �$ 
 ��

Z��Z � -6 ��	�1� �$ 	 ��
�

In addition, /�3������ 
 3����	, where 3���, 3���, and 3��� are zero.

Proof. The cases � 
 � and � 
 � follow immediately from the spectral
sequence above and from the fact that the map TR�

��S% �� 
 TR�
��Z% �� induced

by the Hurewicz map is an isomorphism. The cases � 
 � and � 
 b follow
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directly from the spectral sequence above. It follows from [27, Theorem 8.14] that
H��=	��� � < �Z�%F	� is an F	-vector space of dimension �, for all $ 	 �. The state-
ment for � 
 � follows. It also follows from loc. cit. that H��=	��� � < �Z�%F	� is an
F	-vector space of dimension �, if $ 
 �, dimension �, if $ 
 �, and dimension �, if
$ 	 �. Hence, to prove the statement for � 
 c, it will suffice to show that the group
H��=	� < �Z�� is generated by the class 1, or equivalently, that the composition

���Z�
 TC	
� Z% ��
 TR	

��Z% ��
��
 TR	

��Z% ��F	�

of the cyclotomic trace map and the modulo � reduction map is surjective. But this is
the statement that '��1� 
 3���� in [30, Proposition 4.2]. (Here 3���� is name given
in loc. cit. to the generator of the right-hand group; it is unrelated to the class 3���.)
Finally, the statement for � 
 O follows from [18, Proposition 4.4.1]. �

Corollary 16. The cokernel of the map induced by the Hurewicz map

^�TR�
��S% ��
 TR�

��Z% ��

is equal to Z��Z � Q.

Proof. The proof is by induction on $ 	 �. In the case $ 
 �, the Hurewicz map
induces the zero map TR�

��S% ��
 TR�
��Z% ��, for all positive integers �. Indeed, the

spectrum TR��Z% �� is a module spectrum over the Eilenberg–MacLane spectrum
for Z and therefore is weakly equivalent to a product of Eilenberg–MacLane spectra.
As we recalled above, TR�

��Z% �� 
 Z��Z�Q, which proves the case $ 
 �. To prove
the induction step, we use that the Hurewicz map induces a map of fundamental
long-exact sequences which takes the form

� H��=	��� � < �S�� TR�
��S% �� TR���

� �S% �� �

� H��=	��� � < �Z�� TR�
��Z% �� TR���

� �Z% �� ��

The zero on the lower right-hand side follows from Proposition 15, and the zero
on the lower left-hand side from Proposition 13. Since Propositions 10 and 15 show
that the left-hand vertical map is surjective, the induction step follows. �

We owe the proof of the following result to Marcel Bökstedt.

Lemma 17. The square of homotopy groups with Z	-coefficients

���S%Z	� ���S	%Z	�

���Z%Z	� ���Z	%Z	��
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where the vertical maps are induced by the Hurewicz maps and the horizontal maps
are induced by the completion maps, takes the from

Z	 � e1 Z	 � �b1 � G�

Z	 � 1 Z	 � 1 . Z��Z � G

Proof. It was proved in [30, Proposition 4.2] that the group ���Z	%Z	� is the direct
sum of a free Z	-module of rank one generated by 1 and a torsion subgroup of order
�; the class G is the unique generator of the torsion subgroup. Moreover, [31, Theo-
rem 5.8] shows that the group ���S%Z	� is a free Z	-module of rank one, and [31,
Theorem 2.11] and [4, Theorem 5.17] show that the group ���S	%Z	� is a free Z	-
module of rank one. To complete the proof of the lemma, it remains to show that the
left-hand vertical map in the diagram in the statement is equal to the inclusion of a
subgroup of index e. This is essentially proved in [2] as we now explain. In op. cit.,
Bökstedt constructs a homotopy commutative diagram of pointed spaces


�H
0 Fib�&� Fib���

�

	�H 	�H

�

	�H

�

	�

�

�
 �;

in which the columns are fibration sequences. The induced diagram of fourth
homotopy groups with Z	-coefficients is isomorphic to the diagram

Z	
S

S

Z	

id

Z	
id

id

Z	 Z	 Z	

Z�eZ � ��

We compare this diagram to the following diagram constructed by Waldhausen.


�H



0

ZWhDiff���

Fib���
�

Fib�&� Z��Z� Z;��Z��
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It is proved in [2, p. 30] that the composition of the lower horizontal maps in this
diagram becomes a weak equivalence after �-completion. Moreover, it is proved
in [31, Theorem 7.5] that the upper horizontal map induces an isomorphism of
homotopy groups with Z	-coefficients in degrees less than or equal to e. Hence,
the induced diagram of fourth homotopy groups with Z	-coefficients is isomorphic
to the diagram

Z	
id

S

Z	

S

Z	
id

Z	
id

Z	
id

Z	�

The right-hand vertical map in this diagram is induced by the composition

WhDiff���
 ��S�
 ��Z�

of the canonical section of the canonical map ��S� 
 WhDiff��� and the map
induced by the Hurewicz map. The left-hand map induces an isomorphism of fifth
homotopy groups with Z	-coefficients because ���S%Z	� is zero. This completes
the proof that the map induced by the Hurewicz map ���S%Z	�
 ���Z%Z	� is the
inclusion of an index eighth subgroup. The lemma follows. �

We define the class 3��� � TR�
��Z% �� to be the image of the class 3��� � TR�

��S% ��
by the map induced by the Hurewicz map.

Theorem 18. The groups TR�
��Z% �� with � 
 O are given by

TR�
��Z% �� 


!
���8�

Z	 � 6 �����

TR�
��Z% �� 


!
���8�

Z���Z � 3��� �

TR�
	�Z% �� 
 ��

TR�
��Z% �� 


���Z��Z � Q �$ 
 ��

Z�eZ � Q.
!
	��8�

Z���	�Z � 3��� �$ 	 �� �

TR�
��Z% �� 
 ��

TR�
��Z% �� 
 Z�����Z � 1 .

!
	��8�

Z�����Z � �3��� � � � � � 3����� � bu1��

TR�
;�Z% �� 
 ��

where u � Z�
	 is a unit.
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Proof. The map induced by the Hurewicz map is an isomorphism, for � 
 �, so
the statement for the group TR�

��Z% �� follows from Theorem 11. The statement for
� 
 � follows from Proposition 15 and from the fact that the generator 3��� is anni-
hilated by ��. For � 
 �, the case $ 
 � was recalled at the beginning of the section,
so suppose that $ 	 �. We know from Proposition 15 that the two sides of the state-
ment are groups of the same order. We also know that both groups are the direct sum
of $ � � cyclic groups. Indeed, this is trivial, for the right-hand side, and is proved
in [27, Lemma 9.4], for the left-hand side. Now, it follows from Theorem 11 that 3���
is annihilated by ��	�, so it suffices to show that Q is annihilated by e. We have a
commutative diagram

���Z%Z	� TR�
��Z% ��Z	�

���Z	%Z	� TR�
��Z	% ��Z	�

where the horizontal maps are the cyclotomic trace maps, where the vertical maps
are induced by the completion maps, and where we have explicitly indicated that we
are considering the homotopy groups with Z	-coefficients. The right-hand vertical
map is an isomorphism by [17, Addendum 6.2]. Therefore, it suffices to show that
the image of Q in ���Z	%Z	� has order e. But this is proved in [30, Proposition 4.2].

It remains to prove the statement for � 
 c. We first show that TR�
��Z% �� is

generated by the classes 1, 3��	, . . . , 3�����, or equivalently, that the group

TR�
��Z% ����TR�

��Z% ��
��
 TR�

��Z% ��F	�

is generated by the images of the classes 1, 3��	, . . . , 3�����. We prove this by induc-
tion on $ 	 �. The case $ 
 � is true, so we assume the statement for $ � � and
prove it for $. The fundamental long-exact sequence takes the form

H��=	��� � < �Z�%F	�
.�
 TR�

��Z% ��F	�
@�
 TR���

� �Z% ��F	�
 ��

Inductively, the right-hand group is generated by the classes 1, 3��	, . . . , 3����	,
which are the images by the restriction map of the classes 1, 3��	, . . . , 3����	 in the
middle group. Moreover, Proposition 15 shows that the left-hand group is generated
by the classes 6 ��	�1� and 3�����. Hence, it will suffice to show that, for $ 	 �,
the image of the class 6 ��	�1� in TR�

��Z% ��F	� is zero. This follows from [27,
Theorem 8.14] as we now explain. We have the commutative diagram with exact
rows

TR���
�	��Z% ��F	�

 

�C

H��=	��� � < �Z�%F	�
. TR�

��Z% ��F	�

C

�H�����=	��� � < �Z�%F	�
 #

H��=	��� � < �Z�%F	�
. #

H���=	��� � < �Z�%F	�
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considered first in [5, (6.1)]. It is follows from [27, Theorems 0.2, 0.3] that the left-
hand vertical map �: is an isomorphism, for all integers ��� 	 � and $ 	 �. Hence,
it suffices to show that the class 6 ��	�1� in the lower middle group is in the image
of the lower left-hand horizontal map >�. The lower left-hand group is the abutment
of the strongly convergent, upper half-plan Tate spectral sequence

��	
��� 
 �����=	��� �TR�

� �Z% ��F	��� �H���� �=	��� � < �Z�%F	��

and the middle groups are the abutment of the strongly convergent, first quadrant
skeleton spectral sequence

�	
��� 
 ���=	��� �TR�

� �Z% ��F	��� H�	� �=	��� � < �Z�%F	��

Moreover, the map >� induces a map of spectral sequences

>��) � ��)
��� 
 �)

����� �

which is an isomorphism, for B 
 � and & 	 �. Suppose that the homotopy class
&� � H��=	��� � < �Z�%F	� is represented by the infinite cycle � � �	

��� , and let . �
��	
�	��� be the unique element with >��	�.� 
 �. Then, if . is an infinite cycle, there

exists a homotopy class &. � �H�����=	��� � < �Z�%F	� represented by . such that
>�� &.� 
 &�; compare [5, Theorem 2.5]. We now return to [27, Theorem 8.14]. The
homotopy class 6 ��	�1� is represented by the unique generator of �	

	�� which, in
turn, is the image by the map >��	 of the unique generator of ����	

��� . In loc. cit., the
latter generator is given the name u����

�	L� and proved to be an infinite cycle for
$ 	 �. This shows that the image of the class 6 ��	�1� by the norm map

) �H��=	��� � < �Z�%F	�
 TR�
��Z% ��F	�

is zero as stated. We conclude that 1� 3��	� � � � � 3����� generate TR�
��Z% ��.

We know from Theorem 11 that 3��� is annihilated by �� and further claim that 1
is annihilated by ���� and that, for some unit u � Z�

	 ,

� � �3��	 � � � � � 3����� � bu1� 
 ��

This implies the statement of the theorem for � 
 c. Indeed, the abelian group
generated by 1� 3��	� � � � � 3����� and subject to the relations above is equal to

Z�����Z � 1 .
!
	��8�

Z�����Z � �3��� � � � � � 3����� � bu1�

and subjects onto TR�
��Z% ��. Hence, it suffices to show that the two groups have the

same order. But this follows by an induction argument based on the exact sequence
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�
 H��=	��� � < �Z��
 TR�
��Z% ��
 TR���

� �Z% ��
 �

and Proposition 15.
It remains to prove the claim. We first show that the class ���� � 1 is zero by

induction on $ 	 �. The case $ 
 � is true, so we assume the statement for $ � �

and prove it for $. We again use the exact sequence

�
 H��=	��� � < �Z��
 TR�
��Z% ��
 TR���

� �Z% ��
 �

and the calculation of the left-hand group in Proposition 15. The inductive hypoth-
esis implies that the image of the class ���	 � 1 by the right-hand map is zero, and
hence, this class is in the image of the left-hand map. It follows that we can write

���	 � 1 
 7 � 3����� � 8 � 6 ��	�1�

with 7 � Z����	Z and 8 � Z��Z. We apply the Frobenius map

/ �TR�
��Z% ��
 TR���

� �Z% ��

to this equation. The image of the left-hand side is zero, by induction, and the image
of the right-hand side is �7 � 3����	, where �7 � Z�����Z is reduction of 7 modulo
����. It follows that �7 is zero, or equivalently, that 7 � ����Z����	Z. This shows
that ���� � 1 is zero as desired.

Finally, to prove the relation � � �3��	 � � � � 3����� � bu1� 
 �, we consider the
following long-exact sequence

� � � 
 TR;�S% �� ��H���
 TR;�S% ��  �
���S	%Z	�
tr�
 TR��S% �� ��H���
 TR��S% ��
 � � �

We know from Lemma 17 that the group ���S	%Z	� is a free Z	-module of rank
one generated by the class b1 � G . Moreover, it follows from Theorem 11 that the
left-hand map ��/ is surjective and that the kernel of the right-hand map ��/ is
isomorphic to a free Z	-module of rank one generated by the element 0 
 �0
���

with 0
�� 
 3��	 � � � � � 3�����. It follows that there exists a unit u � Z�
	 such that

0� u�b1� G� 
 � in TR��S% ��. But then ��0� bu1�
 �, since ��b1� G� 
 e1.
This completes the proof. �

Corollary 19. The cokernel of the map induced by the Hurewicz map

^�TR�
��S% ��
 TR�

��Z% ��

is equal to Z��vZ � 1, where v 
 v�$ � �� is the smaller of � and $ � �.

Proof. It follows immediately from Theorem 18 that the cokernel of the map ^ is
generated by the class of 1. Moreover, since the class

3��� � � � � � 3����� � bu1
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has order �, it is also clear that the cokernel of the map ^ is annihilated by multipli-
cation by e. Hence, it will suffice to show that, for $ 
 b, the cokernel of the map ^
is not annihilated by b, or equivalently, that the map ^ takes the class @ � TR�

��S% ��
to zero. But this follows immediately from the structure of the spectral sequences
that abuts H��=S� < �S�� and H��=S� < �Z��. �

7 The Groups TR�
��S� �� ��

We again implicitly consider homotopy groups with Z	-coefficients. The Hurewicz
map from the sphere spectrum S to the Eilenberg MacLane spectrum Z for the ring
of integers induces a map of topological Hochschild T-spectra

^�< �S�
 < �Z��

In [5, Appendix], Bökstedt and Madsen constructs a sequence of cyclotomic spectra

< �S� P �
��
 < �S�

E�
 < �Z�
 �
 9<�S� P �

such that the underlying sequence of T-spectra is a cofibration sequence. As a
consequence, the equivariant homotopy groups

TR�
��S� P %,� 
 ���  �T�=�����	� < �S� P ��T

come equipped with maps

S�TR�
��S� P %,�
 TR���

� �S� P %,� (restriction)

/ �TR�
��S� P %,�
 TR���

� �S� P %,� (Frobenius)

6 �TR���
� �S� P %,�
 TR�

��S� P %,� (Verschiebung)

- �TR�
��S� P %,�
 TR�

�	��S� P %,� (Connes’ operator)

and all maps in the long-exact sequence of equivariant homotopy groups induced by
the cofibration sequence above,

� � � 
 TR�
��S� P % ��

��
 TR�
��S% ��

E�
 TR�
��Z% ��

 �
 TR�
����S� P % ��
 � � � �

are compatible with restriction maps, Frobenius maps, Verschiebung maps, and
Connes’ operator. Moreover, this is a sequence of graded modules over the graded
ring TR�

��S%,�.

Lemma 20. The following sequence is exact, for all $ 	 �.
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�
 H��=	��� � < �S� P ��
.�
 TR�

��S� P % ��
@�
 TR���

� �S� P % ��
 ��

Proof. From the proof of Corollary 16 we have a map of short-exact sequences

� H��=	��� � < �S�� TR�
��S% �� TR���

� �S% �� �

� H��=	��� � < �Z�� TR�
��Z% �� TR���

� �Z% �� �

and that the left-hand vertical map is surjective. Moreover, Lemma 13 and Propo-
sition 15 identify the sequence of the statement with the sequence of kernels of the
vertical maps in this diagram. This completes the proof. �

Corollary 21. The restriction map

S�TR�
��S� P % ��
 TR���

� �S� P % ��

is surjective, for all � 
 b and all $ 	 �.

We recall that for $ 
 �, the map ^ is an isomorphism, if � 
 �, and the zero
map, if � 5 �. It follows that the groups TR�

��S� P % ��, TR�
��S� P % ��, and TR�

��S� P % ��
are zero, that TR�

��S� P % �� is isomorphic to Z��Z generated by the unique class &2
with '� &2� 
 2, that TR�

	�S� P % �� is isomorphic to Z��Z . Z��Z generated by 2 &2
and by the class �Q 
 >�Q�, and that TR�

��S� P % �� is isomorphic to Z�eZ generated
by the unique class &# with '� &#� 
 #. We note that 2 �Q 
 �, since TR�

��Z% �� is zero,
while 2	 &2 
 b &#. We consider the skeleton spectral sequences

�	
��� 
 ���=	��� �TR�

� �S� P % ���� H�	��=	��� � < �S� P ���

In the case $ 
 �, the �	-term for & � � 
 c takes the form

0
0 0

Z�eZ Z��Z bZ�eZ

�Z��Z�	 �Z��Z�	 �Z��Z�	 �Z��Z�	

Z��Z Z��Z Z��Z Z��Z Z��Z

0 0 0 0 0 0.

The group �	
��� is generated by the class &2z� , the group �	

��	 by the classes 2 &2z�
and �Qz� , the group �	

��� with & 
 � or & an odd positive integer by the class #z� ,
and the group �	

��� with & an even positive integer by the class b#z�. We claim that
- 	� &2z	� 
 �Qz�, or equivalently, that Connes’ operator maps

- &2 
 �Q�

We show that the class 6� �Q� � H	�=	� < �S� P �� represented by �Qz� is zero. By
Lemma 20, we may instead show that the image 6� �Q� � TR	

	�S� P % �� by the norm
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map is zero. Now, 6� �Q� 
 6�>�Q�� 
 >�6�Q��, and by Proposition 18, the class
6�Q� � TR	

��Z% �� is either zero or equal to bQ. But >�bQ� 
 b>�Q� 
 b �Q which
is zero, by Corollary 16. This proves the claim. The - 	-differential is now given by
Lemma 5. We find that the ��-term for & � � 
 c takes the form

0
0 0

Z�eZ Z��Z 0
Z��Z Z��Z Z��Z Z��Z

Z��Z Z��Z 0 0 0
0 0 0 0 0 0

and, for degree reasons, this is also the ��-term. The group ��
��	 is generated by

the class of 2 &2z� . The class of �Qz� in ��
��	 is equal to zero, if & is congruent to � or �

modulo b, and is equal to the class of 2 &2z� , if & is congruent to � or � modulo b.
The spectral sequences for $ 	 � are similar with the only difference being the

groups �)
��� with & 5 �. In the case $ 
 �, the ��-term for & � � 
 c takes the

form

0
0 0

Z�eZ Z�bZ �Z�bZ

Z��Z Z��Z Z��Z Z��Z

Z��Z Z��Z 0 0 0
0 0 0 0 0 0

and in the case $ 	 b, it takes the form

0
0 0

Z�eZ Z�eZ Z�bZ

Z��Z Z��Z Z��Z Z��Z

Z��Z Z��Z 0 0 0
0 0 0 0 0 0.

We define F � H��=�� < �S� P �� and &@ � H��=S� < �S� P �� to be the unique homotopy
classes that represent � &#z	 and &#z	, respectively. We note that 6�F� 
 � &@. We further
define �1 
 >�1� � H��=	� < �S� P ��.

Proposition 22. The groups H��=	��� � < �S� P �� with � 
 c are given by

H��=	��� � < �S� P �� 
 ��

H��=	��� � < �S� P �� 
 Z��Z � 6 ���� &2��
H	�=	��� � < �S� P �� 
 Z��Z � -6 ���� &2�. Z��Z � 6 ����2 &2��
H��=	��� � < �S� P �� 
 Z��Z � -6 ����2 &2�. Z�eZ � 6 ���� &#��

H��=	��� � < �S� P �� 

�
� �$ 
 ��

Z��vZ � -6 ���� &#�. Z��Z � 6 ��	� �1� �$ 	 ���
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H��=	��� � < �S� P �� 


���������
� �$ 
 ��

Z��Z � - �1 �$ 
 ��

Z��Z � -6� �1�. Z��Z � F �$ 
 ��

Z��Z � -6 ��	� �1�. Z�bZ � 6 ���� &@� �$ 	 b��

where v 
 v�$ � �� is the smaller of � and $ � �.

Proof. The statement for � 
 � follows immediately from the spectral sequence
above since the generators given in the statement have the indicated orders. To prove
the statement for � 
 b, we first note that -6 ���� &#� has order v�$� ��. Indeed, the
class &# has order e and - &# 
 �. Moreover, the image of the map

^�H��=	��� � < �S��
 H��=	��� � < �Z��

does not contain the class 6 ��	�1�. Indeed, this follows immediately from the
induced map of spectral sequences. It follows that 6 ��	� �1� is a non-zero class of
order � which is represented by the element 2 &2z	 
 �Qz	 in the ��-term of the
spectral sequence above. This proves the statement for � 
 b. It remains to prove
the statement for � 
 c. It follows from [18, Proposition 4.4.1] that the element
2 &2z� 
 �Qz� in the ��-term of the spectral sequence above represents the class
-6 ��	� �1�. Hence, this class is non-zero and has order �. Moreover, the spectral
sequence shows that the subgroup of H��=	��� � < �S� P �� generated by -6 ��	� �1� is
a direct summand. This completes the proof. �

The following result was proved by Costeanu in [7, Proposition 2.6].

Lemma 23. The map
^�TR�

��S% ��
 TR�
��Z% ��

takes the class 2 
 2 � ���� to the class 3���.

Proof. We temporarily write ��S�� and ��Z�� for the multiplicative unit elements of
the graded rings TR�

��S% �� and TR�
��Z% ��, respectively. By [17, Proposition 2.7.1],

the map ^ is a map of graded algebras over the graded ring given by the stable
homotopy groups of spheres. Hence, it takes the class 2 � ��S�� to the class 2 � ��Z��.
Similarly, it is proved in [12, Corollary 6.4.1] that the cyclotomic trace map

tr����Z�
 TR�
��Z% ��

is a map of graded algebras over the graded ring given by the stable homotopy
groups of spheres. Hence, the class 2 � ��Z�� is equal to the image by the cyclotomic
trace map of the class 2 � �Z � ���Z�. The latter class is known to be equal to the
generator ���	 � ���Z�. It is proved in [18, Lemma 2.3.3] that the image by the
cyclotomic trace map of the generator ���	 is equal to the class

- log����� � TR�
��Z% ���
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To evaluate this class, we recall from [17, Theorem F] that the ring TR�
��Z% �� is

canonically isomorphic to the ring of Witt vectors ?��Z�. One readily verifies that

����� 
 ����� � 6��������

by evaluating the ghost coordinates. It follows that -����� 
 -6��������, and since
the class ����� is a square root of �, we find

- log����� 
 �����-����� 
 ������ � 6��������� � -6��������


 -6��������� 6�/-6��������� 
 -6��������� 6�2 � ��������

But by Theorem 11, this is the class 3��� as stated. �

Remark 24. It follows from Lemma 23 that ^�6 ��2�� 
�
��� �

���3��� , if & 	 �.

At present, we do not know the precise value of the map

^�TR�
��S% ��
 TR�

��Z% ��

for � 	 �. However, we have the following result. We define &2 � TR�
��S� P % �� to be

the unique class such that '� &2� 
 2 � 3���. The class &# that appears in the statement
will be defined in the course of the proof. It would be desirable to better understand
this class. In particular, we do not know the values of 2	 &2 or /- &#.

Theorem 25. The groups TR�
��S� P % �� with � 
 � are given by

TR�
��S� P % �� 
 ��

TR�
��S� P % �� 


!
���8�

Z��Z � 6 �� &2��

TR�
	�S� P % �� 


!
���8�

�
Z��Z � 6 ��2 &2�. Z��Z � -6 �� &2�
�

TR�
��S� P % �� 


!
���8�

Z�eZ � 6 �� &#�.
!
���8�

Z��Z � -6 ��2 &2��

and the group TR�
��S� P % �� is generated by -6 �� &#� with � 
 & J $. Moreover, the

restriction map takes &2 to &2 and &# to &#, and the Frobenius map takes both &2 and &#
to zero and takes - &2 to - &2. The class -�2 &2� 
 2-� &2� is zero.

Proof. The statement for � 
 � follows immediately from Theorem 11 and Propo-
sition 18. For � 
 �, Lemma 13 shows that the map ' �TR�

��S� P % ��
 TR�
��S% �� is

injective, and Lemma 23 shows that the class 2� 3��� is in the image. As said above,
we define &2 � TR�

��S� P % �� to be the unique class with '� &2� 
 2 � 3���. The state-
ment for � 
 � now follows immediately from Theorem 11 and Proposition 18. For
� 
 �, a similar argument shows that the group TR�

	�S� P % �� contains the subgroup
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TR�
	�S� P % ��� 


!
���8�

Z��Z � 6 ��2 &2�.
!
���8�

Z��Z � -6 �� &2��

which maps isomorphically onto the image of ' �TR�
	�S� P % �� 
 TR�

	�S% ��, and
Lemma 16 shows that the kernel of the latter map is Z��Z � �Q. Therefore, to prove
the statement for � 
 �, it remains to prove that - &2 
 �Q. We have already proved
this equality, for $ 
 �, in the discussion preceeding Proposition 22. It follows that
the iterated restriction map S����TR�

	�S� P % �� 
 TR�
	�S� P % �� takes the class - &2

to the class �Q. Since the kernel of this map is equal to the subgroup TR�
	�S� P % ���, it

suffices to show that the class '�- &2 � �Q� � TR�
	�S% �� is zero. We have

'�- &2� �Q� 
 '�- &2� 
 -�'� &2�� 
 -2 � -3����

The class -2 is zero, since 2 is in the image of the cyclotomic trace map, and we
proved in Theorem 11 that -3��� is zero. Th statement for � 
 � follows. It also
follows that /�- &2� 
 - &2, since - &2 
 >�Q� and Q is in the image of the cyclotomic
trace map.

We next prove the statement for � 
 �. By Lemma 20, the sequences

�
 H��=	��� � < �S� P ��
.�
 TR�

��S� P % ��
@�
 TR���

� �S� P % ��
 �

are exact. The left-hand group was evaluated in Proposition 22. To complete the
proof, we inductively construct classes

&# 
 &#� � TR�
��S� P % �� �$ 	 ��

such that S� &#�� 
 &#��� and /� &#�� 
 �, and such that &#� is the class &# already
defined. By Proposition 13 and Corollary 16, we have a short-exact sequence

�
 TR�
��S� P % ��

��
 TR�
��S% ��

E�
 TR�
��Z% ��� 
 ��

where the right-hand group is the index two subgroup of TR�
��Z% �� defined by

TR�
��Z% ��� 


!
���8�

Z���	�Z � 3��� �

To define the class &#	, we first note that ^�#� 
 7�3���, where 7� � �Z�bZ�� is a
unit, and choose a unit &7� � �Z�eZ�� whose reduction modulo b is 7�. Then, we
have ^�# � &7�3���� 
 � and /�# � &7�3���� 
 ��� &7��#. We choose 8� � Z�eZ such
that �8� 
 &7� � � and define &#	 to be the unique class such that

'� &#	� 
 # � &7�3��� � 8�6�#��

Then S� &#	� 
 &#� and /� &#	� 
 � as desired.
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We next define the class &#�. The image of &#	 by the composition

TR	
��S� P % ��

��
 TR	
��S% ��

K�
 TR�
��S% ��

E�
 TR�
��Z% ���

is equal to 7	3��	, for some 7	 � Z�eZ. We claim that, in fact, 7	 � bZ�eZ. Indeed,
since /� &#	� 
 �, we have /�7	3��	� 
 �. But /�3��	� 
 3��� which shows that
the modulo b reduction of 7	 is zero as claimed. We let 8	 � Z��Z be the unique
element such that b8	 
 7	 and define &#� to be the unique class such that

'� &#�� 

�
��'� &#	��� 8	�b3��	 � -6 	�2	�� �6 	�#�� if b3��� 
 -6�2	�

��'� &#	��� 8	�b3��	 � -6 	�2	�� if b3��� 
 2	3���.

The sum on the right-hand side is in the kernel of ^, since both ^�2	� � TR�
	�Z% ��

and ^�#� � TR�
��Z% �� are zero. We also have S� &#�� 
 &#	 and /� &#�� 
 � as desired.

Indeed, if b3��� 
 -6�2	�, then

'�/ � &#��� 
 /���'� &#	��� 8	�b3��	 � -6 	�2	�� �6 	�#���


 ��'�/� &#	���� 8	�b3��� � -6�2	�� 6�2��� b6�#���

and if b3��� 
 2	3���, then

'�/ � &#��� 
 /���'� &#	��� 8	�b3��	 � -6 	�2	���


 ��'�/� &#	���� 8	�b3��� � -6�2	�� 6�2����

and in either case, the sum is zero.

Finally, we let $ 	 b and assume that the class &#��� has been defined. We find as
before that the image of the class &#��� by the composition

TR���
� �S� P % �� ��
 TR���

� �S% �� K�
 TR�
��S% ��

E�
 TR�
��Z% ���

is equal to 7���3����� with 7��� � ����Z���Z and define &#� to be the unique class
whose image by the map ' is equal to

'� &#�� 
 ��'� &#����� � 7���3������

Then S� &#�� 
 &#��� and /� &#�� 
 �, since ����3����	 
 �, for $ 	 b.

It remains to prove that the group TR�
��S� P % �� is generated by the homotopy

classes -6 �� &#� with � 
 & J $. The sequence

H��=	��� � < �S� P ��
 TR�
��S� P % ��
 TR���

� �S� P % ��
 ��

which is exact by Corollary 21, together with Proposition 22 show that TR�
��S� P % ��

is generated by the classes -6� &#�, � 
 & J $, and �1. Indeed, since the boundary
map
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>�TR�
��Z% ��
 TR�

��S� P % ��
commutes with the Verschiebung, it follows that 6 ���� �1� 
 � �1, for some � �
����Z. Hence, it suffices to show that there exists a class �� � TR�

��S� P % ��
with -�� 
 �1. The statement for $ 
 � is trivial, since the group TR�

��S� P % ��
is zero. We postpone the proof of the statement for $ 
 � to Lemma 26 and
here prove the induction step. So we let $ 	 � and assume that there exists a
class ���� � TR���

� �S� P % �� with -���� 
 �1. We use Corollary 21 to choose a
class ��

� � TR�
��S� P % �� with S���

�� 
 ����. Then the exact sequence above and
Proposition 22 show that

-��
� 
 �1 � 7-6 ���� &#�� 86 ����1� 
 7-6 ���� &#�� ��� 8�� �1�

for some integers 7 and 8. Since �� 8� is a �-adic unit, the class

�� 
 ��� 8�������
� � 76 ���� &#��

is well-defined and satisfies -�� 
 �1 as desired. �

One wonders whether the class &#, which was defined in the proof, satisfies that
- &# 
 �1. This would imply that/- &# 
 - &#, since 1 is in the image of the cyclotomic
trace map.

The following result was used in the proof of Theorem 25.

Lemma 26. Connes’ operator

- �TR	
��S� P % ��
 TR	

��S� P % ��

is surjective.

Proof. The groups TR	
��S� P % �� for � 
 c are given by

TR	
��S� P % �� 
 ��

TR	
��S� P % �� 
 Z��Z � &2. Z��Z � 6� &2��

TR	
	�S� P % �� 
 Z��Z � - &2. Z��Z � -6� &2�. Z��Z � 2 &2. Z��Z � 6�2 &2��

TR	
��S� P % �� 
 Z��Z � -6�2 &2�. Z�eZ � &# . Z�eZ � 6� &#��

TR	
��S� P % �� 
 Z��Z � �1 . Z��Z � -6� &#��

TR	
��S� P % �� 
 ��

Hence, the lemma is equivalent to the statement that in the spectral sequence

�	
��� 
 ���=	�TR	

� �S� P % ���� H�	��=	� TR 	�S� P ���

the - 	-differential - 	��	
��� 
 �	

��� is surjective. We first argue that this is equivalent
to the statement that H��=	� TR 	�S� P �� has order b. The elements �1z� and -6� &#�z�
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in �	
��� are infinite cycles and represent the homotopy classes 6 	� �1� and �-6 	� &#�

of H��=	� TR 	�S� P ��. We claim that these classes are non-zero and generate a
subgroup of order b. To see this, we consider the norm maps from Proposition 4,

H��=	� TR 	�S� P ��
.��
 TR�

��S� P % ��
.��� H��=�� < �S� P ���

It will suffice to show that the subgroup of the middle group generated by the images
of the classes 6 	� �1� and -6 	� &#� has order b. This subgroup is equal to the subgroup
generated by the images of the classes 6 	� �1� and -6 	� &#� of the right-hand group.
The right-hand map is injective, since TR	

��S� P % �� is zero. (The left-hand map is
also injective, since TR�

��S� P % �� is zero.) Hence, it suffices to show that the sub-
group of the right-hand group generated by the classes 6 	� �1� and -6 	� &#� has order
b. But this is proved in Proposition 22. The claim follows. We conclude that in the
spectral sequence under consideration, the differentials

- ) ��)
)���) 
 �)

���

are zero, for all B 	 �. It follows that the groups ��
���, �

�
	��, ��

��	, �
�
���, and ��

��� have
orders �, �, �, �, and �, respectively, and that for all B 	 �, the differentials

- ) ��)
)	����) 
 �)

���

are zero. We conclude that the differential - 	��	
��� 
 �	

��� is surjective if and only
if the group H��=	� TR 	�S� P �� has order b.

The order of the group H��=	� TR 	�S� P � is divisible by b and to show that it is
equal to b, we consider the following diagram with exact rows and columns:

TR�
R�S% ��

�
H;�=	� TR 	�S% ���

E

TR�
;�S% ��

TR�
R�Z% ��

Æ��

H;�=	� TR 	�Z% ���
 

TR�
;�Z% ��

TR�
;�S� P % ��

Æ�

H��=	� TR 	�S� P �� TR�
��S� P % ��

TR�
;�S% ��

�
H��=	� TR 	�S% ��� TR�

��S% ���

It follows from Theorems 11 and 18 that the group TR�
��S� P % �� is equal to Z��Z �

�3��	. Hence, it will suffice to show that the image of the map Æ� has order at most �.
Since the lower left-hand horizontal map in the diagram is zero, we conclude that



174 L. Hesselholt

the image of the map Æ� is contained in the image of the map >. Therefore, it suffices
to show that the image of the map > has order at most �.

The group TR�
;�Z% �� is zero by Proposition 13 and the group TR�

R�Z% �� is cyclic
of order b. It follows that the group H;�=	� TR 	�Z% ��� is cyclic and has order either
�, �, or b. If the order is either � or �, we are done, so assume that the order is b.
We must show that � times a generator is contained in the image of the map ^ in the
diagram. To this end, we consider the diagram

H;�=�� TR 	�S% ��� H

E

H;�=	� TR 	�S% ��
E

H;�=�� TR 	�Z% ��� H
H;�=	� TR 	�Z% ���

We first show that the lower horizontal map / is surjective. The assumption that
the lower right-hand group has order b implies that a generator of this group is
represented in the spectral sequence

�	
��� 
 ���=	�TR	

� �Z% ���� H�	��=	� TR 	�Z% ���

by the element Qz� � �	
���. This element is the image by the map of spectral

sequences induced by the map / of the element Qz� � �	
��� in the spectral sequence

�	
��� 
 ���=��TR	

� �Z% ���� H�	��=�� TR 	�Z% ����

We must show that the latter element Qz� is an infinite cycle. For degree rea-
sons, the only possible non-zero differential is - ����

��� 
 ��
���. The target group

is equal to Z��Z � 1z�, and the generator 1z� represents the homotopy class 6 	�1�

in H��=�� TR 	�Z% ���. To see that this class is non-zero, we consider the norm maps

H��=�� TR 	�Z% ��� .��
 TR�
��Z% ��

.��� H��=S� < �Z���

We may instead prove that the image of the class 6 	�1� by the left-hand map is
non-zero. This image class, in turn, is equal to the image of the class 6 	�1� by
the right-hand map which is injective since TR�

;�Z% �� is zero. Now, Proposition 15
shows that the class 6 	�1� in the right-hand group is non-zero. We conclude that
the lower horizontal map / in the square diagram is surjective as stated.

Finally, we show that the image of the left-hand vertical map ^ in the square
diagram contains two times the homotopy class represented by the element Qz�. In
fact, the image of the composition

H��=�� < �S��
K�
 H��=�� TR 	�S% ��� E�
 H��=�� TR 	�Z% ���
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of the Segal-tom Dieck splitting and the map ^ contains � times the class represented
by Qz�. Indeed, by Proposition 10, the element #z� � �	

��� of the spectral sequence

�	
��� 
 ���=��TR�

� �S% ���� H�	��=�� < �S��

is an infinite cycle whose image by the map of spectral sequence induced by the
composition of the maps � and ^ is equal �Qz� � �	

��� 
 Z�bZ �Qz�. This completes
the proof. �

8 The Groups WhTop
� �� �� for � � �

In this section, we complete the proof of Theorem 1 of the Introduction. It follows
from [15, Theorem 1.2] that the odd-primary torsion subgroup of WhTop

� ���� is zero,
for � 
 �. Hence, it suffices to consider the homotopy groups with Z	-coefficients.
We implicitly consider homotopy groups with Z	-coefficients.

As we explained in the introduction, there is a long-exact sequence

� � � 
 WhTop
� ����
 "TR��S��

���� P �����% �� ��H���
 "TR��S��
���� P �����% ��
 � � �

where the middle and on the right-hand terms are the cokernel of the assembly map

��TR��S% P % ��. TR����S% P % ��
 TR��S��
���� P �����% ���

Moreover, since the groups TR�
��S� P % �� are finite, for all integers � and $ 	 �, the

limit system �TR�
��S� P % ��	 satisfies the Mittag-Leffler condition, and Corollary 3

then shows that the same holds for the limit system �"TR�
��S��

���� P �����% ��	. It
follows that, for all integers �, the canonical map

"TR��S��
���� P �����% ��
 lim

�
"TR�

��S��
���� P �����% ��

is an isomorphism. Finally, Theorem 2 expresses the right-hand side in terms of the
groups TR�

� �S� P % �� which we evaluated in Theorem 25, for � 
 �.

Theorem 27. The groups WhTop
� ���� and WhTop

� ���� are zero.

Proof. We first note that, as an immediate consequence of Theorems 2 and 25, the
group "TR��S��

���� P �����% �� is zero. Moreover, we showed in Theorem 25 that the
Frobenius map / �TR�

� �S� P % ��
 TR���
� �S� P % �� is zero, and hence,

� � / �"TR��S��
���� P �����% ��
 "TR��S��

���� P �����% ���
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is the identity map. This shows that the group WhTop
� ���� is zero as stated. To prove

that WhTop
� ���� is zero, it remains to prove that the map

� � / �"TR	�S��
���� P �����% ��
 "TR	�S��

���� P �����% ���

is surjective. So let \ 
 �\
��� be an element on the right-hand side. We find an
element \� 
 �\�
��� such that �S�/ ��\�� 
 \. By Theorem 2, we can write \
��

uniquely as a sum	
��Z� �!

�
7

��
��� ���

�
� � 8


��
��� ���

�
�- log����


� 	
���8�
��Z�	Z

�
6 ��7


��
��� ���

�
����� -6 ��8


��
��� ���

�
����




with 7

��
��� � TR���

	 �S� P % �� and 8

��
��� � TR���

� �S� P % ��. We first consider the four
types of summands separately.

First, if \
�� 
 6 ��7
������ � with & 	 �, we let \� 
 \. Then

�S � / ��\�
�	��� 
 �S � / ��6 ��7
�	������ �� 
 6 ��7
������ ��

since /6 
 � and �7
�� 
 �. We note that here + may be any integer.

Second, if \
�� 
 -6 ��8
������ �, where + and & 	 � are integers, we define

\�
�� 
 �
	

��)8���

-6 )	��8
����)	������ � �
	

��)8�

6 )�28
��)	������ ��

Then we have S�\�
�	��� 
 \�
�� and

�S � / ��\�
�	��� 
 �
	

��)8���

-6 )	��8
����)	������ � �
	

��)8�

6 )�28
��)	������ �

�
	

��)8�

-6 )�8
��)	������ ��
	

��)8�

6 )�28
��)	������ �


 -6 ��8
������ �

as desired.

Third, if \
�� 
 8
������ - log���, we let \� 
 \. Then �S�/ ��\�
�	��� 
 \
��,
since /�8
��� 
 �.

Fourth, we consider the case \
�� 
 7
������ . Then 7
�� � TR�
	�S� P % �� and we

showed in Theorem 25 that this group is an F	-vector space with a basis given by the
classes 6 ��2 &2� and -6 ��2 &2�, where � 
 & J $. If 7
�� 
 6 ��2 &2� with � 
 & J $,
then we let \� 
 \. Then �S�/ ��\�
�	��� 
 \
��, since /� &2� 
 �. Next, suppose
that 7
�� 
 -6 �� &2� with � 
 & J $. Then

-6 �� &2����� 
 -6 �� &2���	 � � � +6 �� &2����� - log����
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and we have already considered the two terms on the right-hand side. Hence, also
in this case, there exists \� such that �S � / ��\�
�	��� 
 \
��. Similarly, in the
remaining case \
�� 
 �- &2����� , the calculation

�S � / ��-6� &2���� �� 
 -6� &2���� � � -� &2���� � � 2 &2����

 -6� &2���� � � �- &2����� � + &2���� - log��� � 2 &2����

shows that there exists \� such that �S � / ��\�
�	��� 
 \
��. Indeed, we have
already considered -6� &2���� �, &2���� - log���, and 2 &2���� .

Finally, we can write every element \ 
 �\
��� of "TR	�S���
��� P �����% �� as

a series \ 
 �
��D \� , where each \� is an element of the one of the four types

considered above, and where, for every $ 	 �, all but finitely many of the \
��
� are

zero. Now, for every ' � P , we have constructed an element \�
� 
 �\�

�

��� such that

�S � / ��\�
� � 
 \� . Moreover, the element \�

� has the property that, if \
��
� 
 �,

then also \�
�

�� 
 �. It follows that, for all $ 	 �, all but finitely many of the \�

�

��.

Hence, the series \� 
 �
��D \

�
� defines an element with �S � / ��\�� 
 \ as

desired. �

Theorem 28. There is a canonical isomorphism

WhTop
	 ����

��

!
)��

!
��Z�	Z

Z��Z�

Proof. We first evaluate the kernel of the map ��/ in the long-exact sequence at the
beginning of the section. Let \ 
 �\
��� be an element of "TR	�S��

���� P �����% ��.
Then \ lies in the kernel of � � / if and only if the coefficients

7

��
��� 
 7��� �\


��� � TR���
	 �S� P % ��

8

��
��� 
 8��� �\


��� � TR���
� �S� P % ��

satisfy the equations of Corollary 3. In the case at hand, the equations imply that the
coefficients above are determined by the coefficients 8
����� . Indeed, if we write + as
�u+ � with + � odd, then we have

7

��
��� 


�
/ u�-8


�	�	u�
��� �

� 28

�	�	u�
��� �

� �& 
 ��

28

�	����
��� �� 
 & J $�

8

��
��� 


�����
� �& 
 � and + even�

�+8
�	��
��� �& 
 � and + odd�

8

�	����
��� �� 
 & J $��
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The coefficients 8
����� , however, are not unrestricted, since for every $ 	 �, all but
finitely many of the coefficients 7
����� and 8
����� are zero. We write

8

��
��� 


	
��)8���

�)��6
)� &2�

and consider the coefficients

�)�� 
 �)�� �\� � Z��Z�

Since S�8

�	��
��� � 
 8


��
��� and S� &2� 
 &2, the coefficients �)�� depend only on the

integers B 	 � and + � Z 3 Z and not on $. They determine and are determined by
the coefficients 7
����� and 8
����� .

The requirement that for all $ 	 �, all but finitely many of the 8

��
��� be zero

implies that there exists a finite subset P 
 P�\� � Z��Z such that �)�� is zero,
unless + � P . We fix + � P and consider 7
����	u� , with u 	 �. We calculate

7

��
��	u� 
 / u�-8


�	�	u�
� � 28


�	�	u�
� �



	

��)8�	u

�)��/
u�-6 )� &2�� 6 )�2 &2��



	

��)8u

�)��/
u�) �- &2� 2 &2� �

	
u�)8u	�

�)�� �-6
)�u� &2�� 6 )�u�2 &2��



	

��)8u

�)��- &2 �
	

u�)8u	�

�)�� �-6
)�u� &2�� 6 )�u�2 &2���

Now, for all $ 	 �, there exists ) 
�� 
 ) 
���\� such that for all + � P and all
u 	 ) 
��, the coefficient 7
����	u� is zero. We assume that ) 
�� is chosen minimal.
Since

S�TR�
	�S� P % ��
 TR���

	 �S� P % ��
is surjective and takes 7
����	u� to 7


����
��	u� , we have ) 
�� 	 ) 
����. Considering the

coefficients of - &2 and 2 &2 in the sum above, we find that for all u 	 ) 
��,	
��)8u	�

�)�� 
 � �coefficient of - &2�

�u�� 
 � �coefficients of 2 &2��

But these equations are satisfied also for u 	 ) 
���� which implies that we also
have ) 
�� 
 ) 
����. We conclude that there exists an integer ) 
 )�\� 	 �

independent of $ such that �u�� 
 �, for u 	 ) , and that the coefficient ���� is equal
to the sum of the coefficients �)�� with B 	 �. Conversely, suppose we are given
coefficients �)�� all but finitely many of which are zero. Then, for every $ 	 �, all
but finitely many of the corresponding coefficients 7
����� and 8
����� are zero. This shows
that the map
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ker���/ �"TR	�S��
���� P �����% ��
 "TR	�S��

���� P �����% ���

!
)��

!
��Z�Z

Z��Z

that to \ assigns ��)�� �\�� is an isomorphism.

It remains to show that the map

� � / �"TR��S��
���� P �����% ��
 "TR��S��

���� P �����% ��

is surjective. Given the element \ 
 �\
��� on the right-hand side, we find an
element \� 
 �\�
��� on the left-hand side such that �S � / ��\�� 
 \. As in the
proof of Theorem 27, we first consider several cases separately.

First, if \
�� 
 -6 ��8
������ �, where + and & 	 � are integers, we define

\�
�� 
 �
	

��)8���

-6 )	��8
����)	������ � �
	

��)8�

6 )�28
��)	������ ��

Then we find that S�\�
�	��� 
 \�
�� and �S�/ ��\�
�	��� 
 \
�� by calculations
entirely similar to the ones in the proof of Theorem 27.

Second, if \
�� 
 8
������ - log���, we consider three cases separately. In the
case \
�� 
 6 ��2 &2����� - log��� with � 
 & J $, we let \� 
 \. Then �S �
/ ��\�� 
 \ since /� &2� 
 �. In the case \
�� 
 -6 �� &2����� - log���, where
� 
 & J $, we note that \
�� 
 -6 �� &2���	 �- log���� and define

\�
�� 
 �
	

��)8���

-6 )	�� &2���	 �- log���� �
	

��)8�

6 )�2 &2���	 �- log�����

Then S�\�
�	��� 
 \�
�� and �S � / ��\�
�	��� 
 \
�� as before. In the remaining
case \
�� 
 �- &2����� - log���, the calculation

�S � / ��-6� &2���� - log�����


 -6� &2���� - log���� � �- &2����� - log��� � 2 &2���� - log���

shows that there exists \� with �S � / ��\�� 
 \. Indeed, we have already
considered -6� &2���� - log���� and 2 &2���� - log���.

Third, if \
�� 
 7
������ , we consider two cases separately. In the first case, we
have \
�� 
 6 �� &#����� with � 
 & J $ and define

\�
�� 
 6 �� &#����� � /�6 �� &#����� �� / 	�6 �� &#����� ��

Then S�\�
�	��� 
 \�
�� and �S � / ��\�
�	��� 
 \
�� because / �6 �� &#� 
 �. In
the second case, \
�� 
 -6 ��2 &2����� , we calculate

-6 ��2 &2����� 
 -6 ��2 &2���	 � � � +6 ��2 &2����� - log����



180 L. Hesselholt

Since we have already considered the two terms on the right-hand side, it follows
that there exists \� with �S � / ��\�� 
 \.

Finally, we consider \
�� 
 6 ��7
������ � with � 
 & J $. For & � �, we define

\�
�� 
 6 ��7
������ �� /6 ��7
�	������ �� / 	6 ��7
�		����� ��

Then S�\�
�	��� 
 \�
�� and �S � / ��\�
�	��� 
 \
�� since e7
�	�� 
 �. For
& 
 � and & 
 �, the calculation

�S � / ��6�7
�	������ �� 
 6�7
������ � � �7
�	������

�S � / ��6 	�7
�	������ �� /6 	�7
�		����� �� 
 6 	�7
������ � � b7
�		����� �

shows that there exists \� with �S � / ��\�� 
 \. Indeed, we have already
considered �7
�	������ and b7
�		����� above.

The elements \� with �S � / ��\�� 
 \ which we constructed above have
the property that, if \
�� is zero, then \�
�� is zero. It follows as in the proof of
Theorem 27 that the map � � / in question is surjective. �

Theorem 29. There is a canonical isomorphism

WhTop
� ����

��

!
)��

!
��Z�	Z

Z��Z .
!
)��

!
��Z�	Z

Z��Z�

Proof. We first show that the kernel of the map � � / in the long-exact sequence
at the beginning of the section is canonically isomorphic to the group that appears
on the right-hand side in the statement. So we let \ 
 �\
��� be an element of"TR��S��

���� P �����% �� that lies in the kernel of ��/ . The equations of Corollary 3
again show that the coefficients

7

��
��� 
 7��� �\


��� � TR���
� �S� P %,�

8

��
��� 
 8��� �\


��� � TR���
	 �S� P %,�

are completely determined by the coefficients 8
����� . Indeed, we find

7

��
��� 


�
/ u�-8


�	�	u�
��� �

� 28

�	�	u�
��� �

� �& 
 ��

28

�	����
��� �� 
 & J $�

8

��
��� 


�
+/ u�8


�	�	u�
��� �

� �& 
 ��

8

�	����
��� �� 
 & J $��

where + 
 �u+ � with + � odd. For example, if � 
 & J $, then
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7

��
��� 
 �7


�	��
�	��� � 28


�	��
�	��� 
 ���7


�		�
�		�� � 28


�		�
�		�� �� 28


�	��
�	���


 �����7

�	��
�	��� � 28


�	��
�	��� �� 28


�		�
�		�� �� 28


�	��
�	���


 28

�	��
�	��� 
 28


�	����
���

since TR���
� �S� P % �� is annihilated by e. We now write

8

��
��� 


	
��)8���

�)��6
)�2 &2��

	
��)8���

��)��-6
)� &2��

where the coefficients �)�� 
 �)�� �\� and ��)�� 
 ��)�� �\� are independent on $. It
is clear that the �)�� and ��)�� are non-zero for only finitely many values of the odd
integer + . We fix such a + and evaluate the coefficients 7
����	u� and 8


��
��	u� for u 	 �

as functions of the coefficients �)�� and ��)�� .

7

��
��	u� 
 / u�-8


�	�	u�
� � 28


�	�	u�
� �



	

��)8�	u

�)�� �/
u-6 )�2 &2�� 2/ u6 )�2 &2��

�
	

��)8�	u

��)�� �/
u--6 )� &2�� 2/ u-6 )� &2��



	

u�)8�	u

�)�� �-6
)�u�2 &2�� 6 )�u�2	 &2��
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We claim that the elements -6 )�u�2 &2� and 6 )�u�2	 &2� with u J B J $� u form a
linearly independent set. Indeed, the map

'��TR�	u
� �S� P % ��
 TR�	u

� �S% ��

is injective by Proposition 13, and Lemma 23 shows that

'��-6
)�u�2 &2� 
 -6 )�u�2	�� -6 )�u	��2	�

'��6
)�u�2	 &2� 
 6 )�u�2��� 6 )�u	��2�� 
 b6 )�u�#�� b6 )�u	��#��

The claim then follows from Theorem 11. We now conclude as in the proof
of Theorem 28 that the map that to \ assigns ���)�� �\��� ��

�
)�� �\��� defines an

isomorphism
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ker�� � / �"TR��S��
���� P �����% ��
 "TR��S��

���� P �����% ���
��

!
)��

!
��Z�Z

Z��Z .
!
)��

!
��Z�Z

Z��Z

Finally, we argue as in the proof of Theorem 27 that the map

� � / �"TR��S��
���� P �����% ��
 "TR��S��

���� P �����% ��

is surjective. Given \ 
 �\
��� on the right-hand side, we find \� 
 �\�
��� on the
left-hand side with �S � / ��\�� 
 \.

First, if \
�� 
 -6 ��8
������ �, where � 
 & J $ and + are integers, we define

\�
�� 
 �
	

��)8���

-6 )	��8
����)	������ � �
	

��)8�

6 )�28
��)	������ ��

Then we have S�\�
�	��� 
 \�
�� and �S � / ��\�
�	��� 
 \
�� as desired.

Second, if \
�� 
 8
������ - log���, we consider two cases separately. In the case
\
�� 
 -6 ��2 &2����� - log��� with � 
 & J $, we write \
�� 
 -6 ��2 &2���	 � �-
log��� and define

\�
�� 
 �
	

��)8���

-6 )	��2 &2���� - log���� �
	

��)8�

6 )�2	 &2���� - log�����

Then S�\�
�	��� 
 \�
�� and �S�/ ��\�
�	��� 
 \
�� as before. In the case where
\
�� 
 6 �� &#����� - log��� with � 
 & J $, we define

\�
�� 
 6 �� &#����� - log���� /�6 �� &#����� - log����� / 	�6 �� &#����� - log�����

Then S�\�
�	��� 
 \�
�� and �S � / ��\�
�	��� 
 \
�� since e &# and / &# are zero.

Finally, we consider \
�� 
 -6 �� &#����� with � 
 & J $. For & 	 �,

-6 �� &#����� 
 -6 �� &#���	 � � � +6 �� &#����� - log���

and the two terms on the right-hand side were considered above. It follows that there
exists \� with �S � / ��\�� 
 \. For & 
 �, we calculate

�S � / ��-6� &#���� �� 
 -6� &#���� � � �- &#����� � + &#���� - log��� � 2 &#����
�S � / ��2 &#���� � 
 2 &#���� �

This shows that also for\
�� 
 �- &#����� , there exists\� such that �S�/ ��\�� 
 \.
Indeed, we have already considered the remaining classes on the right-hand side.

The elements \� with �S � / ��\�� 
 \ which we constructed above have
the property that, if \
�� is zero, then \�
�� is zero. It follows as in the proof
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of Theorem 27 that the map � � / in question is surjective. This completes the
proof. �
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