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Abstract

We study Donaldson-Thomas theory associated to a triangulated
surface. We show that the generating function of the Donaldson-
Thomas invariants is “invariant” under an action of the mapping class
group, which is identified with the mapping class group action in the
(decorated) Teichmüller theory. This gives an example of constraints
of the generating function induced by the derived auto-equivalences.
From the view point of string theory, this is nothing but S-duality
of the BPS spectrum of the 4d gauge theory given by Gaiotto-type
construction.

Introduction

The DT invariant for a Calabi-Yau 3-fold Y is a counting invariant of coherent
sheaves on Y , which is introduced in [Tho00] as a holomorphic analogue of
the Casson invariant on a real 3-manifold. Although the category of coherent
sheaves on Y is an Abelian category, it has been known that we take it as a
counting invariant of objects in the derived category.

An ideal application of this formulation might be the following: The de-
rived category sometimes have a non-trivial auto-equivalence group. In such
a case, the generating function might have a good transformation formula
with respect to this action, which would help us to determine the generating
function.

In this notes, we will show a new example1 of such a phenomenon. We
study Donaldson-Thomas theory associated to a triangulated surface. The
mapping class group acts on the derived category and the generating function
of the Donaldson-Thomas invariants is “invariant” under this action.

1As far as the author understand, it is the first example.
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Plan

In §1, we briefly review the construction in [FST08, LF09] of quivers with
potential associated to triangulated surfaces. In §2, we study the mapping
class group actions on the derived category and the associated Poisson torus.
The later is identified with the mapping class group action on the decorated
Teichmüller space as is shown in §5. The main result of this paper appears
In §3. Finally, we explain an interpretation of the main result in terms of
S-duality ([Gai]) in §4.
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1 QP for a triangulated surface

In this section, we briefly explain how to associate a quiver with a potential
for a triangulated surface [FST08, LF09].

1.1 Ideal triangulations of a surface

Let Σ be a compact connected oriented surface with (possibly non-empty)
boundary and M be a finite set of points on Σ, called marked points. We
assume that M is non-empty and has at least one point on each connected
component of the boundary of Σ. The marked points that lie in the interior
of Σ will be called punctures, and the set of punctures of (Σ,M) will be
denoted P . 2

2We will always assume that (Σ,M) is none of the following:

• a sphere with less than five punctures;
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We decompose Σ into “triangles” (in the topological sense) so that each
edge is either

• a curve (which is called an arc) whose endpoints are in M or

• a connected component of ∂Σ\M .

A triangle may contains exactly two arcs (see Figure 1). Such a triangle (and
its doubled arc) is said to be self-folded.

Figure 1: A self-folded triangle

Given a triangulation τ and a (non self-folded) arc i, we can flip i to get
a new triangulation fi(τ) (see Figure 2).

i

τ fi(τ)

Figure 2: A flip of a triangulation

Theorem 1.1 ([FST08]). Any two triangulations are related by a sequence
of flips.

1.2 Quiver for a triangulation

Let τ be a triangulation. We will define a quiver Q(τ) without loops and
2-cycles whose vertex set I is the set of arcs in τ .

• an unpunctured monogon, digon or triangle;

• a once-punctured monogon.

Here, by a monogon (resp. digon, triangle) we mean a disk with exactly one (resp. two,
three) marked point(s) on the boundary.
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For a (non self-folded3) triangle ∆ and arcs i and j, we define a skew-
symmetric integer matrix B∆ by

B∆
i,j :=


1 ∆ has sides i and j, with i following j in the clockwise order,

−1 the same holds, but in the counter-clockwise order,

0 otherwise.

We put

B(τ) :=
∑
∆

B∆

where the sum is taken over all triangles in τ . Let Q(τ) denote the quiver
without loops and 2-cycles associated to the matrix B(τ).

Theorem 1.2 ([FST08]). Given a triangulation τ and its (non self-folded)
arc i, we have

Q(fi(r)) = µi(Q(τ))

where µi denote the mutation of the quiver at the vertex i.

1.3 Potential for a triangulation

For a triangle ∆ in τ , we define a potential ω∆ as in Figure 3. For a puncture

τ

i

j

k k
i

j

Q(τ)

∆ ω∆

Figure 3: ω∆

P in τ , we define a potential ωP as in Figure 4.
Finally, we put

ω(τ) :=
∑
Σ

ωΣ +
∑
P

ωP .

Theorem 1.3 ([LF09]). Given a triangulation τ and its (non self-folded) arc
i, we have

ω(fi(r)) = µi(ω(τ))

where µi denote the mutation of the potential at the vertex i in the sense of
[DWZ08].

3We omit the definition of B∆ for a self-folded triangle ∆.
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Figure 4: ωP

Remark 1.4. More strongly, the QP (Q(τ), ω(τ)) is f-mutatable (see [Naga,
Definition 1.2.(2)]). This is important for us since otherwise we can not
apply the results in [Naga] for a technical reason. See the comments at the
end of the introduction of [Naga].

2 Mapping class group action

2.1 Mapping class group

We define

Diffeo(Σ,M) := {φ : Σ → Σ | φ : diffeomorphism, φ(M) = M}.

Let Diffeo(Σ,M)0 denote the connected component of Diffeo(Σ,M) which
contains idΣ. The quotient

MCG(Σ,M) := Diffeo(Σ,M)/Diffeo(Σ,M)0

is called the mapping class group.

2.2 Derived category for a triangulation

Let Γ(τ) be Ginzburg’s dg algebra associated to the quiver with the potential
(Q(τ), ω(τ)) and D(τ) = DΓ(τ) be the derived category of right dg-modules
over Γ. By the result of Keller ([Kel]), Γ(τ) and Γ(fi(τ)) are equivalent4.

For a triangulation τ and an element φ ∈ MCG(Σ,M), we get another tri-
angulation φ(τ). Note that (Q(τ), ω(τ)) and (Q(φ(τ)), ω(φ(τ))) (and hence
D(τ) and D(φ(τ))) are canonically identified.

By Theorem 1.1, τ and φ(τ) are related by a sequence of flips. Each flips
gives a derived equivalence. By composing the derived equivalences, we get

4Since we have two derived equivalences, we have to choose one of them. Given a
sequence of flips, we have a canonical choice. See [Naga, §2.2].
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a derived equivalence

Ψφ : D(τ)
∼−→ D(φ(τ)) = D(τ).

Thanks to the result [FST08, Theorem 3.10] and the pentagonal identity for
the derived equivalences, Ψφ is independent of choices of a sequence of flips
and well-defined. Finally we get an action of the mapping class group on the
derived category:

Ψ: MCG(Σ,M) → Aut(D(τ)).

2.3 Cluster transformation

We put T = T (τ) := C[xi, x
−1
i ]i∈I . We define CTk : T (fk(τ))

∼−→ T (τ) by

CTk(x
′
i) =

{
(xk)

−1
(∏

(xj)
Q(j,k) +

∏
(xj)

Q(k,j)
)

i = k,

xi i 6= k

where Q(i, k) is the number of arrows from i to k and x′
i is the generator of

T (fk(τ)).
In the same way as the previous section, we get

CTφ : T (φ(τ))
∼−→ T (τ).

Under the identification T (φ(τ)) = T (τ) induced by Ψφ, we get

CT: MCG(Σ,M) → Aut(T (τ)).

Remark 2.1. As we will explain in §5, this is compatible with the action of
mapping class group on the decorated Teicumuller space.

3 Donaldson-Thomas theory

Let Jτ be the Jacobi algebra associated to the quiver with the potential
(Q(τ),W (τ)).

Let P i
τ be the indecomposable projective Jτ -module associated to i ∈ I.

For v ∈ ZI
≥0, we define

Hilbi
τ (v) := {P i

τ � V | dimV = v}.

This is called the Hilbert scheme5.

5The name comes from the Hilbert scheme in algebraic geometry which parameterizes
quotient sheaves of the structure sheaf.
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Definition 3.1. We define DTτ : T
∼→ T by

DTτ (xi) := (xi)
−1 ·

∑
v

Eu(Hilbi
τ (v)) · y−v

where
y−v :=

∏
i

(yi)
−vi , yi :=

∏
j

(xi)
Q(i,j).

As a direct application of the main theorem in [Naga], we get the follow-
ing:

Theorem 3.2. For any element φ ∈ MCG(Σ,M), we have

DTτ ◦ CTφ = CTφ ◦DTτ .

4 S-duality interpretation

4.1 Gaiotto functor

Let F is an n-dimensional quantum field theory. Then for any fixed k-
dimensional manifold K, the correspondence

M 7−→ F(K ×M)

provides an (n− k)-dimensional quantum field theory.
We take a 6d N = (2, 0) quantum field theory SG, where G is compact

Lie group of type ADE. Fixing a Riemann surface C, we get a 4d N = 2
theory by the construction above. Let SG,C denote this theory ([Gai]).

In summary, 6d N = (2, 0) theory provides the following correspondence
:

{Riemann surfaces} −→ {4d N = 2 QFT}
C 7−→ SG,C .

Following Y. Tachikawa, we call this “Gaiotto functor”6 (see [MT]).

4.2 4d BPS spectrum

In this paper, we have studied the DT theory associated to a triangulation
of a surface C. It is expected that the generating function provides the BPS
spectrum of the 4d QFT SSU(2),C ([GMN, ACC+b, ACC+a]). 7

6This is not a functor of categories in mathematical sense.
7For SSU(N),C , we need to take the triangulations which appear in the higher Te-

ichmüller space ([FG06]).
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Remark 4.1. For BPS spectrum of the 4d QFT, there should be a wall-
crossing theory which is compatible with those of DT theory under the expec-
tation above [GMN, Moo].

4.3 S-duality

Fixing a topological type of a 2-dimensional manifold, the Teichmüller space
is the space of complex structures on it. The mapping class group acts on
the Teichmüller space so that the quotient space gives the moduli space of
complex structures.

Under Gaiotto functor, Teichmüller space should give the space of pa-
rameters8 of 4-dimensional quantum field theories. Since two points on a
mapping class group orbit in the Teichmüller space give a common complex
structure, they provide a common 4d theory. This is the S-duality in the
sense of Gaiotto ([Gai]).

Remark 4.2. The original S-duality is the duality between strongly/weakly
coupled regions in the space of parameters. Strongly or weakly coupled regions
appear as neighborhoods of cusps in the fundamental region.

Combining the observations in §4.2, we get an interpretation of Theorem
3.2 as the S-duality on the BPS spectrum.

Remark 4.3. In this paper, we understand the mapping class group ac-
tion in DT theory via wall-crossing. We can understand the S-duality as a
consequence of wall-crossing of 4d QFT, without passing through DT theory
(Figure 5).

4d QFT SSU(2),C

S-duality

(wall-crossing)

DT for a triangutlation

MCG action

(wall-crossing)

=

=

=

Figure 5: Summary

8parameter space of exactly marginal gauge couplings.
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5 Appendix : Teichmüller theory

Let T (Σ) denote the Teichmüller space and T̃ (Σ) denote the decorated Te-
ichmüller space, which is a (R>0)

s-bundle over T (Σ) whose fiber is the set of
s-tuples of horocycles around each of the marked points ([Pen87, Pen04]).

We assume that a triangulation τ does not contain self-folded arcs. Let
τ1 be the set of edges of a triangulation τ . Each edge e in τ1, we take
the (unique) geodesic represents e. The coordinate le(P ) is defined as the
hyperbolic length of the segment of the geodesic that lies between the two
horocycles surrounding the punctures connected by e, taken with positive
sign if the two horocycles are disjoint, with negative sign otherwise.

Theorem 5.1. [Pen87, Pen04]

(1) For an ideal triangulation τ without self-folded arcs, the function

~l : T̃ (Σ) → Rτ1 , P 7→ (le(P ))e∈τ1

is a homeomorphism. (This is called the Penner coordinate of the dec-
orated Teichmüller space.)

(2) We put
λe :=

√
2 exp(le/2)

which is called the Lambda length of e. Let τ ′ be the triangulation
obtained by flipping the edge e. The coordinates associated to τ and τ ′

agree for each edge which the two triangulations have in common, and

λe′ =
λaλc + λbλd

λe

.

We define the inclusion

T̃ (Σ) ' Rτ1 ↪→ (C∗)τ1 ' Spec(T (τ))
(le) 7→ (xe) = (λe) .

We call T (τ) as the complexified decorated Teichmüller space. The mapping

class group action on Spec(T (τ)) given in §2.3 preserves T̃ (Σ). If we can
realize all the mapping classes by a sequence of flips without self-folded arcs
then restricted action coincides with the geometric one.

Remark 5.2. In [NTY], we study hyperbolic structures on the mapping torus
of a pseudo-Anosov mapping class g of a surface. We show that a fixed point
on T (τ) with respect to the action of g gives a hyperbolic structures on the

mapping torus, while the fixed point set on T̃ (Σ) is empty due to the Nielsen-
Thurston classification.
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