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The purpose of this talk is to give two proofs of Theorem which is written in
the end of this abstract.

Let C be the set of complex numbers and (t, x) = (t1, . . . , td, x1, . . . , xn) ∈
Cd

t × Cn
x. We consider the following first order nonlinear PDE:

f(t, x, u, ∂tu, ∂xu) = 0 with u(0, x) ≡ 0,(1)

where u = u(t, x) is an unknown function, ∂tu = (∂t1u, . . . , ∂tdu) (∂tj = ∂/∂tj)
and ∂xu is similar to ∂tu. We assume the following assumptions:

(A1) The function f(t, x, u, τ, ξ) (τ ∈ Cd, ξ ∈ Cn) is holomorphic in a neigh-
borhood of the origin. Moreover, f(t, x, u, τ, ξ) is an entire function in τ
variables for any fixed t, x, u and ξ.

(A2) The equation (1) is singular in t variables in the sense that

f(0, x, 0, τ, 0) ≡ 0 and
∂f

∂ξk

(0, x, 0, τ, 0) ≡ 0 (k = 1, . . . , n).(2)

(A3) The equation (1) has a formal solution of the form u =
∑

|α|≥1 uα(x)tα with

holomorphic coefficients, that is, uα(x) ∈ C{x} for all α.

Let ϕ(x) = (ϕ1(x), . . . , ϕd(x)) ∈ (C{x})d be the collection of coefficients of
tj of formal solution, and we set a(x) = (0, x, 0, ϕ(x), 0). Then the following
theorem, which is the main theorem, holds under the assumptions (A1), (A2)
and (A3).
Theorem (M. Miyake and A. Shirai). Let aij(x) i, j = 1, . . . , d) be aij(x) =
ftiτj

(a(x)) + fuτj
(a(x))ϕi(x) and {λ1, . . . , λd} be the eigenvalues of the matrix

(aij(0))i,j=1,... ,d. If {λj} satisfies the condition (3) and (4) below, then the fomal
solution u(t, x) of (1) is convergent in a neighborhood of the origin:

Ch(λ1, . . . , λd) 63 0 (Poincaré condition)(3)

where Ch(λ1, . . . , λd) denotes the convex hull of {λ1, . . . , λd}.

d∑
j=1

λjαj + fu(a(0)) 6= 0 (Nonresonance condition)(4)

for all α ∈ Nd with |α| ≥ 2.


