The 12th Nagoya Workshop on Differential Equations

Last Update: Feb.26, 2020


This workshop is cancelled due to the spread of the coronavirus. We apporogize for those who have planed to attend this workshop.


Date   March 10 ~ March 11, 2020

Place   Rm. 109, Mathematics Bldg., Nagoya University



      Toshiaki Hishida   (Nagoya University)

      Jun Kato   (Nagoya University)

      Mitsuru Sugimoto   (Nagoya University)

      Yutaka Terasawa  (Nagoya University)


  Ken Abe (Osaka City University)

  Kazumasa Fujiwara  (Tohoku University)

  Masaru Hamano  (Saitama University)

  Mishio Kawashita  (Hiroshima University)

  Nobu Kishimoto  (Kyoto University)

  Kai Koike  (Keio University)

  Tatsu-Hiko Miura  (Kyoto University)

  Takasi Senba  (Fukuoka University)

  Motohiro Sobajima  (Tokyo University of Science)


      Koichi Taniguchi   (Nagoya University)

March 10

13:30 ~ 14:20 Takasi Senba  (Fukuoka University)

   Properties of blowup solutions to a system related to Keller-Segel system

14:30 ~ 15:20 Motohiro Sobajima  (Tokyo University of Science)

   On asymptotic expansion for solutions of damped wave equations

   in exterior domains

15:40 ~ 16:30 Ken Abe (Osaka City University)

   Stability of Lamb dipoles

16:40 ~ 17:30 Kai Koike  (Keio University)

   Long-time behavior of a pendulum in a 1D viscous compressible fluid

18:00 ~    Banquet

March 11

10:00 ~ 10:50 Nobu Kishimoto  (Kyoto University)

   Well-posedness for the kinetic derivative nonlinear Schrödinger equation

   on the torus

11:00 ~ 11:50 Kazumasa Fujiwara  (Tohoku University)

   On self-similar solutions to the derivative nonlinear Schrödinger equation

14:00 ~ 14:50 Masaru Hamano  (Saitama University)

   A sharp scattering threshold of quadratic nonlinear Schrödinger system in 3D

15:00 ~ 15:50 Tatsu-Hiko Miura  (Kyoto University)

   Singular limit problem for the Navier-Stokes equations in a curved thin domain

16:10 ~ 17:00 Mishio Kawashita  (Hiroshima University)

   Finding obstacles in the below side of two layered media by the enclosure