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Abstract. In this paper, we study binary optimal odd formally self-dual codes. All optimal odd formally self-dual
codes are classified for length up to 16. The highest minimum weight of any odd formally self-dual codes of length
up to 24 is determined. We also show that there is a unique linear code for parameters [16, 8, 5] and [22, 11, 7],
up to equivalence.
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1. Introduction

A binary linear [n, k] code C is a k-dimensional vector subspace of F
n
2, where F2 is the

finite field of two elements. The elements of C are called codewords. The weight wt (x)

of a codeword x is the number of non-zero coordinates. The minimum weight of C is the
smallest weight among all non-zero codewords of C . An [n, k, d] code is an [n, k] code with
minimum weight d. Two codes C and C ′ are equivalent if one can be obtained from the other
by permuting the coordinates. The automorphism group of C is the set of permutations of the
coordinates which preserve C . The weight enumerator of C is WC(x, y) = ∑n

i=0 Ai xn−i yi ,
where Ai is the number of codewords of weight i in C . When recording a weight enumerator,
we shall set x = 1. The dual code C⊥ of C is defined as C⊥ = {x ∈ F

n
2 | x ·y = 0 for all y ∈

C} where x · y denotes the standard inner-product of x and y.
A code C is self-dual if C = C⊥. A code C is formally self-dual if C and C⊥ have identical

weight enumerators. Self-dual codes are by definition formally self-dual automatically.
There exist formally self-dual codes which are not self-dual. In the remainder of this paper,
the term formally self-dual code pertains to a non-self-dual code. A code is called even if
the weights of all codewords are even. A formally self-dual code which is not even is called
odd. In this paper, we deal with odd formally self-dual codes. The minimum weight of an
even formally self-dual code of length n is bounded by 2� n

8 
 + 2. An even formally self-
dual [n, n/2, 2� n

8 
 + 2] code is called extremal. The restrictions on odd formally self-dual
codes are significantly fewer than on even formally self-dual codes. Thus there can be odd
formally self-dual codes with minimum weight exceeding the above bound. This is one
reason of interest in odd formally self-dual codes. An odd formally self-dual code with the
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highest minimum weight for that length is called optimal. An optimal formally self-dual
code has the highest minimum weight among even formally self-dual codes as well as odd
formally self-dual codes.

In Section 2, we give the classification of optimal odd formally self-dual codes of length
up to 14. Section 2 also contains the current information on the highest minimum weight
of odd formally self-dual codes of length up to 24. In Section 3, we show that there is a
unique odd formally self-dual [22, 11, 7] code, up to equivalence. The codewords of the
minimum weight in the unique odd formally self-dual [22, 11, 7] code form a unique quasi-
symmetric 2-(22, 7, 16) design with intersection numbers 1 and 3. It is also shown that
any linear [22, 11, 7] code is equivalent to the formally self-dual [22, 11, 7] code, and any
linear [16, 8, 5] code is equivalent to the formally self-dual [16, 8, 5] code. In Section 4, we
construct some optimal odd formally self-dual codes of lengths 18, 20 and 24. All extremal
even formally self-dual codes of length up to 18 have been classified [1, 2, 5, 8, 11]. Thus
our classification completes the classification of optimal formally self-dual codes of length
up to 18 (Section 5).

2. Classification of Optimal Odd Formally Self-Dual Codes

2.1. The Highest Minimum Weight of Length up to 24

First we determine the highest minimum weight dO(n) of odd formally self-dual codes
of length n in order to define optimal codes. The highest possible minimum weights are
determined from known upper bounds for minimum weights of binary linear [n, n/2] codes
given in [3] except lengths 8, 18 and 24. The extended Hamming code is a unique [8, 4, 4]
code. Thus dO(8) ≤ 3. Any linear [18, 9, 6] code is equivalent to the extended quadratic
residue code of length 18, which is even formally self-dual [11]. Thus dO(18) ≤ 5. Since it
is well known that a linear [24, 12, 8] code is equivalent to the extended Golay code, there
is no odd formally self-dual [24, 12, d] code with d ≥ 8.

For length n ≤ 24, we list in Table 1 the highest minimum weights dO(n) of odd formally
self-dual codes of length n. In the third column of the table, we list the number N (n) of

Table 1. The highest minimum weights of length up to 24

Length n dO (n) N (n) dE (n) dL (n) dI (n) dI I (n)

2 1 1 — 2 2
4 2 1 — 2 2
6 3 1 2 3 2
8 3 2 2 4 2 4

10 4 1 4 4 2
12 4 5 4 4 4
14 4 112 4 4 4
16 5 1 4 5 4 4
18 5 ≥2 6 6 4
20 6 ≥1 6 6 4
22 7 1 6 7 6
24 7 ≥1 6 8 6 8
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the inequivalent optimal odd formally self-dual codes of length n. To compare with dO(n)

we also list the highest minimum weights dE (n), dL(n), dI (n) and dI I (n) of even formally
self-dual codes of length n, all linear [n, n/2] codes, Type I and Type II self-dual codes of
length n, respectively. The highest minimum weights of even formally self-dual codes are
determined in [6] and [8]. Note that the even formally self-dual codes which we consider
are not self-dual. All even formally self-dual codes of lengths 2 and 4 are self-dual [8]. All
extremal Type I and Type II codes of length up to 32 have been classified (see [4]).

2.2. Classification for Lengths 2, 4 and 6

We start the classification of optimal odd formally self-dual codes.

• n = 2: Both odd formally self-dual codes with generator matrices (1, 0) and (0, 1) have
weight enumerator 1 + y.

• n = 4: A code with the following generator matrix(
1010
0111

)

is an optimal odd formally self-dual [4, 2, 2] code with weight enumerator 1 + y2 + 2y3.
The automorphism group is the dihedral group of order 6. It is easy to see that any odd
formally self-dual [4, 2, 2] code is equivalent to the above code.

• n = 6: A binary code is equivalent to a code with a generator matrix of the form (I, A).
It can be easily seen that possible matrices A to generate odd formally self-dual [6, 3, 3]
codes can become

A1 =

 110

101
011


 and A2 =


 110

101
111




by permuting suitable rows and columns of A. Let C1 and C2 be the codes with gen-
erator matrices (I, A1) and (I, A2), respectively. Then it is so that Cσ

1 = C2 where
σ = (1, 2, 6)(3, 4). Thus there is a unique odd formally self-dual [6, 3, 3] code, up to
equivalence. The weight enumerator is 1 + 4y3 + 3y4 and the order of the automorphism
group is 24.

2.3. Classification for Length 8

We found all odd formally self-dual [8, 4, 3] codes. This was done by considering 183
distinct 4 × 4 (1, 0)-matrices A with (I, A) generating the codes. Of these, 48 have weight
enumerator

W1 = 1 + 3y3 + 7y4 + 4y5 + y7

and the other codes have weight enumerator

W2 = 1 + 4y3 + 5y4 + 4y5 + 2y6.
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We verified by computer that all codes are equivalent for each weight enumerator. Thus
an odd formally self-dual [8, 4, 3] code with W1 is equivalent to the code with generator
matrix


1000 1100
0100 1010
0010 1001
0001 0111




and an odd formally self-dual code with W2 is equivalent to the code with generator matrix


1000 1100
0100 0110
0010 0011
0001 1001


 .

The orders of the automorphism groups of two codes are 24 and 8, respectively.

2.4. Classification for Length 10

We found all matrices A with (I, A) generating odd formally self-dual [10, 5, 4] codes. Any
of the matrices A can become one of the following matrices

A1 =




11100
11010
11001
10111
01111


 and A2 =




11110
11101
11011
10111
01111




by permuting suitable rows and columns. Let C1 and C2 be the codes with generator matrices
(I, A1) and (I, A2), respectively, then it is so that Cσ

1 = C2 where σ = (3, 8, 10)(4, 6, 7).
Thus there is a unique odd formally self-dual [10, 5, 4] code, up to equivalence. The weight
enumerator is 1 + 10y4 + 16y5 + 5y8 and the order of the automorphism group is 1920.

2.5. Classification for Length 12

We describe how the optimal odd formally self-dual [12, 6, 4] codes C were classified.
Every [12, 6] code is equivalent to a code with generator matrix of the form (I, A) where
A is a 6 × 6 (1, 0)-matrix. Thus we only need to consider the set of 6 × 6 (1, 0)-matrices
A, rather than the set of generator matrices.

The set of matrices A was constructed, row by row, using a back-tracking algorithm under
the condition that the first row is (000111) since the minimum weight of C is 4. Permuting
the rows of A gives rise to different generator matrices which generate equivalent codes.
We consider only those matrices A which are smallest among all matrices obtained from A
by permuting its rows, where the ordering involved is lexicographical on the binary integer
corresponding to the rows of the matrix.
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Then we found 9849 distinct matrices A (that is, 9849 distinct codes). The codes have
the following five weight enumerators

W1 = 1 + 6y4 + 24y5 + 16y6 + 9y8 + 8y9,

W2 = 1 + 8y4 + 20y5 + 14y6 + 8y7 + 7y8 + 4y9 + 2y10,

W3 = 1 + 9y4 + 18y5 + 13y6 + 12y7 + 6y8 + 2y9 + 3y10,

W4 = 1 + 10y4 + 15y5 + 16y6 + 11y7 + 5y8 + 5y9 + y11,

W5 = 1 + 10y4 + 16y5 + 12y6 + 16y7 + 5y8 + 4y10.

The numbers of the codes with W1, W2, W3, W4 and W5 are 30, 1422, 2088, 5472 and 837,
respectively. We verified that all codes are equivalent for each weight enumerator. Some
equivalences were verified by Magma. Thus there are exactly five inequivalent odd formally
self-dual [12, 6, 4] codes. Let C12,i be the code with generator matrix (I, Ai ) where

A1 =




000111
001011
011101
101101
110011
111110




, A2 =




000111
001011
010101
101101
110011
111110




, A3 =




000111
001011
010101
101001
110011
111111




,

A4 =




000111
001011
010101
101001
110001
111111




and A5 =




000111
001011
010011
100101
111001
111111




respectively. C12,i is an optimal odd formally self-dual code with weight enumerator Wi ,
(i = 1, 2, 3, 4, 5). The orders of the automorphism groups of the five codes are 1152, 32, 24,

10 and 64, respectively.

2.6. Classification for Length 14

Similarly to length 12, we found all distinct 19020211 7 × 7 (1, 0)-matrices A such that
the matrices (I, A) generate odd formally self-dual [14, 7, 4] codes. The set of matri-
ces A was constructed, row by row, using a back-tracking algorithm under the condi-
tion that the first row is (0000111) and by considering the lexicographical order on the
rows. The codes are divided into the 29 distinct weight enumerators W1, W2, . . . , W29. To
save space, the weight enumerators are listed in http://www.math.nagoya-u.ac.
jp/˜koichi/data/.

We complete the classification by listing all the inequivalent codes in Table 2 where the
first column denotes the weight enumerator W , the second column gives the number N of
the inequivalent codes with W , the third column lists the inequivalent codes Fi , the fourth
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Table 2. Classification of codes of length 14

W Numbers N Codes |Aut (Fi )| Numbers T

W1 1 F1 384 612
W2 1 F2 8 38808
W3 2 F3,1, F3,2 16, 2 213408
W4 3 F4,1, F4,2, F4,3 8, 2, 2 426960
W5 1 F5 1152 384
W6 2 F6,1, F6,2 8, 80 62316
W7 6 F7,1, . . . , F7,6 2, 2, 2, 1, 1, 1 2015712
W8 5 F8,1, . . . , F8,5 4, 16, 16, 6, 2 459144
W9 3 F9,1, F9,2, F9,3 4, 1, 2 873504
W10 14 F10,1, . . . , F10,14 64, 4, 4, 32, 4, 4, 2, 2, 2, 2, 32, 8, 1, 2 2401524
W11 2 F11,1, F11,2 168, 14 40224
W12 2 F12,1, F12,2 16, 12 84576
W13 18 F13,1, . . . , F13,18 16, 4, 8, 4, 8, 4, 8, 4, 8, 1, 1, 1, 4, 4, 4, 4, 4, 2 3560472
W14 1 F14 2 281952
W15 1 F15 192 2925
W16 3 F16,1, F16,2, F16,3 1, 2, 6 1045440
W17 12 F17,1, . . . , F17,12 8, 32, 64, 32, 32, 16, 2, 4608, 768, 8, 32, 16 619491
W18 3 F18,1, F18,2, F18,3 4, 1, 2 1092672
W19 15 F19,1, . . . , F19,15 16, 6, 576, 4, 2, 2, 6, 6, 1, 2, 2, 1, 4, 16, 32 3468280
W20 2 F20,1, F20,2 6, 1 774624
W21 2 F21,1, F21,2 16, 16 84096
W22 3 F22,1, F22,2, F22,3 6, 2, 1 1191168
W23 2 F23,1, F23,2 16, 16 88272
W24 2 F24,1, F24,2 16, 12 110592
W25 2 F25,1, F25,2 24, 16 78732
W26 1 F26 576 1376
W27 1 F27 1152 712
W28 1 F28 384 2232
W29 1 F29 322560 3

column gives the orders |Aut (Fi )| of their automorphism groups and the fifth column lists
the total number T of codes with W . Some equivalences were verified by Magma. To save
space, generator matrices (I, Gi ) of the inequivalent codes Fi listed in Table 2 are also
listed in http://www.math.nagoya-u.ac.jp/˜koichi/data/.

PROPOSITION 1. All optimal odd formally self-dual codes are classified for length up to 14.

Remark. The uniqueness of optimal odd formally self-dual codes of lengths 16 and 22 is
given in Section 3.

3. Uniqueness of Linear Codes with Parameters [22, 11, 7] and [16, 8, 5]

3.1. Uniqueness of a Linear [22, 11, 7] Code

In this subsection, we show that there is a unique linear [22, 11, 7] code up to equivalence,
and the code is equivalent to the optimal odd formally self-dual [22, 11, 7] code. The



BINARY OPTIMAL ODD FORMALLY SELF-DUAL CODES 17

codewords of the minimum weight in the unique odd formally self-dual [22, 11, 7] code
form a unique quasi-symmetric 2-(22, 7, 16) design with intersection numbers 1 and 3.

First we recall how to construct a linear [22, 11, 7] code from the extended Golay
code which is a unique Type II self-dual [24, 12, 8] code. Let G24 be the extended Golay
[24, 12, 8] code. Fix two coordinates (say, i1 and i2) of G24 then define

G ′
00(i1, i2) = {(x1, . . . , x24) ∈ G24 | xi1 = 0, xi2 = 0},

G ′
01(i1, i2) = {(x1, . . . , x24) ∈ G24 | xi1 = 0, xi2 = 1},

G ′
11(i1, i2) = {(x1, . . . , x24) ∈ G24 | xi1 = 1, xi2 = 1},

G ′
10(i1, i2) = {(x1, . . . , x24) ∈ G24 | xi1 = 1, xi2 = 0}.

We define G j (i1, i2) as the set obtained deleting the two coordinates i1 and i2 from G ′
j (i1, i2),

j = 00, 01, 11 and 10. It is well-known that G00(i1, i2) ∪ G10(i1, i2) is a linear [22, 11, 7]
code with the highest minimum weight among all [22, 11] codes.

LEMMA 2. All codes G00(i1, i2)∪ G01(i1, i2) and G00(i1, i2)∪ G10(i1, i2) constructed from
the extended Golay code by the above method are odd formally self-dual and equivalent.
The weight enumerator is W22 = 1+176y7 +330y8 +672y11 +616y12 +176y15 +77y16.

The automorphism group is the Mathieu group M22.

Proof. There is a unique self-dual [22, 11, 6] code, up to equivalence [10]. From the
construction, G00(i1, i2) ∪ G11(i1, i2) is a unique self-dual [22, 11, 6] code G22 where
G00(i1, i2) is the subcode consisting doubly-even weight codewords. Since the automor-
phism group of the extended Golay code G24 is the Mathieu group M24 which acts 5-fold
transitively on the coordinates of G24, WG01(i1,i2) = WG10(i1,i2) where WC denotes the weight
enumerator of C . Note that G1(i1, i2) ∪ G3(i1, i2) is the shadow code of G22 (see [4] for
the definition of shadow codes). It was also shown in [4] that WG01(i1,i2) = WG10(i1,i2). Thus
G00(i1, i2) ∪ G01(i1, i2) and G00(i1, i2) ∪ G10(i1, i2) are formally self-dual. Since the au-
tomorphism group of G24 is M24, G00(i1, i2) ∪ G01(i1, i2) and G00(i ′

1, i ′
2) ∪ G10(i ′

1, i ′
2)

(1 ≤ i1, i2, i ′
1, i ′

2 ≤ 24) are equivalent. It follows from the construction that the weight
enumerator W22 is WG00(i1,i2) + WG01(i1,i2) and the automorphism group is the Mathieu
group M22.

Remark. By Theorems 3.3 and 3.4 in [9], the codewords of weight 7 in the above [22, 11, 7]
code G0(i1, i2) ∪ G1(i1, i2) form a 3-design D22. It follows from the weight enumerator
W22 that any pair of two blocks in D22 intersects in 1 or 3 points. Thus D22 is also a quasi-
symmetric 2-(22, 7, 16) design. By Theorem 3.3 in [12], there is a unique quasi-symmetric
2-(22, 7, 16) design with intersection numbers 1 and 3, up to isomorphism. This gives an
alternative proof of the above lemma.

By the above lemma, there is at least one optimal odd formally self-dual [22, 11, 7]
code. Similar to the proof of Theorem 3.3 in [12], we show the uniqueness of odd formally
self-dual [22, 11, 7] codes.

PROPOSITION 3. All odd formally self-dual [22, 11, 7] codes with weight enumerator W22

are equivalent.



18 BETSUMIYA AND HARADA

Proof. Suppose that F is an odd formally self-dual [22, 11, 7] code with weight enumerator
W22. Let F0 and F1 be the subsets of F consisting codewords of weights ≡0 and 3 (mod 4),
respectively. We consider the following extension E of F

E = {(0, 0, x) | x ∈ F0} ∪ {(1, 0, x) | x ∈ F1}.

It is easy to see that E is linear by considering the weight of each codeword. Thus E
is a doubly-even self-orthogonal [24, 11, 8] code. Therefore 〈E, 1〉 is a Type II self-dual
[24, 12, 8] code where 1 is the all-ones vector of length 24. The extended Golay code is a
unique Type II self-dual [24, 12, 8] code and its automorphism group is M24. Therefore the
result follows.

We checked by computer that all linear [22, 11, 7] codes have weight enumerator W22

(see also [7]). This was done by considering all 11 × 11 (1, 0)-matrices A such that the
matrices (I, A) generate linear [22, 11, 7] codes. Thus we have the following corollary.

COROLLARY 4. There is a unique linear [22, 11, 7] code, up to equivalence. The code is
equivalent to the unique odd formally self-dual code with weight enumerator W22.

Of course, checking the weight enumerators of all linear [22, 11, 7] codes is easier than
classifying such codes.

3.2. Uniqueness of a Linear [16, 8, 5] Code

A similar argument shows the uniqueness of a linear [16, 8, 5] code as follows. Let C16 be
the linear code with generator matrix (I, A16) where

A16 =




00001111
00110011
01010101
01101010
10010110
10101011
11011011
11101101




.

The weight enumerator of C16 is W16 = 1 + 24y5 + 44y6 + 40y7 + 45y8 + 40y9 + 28y10 +
24y11 + 10y12. Thus C16 is an optimal odd formally self-dual code of length 16.

PROPOSITION 5. All optimal odd formally self-dual [16, 8, 5] codes with weight enumerator
W16 are equivalent.

Proof. Let F be an odd formally self-dual [16, 8, 5] code with weight enumerator W16. Let
F0 and F1 be the subsets of F consisting codewords of even and odd weights, respectively.
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Then D = 〈E, 1〉 is a linear [18, 9, 6] code with weight enumerator 1 + 102y6 + 153y8 +
153y10 + 102y14 + y18 where 1 is the all-ones vector of length 18 and

E = {(0, 0, x) | x ∈ F0} ∪ {(1, 0, x) | x ∈ F1}.

Thus D is an extremal even formally self-dual code of length 18. Simonis [11] showed that
a linear [18, 9, 6] code is equivalent to the extended qurdratic residue code of length 18.
The automorphism group of the code is PSL(2, 17) which acts doubly transitively on the
coordinates of the code. Therefore the result follows.

We verified that every linear [16, 8, 5] code has weight enuerator W16. This was done
by considering all 8 × 8 (1, 0)-matrices A such that the matrices (I, A) generate linear
[16, 8, 5] codes. Thus we have the following corollary.

COROLLARY 6. There is a unique linear [16, 8, 5] code, up to equivalence. The code is
equivalent to the unique optimal odd formally self-dual code.

4. Construction of Optimal Odd Formally Self-Dual Codes

A (pure) double circulant code is a code with generator matrix of the form (I, R) where
R is a circulant matrix. A double circulant code is formally self-dual. In this section, we
construct optimal odd formally self-dual codes of lengths 18, 20 and 24.

We found all distinct double circulant codes with parameters [18, 9, 5] and [20, 10, 6].
Our computer search shows that the exact numbers of inequivalent such codes are 2 and
1, respectively. Any double circulant [18, 9, 5] code is equivalent to either D18,1 or D18,2

where the first rows of R for the two codes are (111010000) and (111110010), respectively.
Any double circulant [20, 10, 6] code is equivalent to D20 where the first row of R is
(1111100100). This completes the classification of optimal double circulant odd formally
self-dual codes of lengths 18 and 20.

For length 24, we consider the following generator matrix:




1 · · · 1

I
... R′

1




where R′ is the circulant matrix with first row (11101101000). This matrix generates an
odd formally self-dual code with the weight enumerator

1 + 77y7 + 506y8 + 176y9 + 616y11 + 1288y12 + 672y13 + 330y15

+ 253y16 + 176y17 + y23.

PROPOSITION 7. The highest minimum weight of any odd formally self-dual codes of length
up to 24 is known. The actual values are as given in Table 1.
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Table 3. Classification of optimal formally self-dual codes

Length n d(n) N (n) References

2 1 1 Section 2
4 2 1 Section 2
6 3 1 Section 2
8 3 2 Section 2

10 4 2 [8], Section 2
12 4 7 [1], Section 2
14 4 121 [5], [2], Section 2
16 5 1 Section 3
18 6 1 [11]

5. Classification of Optimal Formally Self-Dual Codes

Recall that an optimal formally self-dual code has the highest minimum weight among
even formally self-dual codes as well as odd formally self-dual codes. The classification
of extremal even formally self-dual codes is known for length up to 18. In this paper, the
classification of optimal odd formally self-dual codes has been given for length up to 16.
These classifications imply the classification of optimal formally self-dual codes of length
up to 18.

COROLLARY 8. Optimal formally self-dual codes of length up to 18 are classified. The
actual number N (n) of the inequivalent optimal formally self-dual codes of length n, the
highest minimum weight d(n) and the references are as given in Table 3.
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