On the Cauchy problem for second-order hyperbolic operators with the coefficients of their principal parts depending only on the time variable

Seiichiro Wakabayashi (Univ. of Tsukuba)

1. Main results

Notations:

the time variable: $t \in \mathbb{R} \stackrel{\text { dual }}{\longleftrightarrow} \tau \in \mathbb{R}$
the space variables: $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \stackrel{\text { dual }}{\longleftrightarrow} \xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$
$D_{t}=-i \partial_{t}, D_{x}=\left(D_{1}, \cdots, D_{n}\right)=-i\left(\partial_{x_{1}}, \cdots, \partial_{x_{n}}\right)$
Consider hyperbolic operators of second order whose symbols have the form

$$
P(t, x, \tau, \xi)=\tau^{2}-a(t, \xi)+b_{0}(t, x) \tau+b(t, x, \xi)+c(t, x),
$$

where $a(t, \xi)=\sum_{j, k=1}^{n} a_{j, k}(t) \xi_{j} \xi_{k}, b(t, x, \xi)=\sum_{j=1}^{n} b_{j}(t, x) \xi_{j}, a_{j, k}(t) \in C^{\infty}([0, \infty))$ and $b_{j}(t, x), c(t, x) \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{n}\right)$, and the Cauchy problem

$$
\left\{\begin{array}{l}
P\left(t, x, D_{t}, D_{x}\right) u(t, x)=f(t, x) \quad \text { in }[0, \infty) \times \mathbb{R}^{n}, \tag{CP}\\
\left.D_{t}^{j} u(t, x)\right|_{t=0}=u_{j}(x) \quad \text { in } \mathbb{R}^{n} \quad(j=0,1)
\end{array}\right.
$$

in the framework of C^{∞}.
Def: We say that (CP) is C^{∞} well-posed if
(E) $\forall f \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{n}\right), \forall u_{j} \in C^{\infty}\left(\mathbb{R}^{n}\right)(j=0,1), \exists u \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{n}\right)$ satisfying (CP). (Existence)
(U) If $s>0, u \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{n}\right),\left.D_{t}^{j} u(t, x)\right|_{t=0}=0$ in $\mathbb{R}^{n}(j=0,1) \&$ $\operatorname{supp} P\left(t, x, D_{t}, D_{x}\right) u \subset\{t \geq s\}$, then $\operatorname{supp} u \subset\{t \geq s\}$. (Uniqueness)

Taking account of Lax-Mizohata theorem we assume that
(H) $a(t, \xi) \geq 0$ for $(t, \xi) \in[0, \infty) \times \mathbb{R}^{n}$
(see S. Mizohata, J. Math. Kyoto Univ. 1 (1961), 109-127). From Ivrii-Petkov's result we can assume without loss of generality that
(F) $a(t, \xi) \not \equiv 0$ in t for $\forall \xi \in \mathbb{R}^{n} \backslash\{0\}$
(see V. Ya. Ivrii and V. M. Petkov, Russian Math. Surveys 29 (1974), 1-70).
Moreover, we assume that $a(t, \xi)$ satisfies the following condition (A):
(A) $\forall T>0, \exists k_{T} \in \mathbb{Z}_{+}(=\mathbb{N} \cup\{0\})$ s.t.

$$
\sum_{k=0}^{k_{T}}\left|\partial_{t}^{k} a(t, \xi)\right| \neq 0 \quad \text { for } \forall(t, \xi) \in[0, T] \times S^{n-1}
$$

If the $a_{j, k}(t)$ are real analytic on $[0, \infty)$, then the condition (A) is satisfied. For simplicity we assume that the $a_{j, k}(t)$ are real analytic on $[0, \infty)$, in order to describe the condition (L) below in a simplle form. Let Ω be a neighborhood of $[0, \infty)$ in \mathbb{C} where the $a_{j, k}(t)$ are analytic. Put

$$
\mathcal{R}(\xi)=\left\{(\operatorname{Re} \lambda)_{+} ; \lambda \in \Omega \text { and } a(\lambda, \xi)=0\right\}
$$

for $\xi \in \mathbb{R}^{n} \backslash\{0\}$, where $a_{+}=\max \{a, 0\}$.

Sufficiency:

We assume in "Sufficiency" that
(A) the $a_{j, k}(t)$ are real analytic (for simplicity),
(B) $\forall K \Subset \mathbb{R}^{n}, \exists \Omega_{K}$: complex neighborhood of $[0, \infty)$ s.t. $b_{j}(t, x)(1 \leq j \leq n)$ are analytic in Ω_{K} for $\forall x \in K$,
(L) $\forall T>0, \forall x \in \mathbb{R}^{n}, \exists C>0$ s.t.

$$
\min _{\tau \in \mathcal{R}(\xi)}|t-\tau||b(t, x, \xi)| \leq C \sqrt{a(t, \xi)} \quad \text { for } \forall(t, \xi) \in[0, T] \times S^{n-1}
$$

Thm 1: Under (B) and (L) (CP) is C^{∞} well-posed.
Remark: $\mathcal{R}(\xi)$ can be replaced in (L) by $\mathcal{R}^{\prime}(\xi)$ satisfying

$$
\sup _{\xi \in S^{n-1}} \#\left(\mathcal{R}^{\prime}(\xi) \cap\{t \leq T\}\right)<\infty \text { for } \forall T>0
$$

where $\# A$ denotes the number of the elements of a set A.
Def: (i) Let f be a function on \mathbb{R}. We say that $f(t)$ is a semi-algebraic function if the graph of f is a semi-algebraic set, i.e., the graph of f is a set defined by polynomial equations and inequalities. (ii) Let $t_{0} \in \mathbb{R}, U$ be a neighborhood of t_{0} and $f: U \rightarrow \mathbb{R}$. We say that f is semi-algebraic at t_{0} if there is $c>0$ such that $\left\{(t, y) \in \mathbb{R}^{2} ; y=f(t)\right.$ and $\left.\left|t-t_{0}\right|<c\right\}$ is a semi-algebraic set.

Necessity:

We assume in "Necessity" that (A)' and (B) are satisfied. Let $t_{0} \geq 0, x^{0} \in \mathbb{R}^{n}$ and $\xi^{0} \in S^{n-1}$. If $n \geq 3$, we assume the following condition:
(A) $)_{\left(t_{0}, x^{0}\right)}^{\prime \prime}$ the $a_{j, k}(t)$ and $b_{j}\left(t, x^{0}\right)(1 \leq j \leq n)$ are semi-analytic at t_{0}.

The following condition is very similar to the condition (L):
$(\mathrm{L})_{\left(t_{0}, x^{0}, \xi^{0}\right)} \exists U$: nbd of $t_{0}, \exists \Gamma$: conic nbd of $\xi^{0}, \exists C>0$ s.t.

$$
\min _{\tau \in \mathcal{R}(\xi)}|t-\tau|\left|b\left(t, x^{0}, \xi\right)\right| \leq C \sqrt{a(t, \xi)} \quad \text { for } \forall(t, \xi) \in U \times \Gamma
$$

Thm 2: Assume that (A) and (B) are satisfied. Moreover, we assume that $(\mathrm{A})_{\left(t_{0}, x^{0}\right)}^{\prime \prime}$ is satisfied if $n \geq 3$. Then $(\mathrm{L})_{\left(t_{0}, x^{0}, \xi^{0}\right)}$ is necessary for C^{∞} well-posedness.

Remark: Assume that (A) and (B) are satisfied, and that (A) $)_{\left(t_{0}, x^{0}\right)}^{\prime \prime}$ is valid for any $t_{0} \geq 0$ and $x^{0} \in \mathbb{R}^{n}$ if $n \geq 3$. Then (CP) is C^{∞} well-posed if and only if (L) is satisfied.

related results:

- Colombini-Ishida-Orrú: Ark. Mat. 38 (2000), 223-230.
(CP) is C^{∞} well-posed if the coefficients do not depend on x and if (A) and the following condition are satisfied:

$$
|b(t, \xi)| \leq C a(t, \xi)^{1 / 2-1 / k} \text { for }(t, \xi) \in[0, \infty) \times S^{n-1}
$$

- Colombini-Nishitani: Osaka J. Math. 41 (2004), 933-947.

They tried to generalize C-I-O's results to the case the lower order terms also depend on x.

In the proof of Thm 1 we adopted some ideas used in C-I-O and C-N.

- W: J. Math. Soc. Japan 62-1 (2010), 95-133.

The proof of Thm 2 is given in this paper.

2. Outline of Proof of Thm 1

We can assume without loss of generality that there is $K \Subset \mathbb{R}^{n}$ such that $\operatorname{supp}_{x} b_{j}(t, x)$, $\operatorname{supp}_{x} c(t, x) \subset K$. Let $t_{0} \geq 0, \mathcal{O}_{t_{0}}$ be the ring of power series centered at t_{0} in one variable and

$$
\mathfrak{M}_{t_{0}}:=\left\{\left(\beta_{1}(t), \cdots, \beta_{n}(t)\right) \in \mathcal{O}_{t_{0}}^{n} ; \min _{\tau \in \mathcal{R}(\xi)}|t-\tau| \cdot\left|\sum_{j=1}^{n} \beta_{j}(t) \xi_{j}\right| \leq{ }^{\exists} C \sqrt{a(t, \xi)}\right.
$$

if t belongs to a neighborhood of t_{0} in $[0, \infty)$ and $\left.\xi \in S^{n-1}\right\}$.
Since $\mathcal{O}_{t_{0}}$-submodule of $\mathcal{O}_{t_{0}}^{n}$ is finitely generated, there are $\psi_{j}(t)=\left(\psi_{j, 1}(t), \cdots, \psi_{j, n}(t)\right) \in$ $\mathfrak{M}_{t_{0}}\left(1 \leq j \leq r_{0}\right)$ such that

$$
\mathfrak{M}_{t_{0}}=\left\{\sum_{j=1}^{r_{0}} c_{j}(t) \psi_{j}(t) ; c_{j}(t) \in \mathcal{O}_{t_{0}}\left(1 \leq j \leq r_{0}\right)\right\} .
$$

The condition (L) implies that $\left(b_{1}(t, x), \cdots, b_{n}(t, x)\right) \in \mathfrak{M}_{t_{0}}$ for each $x \in \mathbb{R}^{n}$. So there are C^{∞} functions $c_{j}(t, x)$ of (t, x) such that $b(t, x, \xi)=\sum_{j=1}^{r_{0}} c_{j}(t, x) \psi_{j}(t, \xi)$ in a neighborhood of t_{0}, where $\psi_{j}(t, \xi)=\sum_{k=1}^{n} \psi_{j, k}(t) \xi_{k}$. Let $T>0$. Then there are $\varphi_{j}(t)=$ $\left(\varphi_{j, 1}(t), \cdots, \varphi_{j, n}(t)\right) \in\left(C^{\infty}(\mathbb{R})\right)^{n}$ and $c_{j}(t, x) \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{n}\right)(1 \leq j \leq r)$ such that

$$
\begin{aligned}
& \min _{\tau \in \mathcal{R}(\xi)}|t-\tau| \cdot\left|\varphi_{j}(t, \xi)\right| \leq C \sqrt{a(t, \xi)} \quad\left((t, \xi) \in[0, T] \times S^{n-1}, 1 \leq j \leq r\right) \\
& b(t, x, \xi)=\sum_{j=1}^{r} c_{j}(t, x) \varphi_{j}(t, \xi)\left((t, x, \xi) \in[0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)
\end{aligned}
$$

where $\varphi_{j}(t, \xi)=\sum_{k=1}^{n} \varphi_{j, k}(t) \xi_{k}$. Put

$$
\begin{aligned}
w_{\rho}(t, \xi) & :=a(t, \xi)+\langle\xi\rangle^{2 \rho}, \quad \rho:=\frac{2}{k_{0}+2} \\
W_{0}(t, \xi) & :=\frac{\langle\xi\rangle^{2 \rho}}{\sqrt{w_{\rho}(t, \xi)}}+1, \quad W_{j}(t, \xi):=\frac{\left|\varphi_{j}(t, \xi)\right|}{\sqrt{w_{\rho}(t, \xi)}}(1 \leq j \leq r), \\
W(t, \xi) & :=\sum_{j=0}^{r} W_{j}(t, \xi), \quad \Phi(t, \xi):=\int_{0}^{t}\left(W(s, \xi)+\frac{\left|\left(\partial_{t} a\right)(s, \xi)\right|}{w_{\rho}(s, \xi)}\right) d s .
\end{aligned}
$$

Let us introduce the parameter $\varepsilon \in[0,1]$ (to prove finite propagation property). Consider

$$
\begin{cases}\left(P\left(t, x, D_{t}, D_{x}\right)+\varepsilon \Delta_{x}\right) u_{\varepsilon}(t, x)=f(t, x) & \left(t \geq 0, x \in \mathbb{R}^{n}\right) \\ u_{\varepsilon}(0, x)=u_{0}(x), \quad\left(D_{t} u_{\varepsilon}\right)(0, x)=u_{1}(x) & \left(x \in \mathbb{R}^{n}\right)\end{cases}
$$

We use an Energy form

$$
\mathcal{E}_{\varepsilon}(t ; \gamma, A, l):=\int_{\mathbb{R}^{n}} E_{\varepsilon}(t, \xi) K(t, \xi ; \gamma, A, l) d \xi,
$$

where $\gamma>0, A>0, l \in \mathbb{R}, t \in[0, T]$ and

$$
\begin{aligned}
& E_{\varepsilon}(t, \xi):=\left|\partial_{t} v_{\varepsilon}(t, \xi)\right|^{2}+\left(a(t, \xi)+\varepsilon|\xi|^{2}+\langle\xi\rangle^{2 \rho}\right)\left|v_{\varepsilon}(t, \xi)\right|^{2}, \\
& K(t, \xi ; \gamma, A, l):=\exp [-(\gamma t+A \Phi(t, \xi))+l \log \langle\xi\rangle] \\
& v_{\varepsilon}(t, \xi):=\mathcal{F}_{x}\left[u_{\varepsilon}(t, x)\right](\xi) .
\end{aligned}
$$

A simple calculation gives

$$
\begin{aligned}
& \partial_{t} E_{\varepsilon}(t, \xi)-\left(\gamma+A \partial_{t} \Phi(t, \xi)\right) E_{\varepsilon}(t, \xi) \\
& \leq|\hat{f}(t, \xi)|^{2} / W(t, \xi)-(\gamma+(A-3) W(t, \xi)-2)\left|\partial_{t} v_{\varepsilon}\right|^{2} \\
& \quad-\left\{(A-1)\left(\left|\partial_{t} a(t, \xi)\right|+W(t, \xi) w_{\rho}(t, \xi)\right)+\gamma w_{\rho}(t, \xi)\right\}\left|v_{\varepsilon}\right|^{2} \\
& \quad+\left|\mathcal{F}_{x}\left[b_{0}(t, x) \partial_{t} u_{\varepsilon}(t, x)\right](\xi)\right|^{2}+\left|\mathcal{F}_{x}\left[b\left(t, x, D_{x}\right) u_{\varepsilon}\right](\xi)\right|^{2} / W(t, \xi)+\left|\mathcal{F}_{x}\left[c(t, x) u_{\varepsilon}\right](\xi)\right|^{2}
\end{aligned}
$$

Lemma: (i) $\Phi(T, \xi) \leq{ }^{\exists} C_{T}(1+\log \langle\xi\rangle) \quad\left(\xi \in \mathbb{R}^{n}\right)$.
(ii) $\forall \delta>0, \exists c_{\delta}(T)>0$ s.t.

$$
\begin{aligned}
& (1+\delta)^{-1} W(t, \xi) \leq W(t, \eta) \leq(1+\delta) W(t, \xi) \quad \text { if } t \in[0, T],|\xi-\eta| \leq c_{\delta}(T)\langle\xi\rangle^{\rho}, \\
& (1+\delta)^{-1} \Phi(t, \xi) \leq \Phi(t, \eta) \leq(1+\delta) \Phi(t, \xi) \\
& \quad \text { if } t \in[0, T],|\xi-\eta| \leq c_{\delta}(T)\langle\xi\rangle^{\rho} /(1+\log \langle\xi\rangle) .
\end{aligned}
$$

(iii) $\exists C_{T}>0, \exists l_{0}>0$ s.t. $\exp [\pm \Phi(t, \xi)] \leq C_{T}\langle\xi-\eta\rangle^{l_{0}} \exp [\pm \Phi(t, \eta)]$.

Using the above lemma, we have

$$
\partial_{t} \mathcal{E}_{\varepsilon}(t ; \gamma, A, l) \leq \int|\hat{f}(t, \xi)|^{2} W(t, \xi)^{-1} K(t, \xi ; \gamma, A, l) d \xi
$$

if $A \geq{ }^{\exists} A(b, T), \gamma \geq{ }^{\exists} \gamma\left(b, b_{0}, c, T, A, l\right)$ and $t \in[0, T]$. Then a standard argument proves Thm 1 .

