Optimal initial values and regularity conditions of Besov space type for weak solutions to the Navier-Stokes system

Reinhard Farwig (Technische Universität Darmstadt)
farwig@mathematik.tu-darmstadt.de

In this talk we present recent results jointly obtained with Hermann Sohr (Paderborn) and W. Varnhorn (Kassel).

The first question concerns the optimal condition on initial values $u_{0} \in$ $L_{\sigma}^{2}(\Omega)$ to get a locally regular solution u in Serrin's class $L^{s}\left(0, T ; L^{q}(\Omega)\right)$ (with $\frac{2}{s}+\frac{3}{q}=1, s>2, q>3$) to the instationary Navier-Stokes system in a bounded domain $\Omega \subset \mathbb{R}^{3}$. It is shown that the condition

$$
\begin{equation*}
\int_{0}^{\infty}\left\|e^{-\tau A} u_{0}\right\|_{L^{q}(\Omega)}^{s} d \tau<\infty \tag{1}
\end{equation*}
$$

is necessary and sufficient for this local in time regularity result; here A denotes the Stokes operator on $L_{\sigma}^{2}(\Omega)$. Condition (1) is weaker than the more classical assumptions $u_{0} \in \mathcal{D}\left(A^{1 / 4}\right)$ or $u_{0} \in L^{3}(\Omega)$ and ensures that the solution $e^{-\tau A} u_{0}$ of the linear Stokes problem lies in Serrin's class $L^{s}\left(0, \infty ; L^{q}(\Omega)\right)$. It can be rewritten in the form

$$
u_{0} \in \mathbb{B}_{q, s}^{-2 / s}(\Omega)
$$

where $\mathbb{B}_{q, s}^{-2 / s}(\Omega)$ denotes a solenoidal subspace of the usual Besov space $B_{q, s}^{-2 / s}(\Omega)$.
Actually, it suffices to consider the integral in (1) on a finite time interval $(0, \delta)$, leading to a Besov space $\mathbb{B}_{q, s ;(\delta)}^{-2 / s}(\Omega)$ with equivalent norm. Using these spaces we find new regularity and uniqueness criteria for weak solutions.
[1] R. Farwig, H. Sohr and W. Varnhorn: Optimal initial value conditions for the existence of local strong solutions of the Navier-Stokes squations. Math. Ann. 345 (2009), 631-642
[2] R. Farwig, H. Sohr and W. Varnhorn: Extensions of Serrin's uniqueness and regularity conditions for the Navier-Stokes equations. J. Math. Fluid Mech. 14 (2012), 529-540
[3] R. Farwig, H. Sohr and W. Varnhorn: Besov space regularity conditions for weak solutions of the Navier-Stokes equations. Technische Universität Darmstadt, FB Mathematik, Preprint no. 2669 (2103), submitted
[4] R. Farwig: On regularity of weak solutions to the instationary NavierStokes system - a review on recent results. Ann. Univ. Ferrara (to appear)

