On the Cauchy problem for second-order hyperbolic operators with the coefficients of their principal parts depending only on the time variable

Seiichiro Wakabayashi (Univ. of Tsukuba)

1. Main results

Notations:

the time variable: $t \in \mathbb{R} \stackrel{\text{dual}}{\longleftrightarrow} \tau \in \mathbb{R}$ the space variables: $x = (x_1, \cdots, x_n) \in \mathbb{R}^n \stackrel{\text{dual}}{\longleftrightarrow} \xi = (\xi_1, \cdots, \xi_n) \in \mathbb{R}^n$ $D_t = -i\partial_t, D_x = (D_1, \cdots, D_n) = -i(\partial_{x_1}, \cdots, \partial_{x_n})$

Consider hyperbolic operators of second order whose symbols have the form

$$P(t, x, \tau, \xi) = \tau^2 - a(t, \xi) + b_0(t, x)\tau + b(t, x, \xi) + c(t, x),$$

where $a(t,\xi) = \sum_{j,k=1}^{n} a_{j,k}(t)\xi_j\xi_k$, $b(t,x,\xi) = \sum_{j=1}^{n} b_j(t,x)\xi_j$, $a_{j,k}(t) \in C^{\infty}([0,\infty))$ and $b_j(t,x), c(t,x) \in C^{\infty}([0,\infty) \times \mathbb{R}^n)$, and the Cauchy problem

(CP)
$$\begin{cases} P(t, x, D_t, D_x)u(t, x) = f(t, x) & \text{in } [0, \infty) \times \mathbb{R}^n, \\ D_t^j u(t, x)|_{t=0} = u_j(x) & \text{in } \mathbb{R}^n & (j = 0, 1) \end{cases}$$

in the framework of C^{∞} .

<u>Def</u>: We say that (CP) is C^{∞} well-posed if

(E) $\forall f \in C^{\infty}([0,\infty) \times \mathbb{R}^n), \forall u_j \in C^{\infty}(\mathbb{R}^n) (j=0,1), \exists u \in C^{\infty}([0,\infty) \times \mathbb{R}^n) \text{ satisfying}$ (CP). (Existence)

(U) If
$$s > 0$$
, $u \in C^{\infty}([0,\infty) \times \mathbb{R}^n)$, $D_t^j u(t,x)|_{t=0} = 0$ in \mathbb{R}^n ($j = 0, 1$) &
supp $P(t,x, D_t, D_x)u \subset \{t \ge s\}$, then supp $u \subset \{t \ge s\}$. (Uniqueness)

Taking account of Lax-Mizohata theorem we assume that

(H) $a(t,\xi) \ge 0$ for $(t,\xi) \in [0,\infty) \times \mathbb{R}^n$

(see S. Mizohata, J. Math. Kyoto Univ. **1** (1961), 109–127). From Ivrii-Petkov's result we can assume without loss of generality that

(F) $a(t,\xi) \neq 0$ in t for $\forall \xi \in \mathbb{R}^n \setminus \{0\}$

(see V. Ya. Ivrii and V. M. Petkov, Russian Math. Surveys 29 (1974), 1–70).

Moreover, we assume that $a(t,\xi)$ satisfies the following condition (A):

(A) $\forall T > 0, \exists k_T \in \mathbb{Z}_+ (= \mathbb{N} \cup \{0\}) \text{ s.t.}$

$$\sum_{k=0}^{k_T} |\partial_t^k a(t,\xi)| \neq 0 \quad \text{for } \forall (t,\xi) \in [0,T] \times S^{n-1}$$

If the $a_{j,k}(t)$ are real analytic on $[0, \infty)$, then the condition (A) is satisfied. For simplicity we assume that the $a_{j,k}(t)$ are real analytic on $[0, \infty)$, in order to describe the condition (L) below in a simple form. Let Ω be a neighborhood of $[0, \infty)$ in \mathbb{C} where the $a_{j,k}(t)$ are analytic. Put

$$\mathcal{R}(\xi) = \{ (\operatorname{Re} \lambda)_+; \ \lambda \in \Omega \text{ and } a(\lambda, \xi) = 0 \}$$

for $\xi \in \mathbb{R}^n \setminus \{0\}$, where $a_+ = \max\{a, 0\}$.

Sufficiency:

We assume in "Sufficiency" that

(A)' the $a_{j,k}(t)$ are real analytic (for simplicity),

(B) $\forall K \in \mathbb{R}^n, \exists \Omega_K$: complex neighborhood of $[0, \infty)$ s.t. $b_j(t, x)$ ($1 \leq j \leq n$) are analytic in Ω_K for $\forall x \in K$,

(L) $\forall T > 0, \forall x \in \mathbb{R}^n, \exists C > 0 \text{ s.t.}$

$$\min_{\tau \in \mathcal{R}(\xi)} |t - \tau| |b(t, x, \xi)| \le C\sqrt{a(t, \xi)} \quad \text{for } \forall (t, \xi) \in [0, T] \times S^{n-1}$$

<u>**Thm 1**</u>: Under (B) and (L) (CP) is C^{∞} well-posed.

<u>Remark</u>: $\mathcal{R}(\xi)$ can be replaced in (L) by $\mathcal{R}'(\xi)$ satisfying

 $\sup_{\xi \in S^{n-1}} \#(\mathcal{R}'(\xi) \cap \{t \le T\}) < \infty \text{ for } \forall T > 0,$

where #A denotes the number of the elements of a set A.

Def: (i) Let f be a function on \mathbb{R} . We say that f(t) is a semi-algebraic function if the graph of f is a semi-algebraic set, *i.e.*, the graph of f is a set defined by polynomial equations and inequalities. (ii) Let $t_0 \in \mathbb{R}$, U be a neighborhood of t_0 and $f : U \to \mathbb{R}$. We say that f is semi-algebraic at t_0 if there is c > 0 such that $\{(t, y) \in \mathbb{R}^2; y = f(t) \text{ and } |t - t_0| < c\}$ is a semi-algebraic set.

Necessity:

We assume in "Necessity" that (A)' and (B) are satisfied. Let $t_0 \ge 0$, $x^0 \in \mathbb{R}^n$ and $\xi^0 \in S^{n-1}$. If $n \ge 3$, we assume the following condition:

 $(A)''_{(t_0,x^0)}$ the $a_{j,k}(t)$ and $b_j(t,x^0)$ ($1 \le j \le n$) are semi-analytic at t_0 .

The following condition is very similar to the condition (L): (L)_{(t_0,x^0,ξ^0)} $\exists U$: nbd of t_0 , $\exists \Gamma$: conic nbd of ξ^0 , $\exists C > 0$ s.t.

$$\min_{\tau \in \mathcal{R}(\xi)} |t - \tau| |b(t, x^0, \xi)| \le C\sqrt{a(t, \xi)} \quad \text{for } \forall (t, \xi) \in U \times \Gamma$$

<u>**Thm 2**</u>: Assume that (A)' and (B) are satisfied. Moreover, we assume that $(A)''_{(t_0,x^0)}$ is satisfied if $n \ge 3$. Then $(L)_{(t_0,x^0,\xi^0)}$ is necessary for C^{∞} well-posedness.

<u>Remark</u>: Assume that (A)' and (B) are satisfied, and that $(A)'_{(t_0,x^0)}$ is valid for any $t_0 \ge 0$ and $x^0 \in \mathbb{R}^n$ if $n \ge 3$. Then (CP) is C^{∞} well-posed if and only if (L) is satisfied.

related results:

• Colombini-Ishida-Orrú: Ark. Mat. **38** (2000), 223–230.

(CP) is C^{∞} well-posed if the coefficients do not depend on x and if (A) and the following condition are satisfied:

 $|b(t,\xi)| \le Ca(t,\xi)^{1/2-1/k}$ for $(t,\xi) \in [0,\infty) \times S^{n-1}$.

• Colombini-Nishitani: Osaka J. Math. **41** (2004), 933–947.

They tried to generalize C-I-O's results to the case the lower order terms also depend on x.

In the proof of Thm 1 we adopted some ideas used in C-I-O and C-N.

• W: J. Math. Soc. Japan **62-1** (2010), 95–133.

The proof of Thm 2 is given in this paper.

2. Outline of Proof of Thm 1

We can assume without loss of generality that there is $K \in \mathbb{R}^n$ such that $\operatorname{supp}_x b_j(t, x)$, $\operatorname{supp}_x c(t, x) \subset K$. Let $t_0 \ge 0$, \mathcal{O}_{t_0} be the ring of power series centered at t_0 in one variable and

$$\mathfrak{M}_{t_0} := \{ (\beta_1(t), \cdots, \beta_n(t)) \in \mathcal{O}_{t_0}^n; \min_{\tau \in \mathcal{R}(\xi)} |t - \tau| \cdot |\sum_{j=1}^n \beta_j(t)\xi_j| \le \exists C\sqrt{a(t,\xi)} \}$$

if t belongs to a neighborhood of t_0 in $[0, \infty)$ and $\xi \in S^{n-1}$.

Since \mathcal{O}_{t_0} -submodule of $\mathcal{O}_{t_0}^n$ is finitely generated, there are $\psi_j(t) = (\psi_{j,1}(t), \cdots, \psi_{j,n}(t)) \in \mathfrak{M}_{t_0}$ ($1 \leq j \leq r_0$) such that

$$\mathfrak{M}_{t_0} = \Big\{ \sum_{j=1}^{r_0} c_j(t) \psi_j(t); \ c_j(t) \in \mathcal{O}_{t_0} \ (1 \le j \le r_0) \Big\}.$$

The condition (L) implies that $(b_1(t,x), \dots, b_n(t,x)) \in \mathfrak{M}_{t_0}$ for each $x \in \mathbb{R}^n$. So there are C^{∞} functions $c_j(t,x)$ of (t,x) such that $b(t,x,\xi) = \sum_{j=1}^{r_0} c_j(t,x)\psi_j(t,\xi)$ in a neighborhood of t_0 , where $\psi_j(t,\xi) = \sum_{k=1}^n \psi_{j,k}(t)\xi_k$. Let T > 0. Then there are $\varphi_j(t) = (\varphi_{j,1}(t), \dots, \varphi_{j,n}(t)) \in (C^{\infty}(\mathbb{R}))^n$ and $c_j(t,x) \in C^{\infty}([0,\infty) \times \mathbb{R}^n)$ ($1 \leq j \leq r$) such that

$$\min_{\tau \in \mathcal{R}(\xi)} |t - \tau| \cdot |\varphi_j(t,\xi)| \le C\sqrt{a(t,\xi)} \quad ((t,\xi) \in [0,T] \times S^{n-1}, \ 1 \le j \le r),$$
$$b(t,x,\xi) = \sum_{j=1}^r c_j(t,x)\varphi_j(t,\xi) \ ((t,x,\xi) \in [0,T] \times \mathbb{R}^n \times \mathbb{R}^n),$$

where $\varphi_j(t,\xi) = \sum_{k=1}^n \varphi_{j,k}(t)\xi_k$. Put

$$\begin{split} w_{\rho}(t,\xi) &:= a(t,\xi) + \langle \xi \rangle^{2\rho}, \quad \rho := \frac{2}{k_0 + 2}, \\ W_0(t,\xi) &:= \frac{\langle \xi \rangle^{2\rho}}{\sqrt{w_{\rho}(t,\xi)}} + 1, \quad W_j(t,\xi) := \frac{|\varphi_j(t,\xi)|}{\sqrt{w_{\rho}(t,\xi)}} \quad (\ 1 \le j \le r), \\ W(t,\xi) &:= \sum_{j=0}^r W_j(t,\xi), \quad \Phi(t,\xi) := \int_0^t \left(W(s,\xi) + \frac{|(\partial_t a)(s,\xi)|}{w_{\rho}(s,\xi)} \right) ds \end{split}$$

Let us introduce the parameter $\varepsilon \in [0, 1]$ (to prove finite propagation property). Consider

$$\begin{cases} (P(t, x, D_t, D_x) + \varepsilon \Delta_x) u_{\varepsilon}(t, x) = f(t, x) & (t \ge 0, x \in \mathbb{R}^n), \\ u_{\varepsilon}(0, x) = u_0(x), & (D_t u_{\varepsilon})(0, x) = u_1(x) & (x \in \mathbb{R}^n). \end{cases} \end{cases}$$

We use an Energy form

$$\mathcal{E}_{\varepsilon}(t;\gamma,A,l) := \int_{\mathbb{R}^n} E_{\varepsilon}(t,\xi) K(t,\xi;\gamma,A,l) d\xi,$$

where $\gamma > 0, A > 0, l \in \mathbb{R}, t \in [0, T]$ and

$$E_{\varepsilon}(t,\xi) := |\partial_t v_{\varepsilon}(t,\xi)|^2 + (a(t,\xi) + \varepsilon |\xi|^2 + \langle \xi \rangle^{2\rho}) |v_{\varepsilon}(t,\xi)|^2,$$

$$K(t,\xi;\gamma,A,l) := \exp[-(\gamma t + A\Phi(t,\xi)) + l \log\langle \xi \rangle],$$

$$v_{\varepsilon}(t,\xi) := \mathcal{F}_x[u_{\varepsilon}(t,x)](\xi).$$

A simple calculation gives

$$\begin{aligned} \partial_t E_{\varepsilon}(t,\xi) &- (\gamma + A\partial_t \Phi(t,\xi)) E_{\varepsilon}(t,\xi) \\ &\leq |\hat{f}(t,\xi)|^2 / W(t,\xi) - (\gamma + (A-3)W(t,\xi) - 2)|\partial_t v_{\varepsilon}|^2 \\ &- \{(A-1)(|\partial_t a(t,\xi)| + W(t,\xi)w_{\rho}(t,\xi)) + \gamma w_{\rho}(t,\xi)\} |v_{\varepsilon}|^2 \\ &+ |\mathcal{F}_x[b_0(t,x)\partial_t u_{\varepsilon}(t,x)](\xi)|^2 + |\mathcal{F}_x[b(t,x,D_x)u_{\varepsilon}](\xi)|^2 / W(t,\xi) + |\mathcal{F}_x[c(t,x)u_{\varepsilon}](\xi)|^2. \end{aligned}$$

<u>Lemma</u>: (i) $\Phi(T,\xi) \leq {}^{\exists}C_T(1+\log\langle\xi\rangle)$ ($\xi \in \mathbb{R}^n$). (ii) $\forall \delta > 0, \exists c_\delta(T) > 0$ s.t.

$$(1+\delta)^{-1}W(t,\xi) \leq W(t,\eta) \leq (1+\delta)W(t,\xi) \quad \text{if } t \in [0,T], \ |\xi-\eta| \leq c_{\delta}(T)\langle\xi\rangle^{\rho},$$
$$(1+\delta)^{-1}\Phi(t,\xi) \leq \Phi(t,\eta) \leq (1+\delta)\Phi(t,\xi)$$
$$\text{if } t \in [0,T], \ |\xi-\eta| \leq c_{\delta}(T)\langle\xi\rangle^{\rho}/(1+\log\langle\xi\rangle).$$

(iii) $\exists C_T > 0, \exists l_0 > 0 \text{ s.t. } \exp[\pm \Phi(t,\xi)] \le C_T \langle \xi - \eta \rangle^{l_0} \exp[\pm \Phi(t,\eta)].$

Using the above lemma, we have

$$\partial_t \mathcal{E}_{\varepsilon}(t;\gamma,A,l) \le \int |\hat{f}(t,\xi)|^2 W(t,\xi)^{-1} K(t,\xi;\gamma,A,l) d\xi$$

if $A \geq {}^{\exists}A(b,T), \gamma \geq {}^{\exists}\gamma(b,b_0,c,T,A,l)$ and $t \in [0,T]$. Then a standard argument proves Thm 1.