# Homological problems for cycle-finite algebras

Adam Skowyrski

November 2013, Nagoya

Adam Skowyrski Homological problems for cycle-finite algebras



#### Basic concepts

### Problems

### Proof of Theorem A

Semiregular case Non-semiregular case

### Proof of Theorem B

# Preliminaries

Let A be an algebra, that is an artin K-algebra, where K is a commutative artin ring.

- By mod A we denote the category of finitely generated right A-modules, and by ind A the full subcategory of mod A formed by all indecomposable modules.
- ► For a module X in mod A, we denote by pd<sub>A</sub>X (respectively, by id<sub>A</sub>X) the projective (respectively, injective) dimension of X.
- *τ<sub>A</sub>* = *D* Tr is the Auslander-Reiten translation
   (*D* = Hom<sub>K</sub>(−, *E*) is the standard duality on mod *A*, *E* is a
   minimal injective cogenerator in mod *K*)
- We denote by  $\Gamma_A$  the **Auslander-Reiten quiver** of *A*.

# Preliminaries

rad<sub>A</sub> is the Jacobson radical of mod A, that is, the ideal in mod A generated by all nonisomorphisms in ind A; rad<sub>A</sub><sup>∞</sup> = ∩<sub>i=1</sub><sup>∞</sup> rad<sub>A</sub><sup>i</sup> (the infinite Jacobson radical)

## ${\cal C}$ is a component of $\Gamma_A \Rightarrow$

- ➤ C is semiregular iff C doesn't contain both a projective and an injective module.
- C is generalized standard iff rad<sup>∞</sup><sub>A</sub>(X, Y) = 0, for all modules X and Y from C.
- *c*C is the cyclic part of C obtained from C by deleting vertices not lying on cycles (*c*Γ<sub>A</sub>=cyclic comoponents of Γ<sub>A</sub>).
   Recall C is almost acyclic iff *c*C is finite
- ➤ C is a semiregular tube iff C is a ray tube (obtained from a stable tube by a finite number of ray insertions) or a coray tube

# Classes of algebras

## 1) Tilted algebras

- A is called a tilted algebra, provided that A ≅ End<sub>H</sub>(T), where H is a hereditary algebra and T is a tilting module in mod H.
- $A = \operatorname{End}_H(T)$  is tilted  $\Rightarrow$ 
  - there is a splitting torsion pair  $(\mathcal{X}(\mathcal{T}), \mathcal{Y}(\mathcal{T}))$  is mod A
  - Γ<sub>A</sub> has a component C<sub>T</sub> (called the connecting component) with a faithful section Δ such that the predecessors of Δ in C are in Y(T) and the proper successors of Δ (in C) are in X(T)
- We have the following characterization of tilted algebras
   Theorem [Liu-Skowroński]. A is a tilted algebra iff Γ<sub>A</sub> admits a generalized standard component with faithful section.
- ► If A = End<sub>H</sub>(T) is a tilted algebra, then A is said to be of Euclidean type iff H is a hereditary algebra of Euclidean type. In particular, A is then a tame algebra.
- If A is a representation-infinite tilted algebra of Euclidean type, then

# Classes of algebras

- one of the following holds:
  - (1)  $\Gamma_A = \mathcal{P}^A \cup \mathcal{T}^A \cup \mathcal{Q}^A$ , where  $\mathcal{P}^A$  is the postprojective component of  $\Gamma_A$ ,  $\mathcal{T}^A$  is an infinite family of pairwise orthogonal ray tubes, and  $\mathcal{Q}^A$  is the preinjective component of  $\Gamma_A$  containing all injective A-modules.
  - (2) Γ<sub>A</sub> = P<sup>A</sup> ∪ T<sup>A</sup> ∪ Q<sup>A</sup>, where P<sup>A</sup> is the postprojective component of Γ<sub>A</sub> containing all projective A-modules, T<sup>A</sup> is an infinite family of pairwise orthogonal coray tubes, and Q<sup>A</sup> is the preinjective component of Γ<sub>A</sub>.

## 2) Quasitilted algebras

- A is a quasitilted algebra iff gl.dim(A) ≤ 2 and, for every module X in ind A, we have pd<sub>A</sub> X ≤ 1 or id<sub>A</sub> X ≤ 1.
- Every tilted algebra is a quasitilted algebra. If A is a quasitilted algebra but not a tilted algebra, then A is, so called, quasitilted algebra of canonical type.

## Classes of algebras

- A is quasitilted of canonical type  $\Rightarrow$  there are two associated factor algebras  $A^{(l)}$  and  $A^{(r)}$  of A which essentially determine the structure of  $\Gamma_A$ . Moreover, if A is tame, then both  $A^{(l)}$  and  $A^{(r)}$  are tilted of Euclidean type or tubular algebras.
- A is tame quasitilted of canonical type ⇒ all components of Γ<sub>A</sub> are semiregular and

$$\Gamma_{A} = \mathcal{P}^{A} \cup \mathcal{T}^{A} \cup \mathcal{Q}^{A},$$

- *T<sup>A</sup>* is an infinite family of pairwise orthogonal semiregular tubes of Γ<sub>A</sub>.
- ▶ If  $A^{(l)}$  is tilted of Euclidean type, then  $\mathcal{P}^A = \mathcal{P}^{A^{(l)}}$ . Otherwise

$$\mathcal{P}^{\mathcal{A}} = \mathcal{P}^{\mathcal{A}^{(l)}}_0 \cup \mathcal{T}^{\mathcal{A}^{(l)}}_0 \cup \left( \bigcup_{q \in \mathbb{Q}^+} \mathcal{T}^{\mathcal{A}^{(l)}}_q \right)$$

## Classes of algebras

▶ If  $A^{(r)}$  is tilted of Euclidean type, then  $Q^A = Q^{A^{(r)}}$ . Otherwise

$$\mathcal{Q}^{\mathcal{A}} = \left(igcup_{q\in\mathbb{Q}^{+}}^{\mathcal{A}^{(r)}}\mathcal{T}_{q}^{\mathcal{A}^{(r)}}
ight)\cup\mathcal{T}_{\infty}^{\mathcal{A}^{(r)}}\cup\mathcal{Q}_{\infty}^{\mathcal{A}^{(r)}}.$$

- The family  $\mathcal{P}^A$  is a family of components of  $\Gamma_{A^{(i)}}$ .
- The family  $Q^A$  is a family of components of  $\Gamma_{A^{(r)}}$ .

# Classes of algebras

 Generalized double tilted algebras Theorem[Reiten-Skowroński]. A is a generalized double tilted algebra iff Γ<sub>A</sub> admits a generalized standard component with a faithful multisection.

Recall that

- A multisection Δ in a component C of Γ<sub>A</sub> is a full valued subquiver of C satisfying the following conditions.
  - (a) Δ is almost acyclic;
  - (b)  $\Delta$  is convex in C;
  - (c) for each  $\tau_A$  orbit  $\mathcal{O}$  in  $\mathcal{C}$ , we have  $1 \leqslant |\Delta \cap \mathcal{O}| < \infty$ ;
  - (d) for all but finitely many  $\tau_A$  orbits  $\mathcal{O}$  in  $\mathcal{C}$ , we have  $|\Delta \cap \mathcal{O}| = 1$ ;
  - (e) no proper full valued subquiver of  $\Delta$  satisfies conditions (a)-(d).
- A component C of Γ<sub>A</sub> admits a multisection iff C is almost acyclic (Reiten and Skowroński).

# Classes of algebras

•  $\Delta$  is a multisection in a component  $C \Rightarrow$  there are associated full valued subquivers  $\Delta_I$ ,  $\Delta_c$ , and  $\Delta_r$  such that

$$\mathcal{C}=\mathcal{C}_{I}\cup\Delta_{c}\cup\mathcal{C}_{r},$$

where  $C_l$  (respectively,  $C_r$ ) is the full translation subquiver of C formed by predecessors of  $\Delta_l$  (respectively, by successors of  $\Delta_r$ )

- 4) Cycle-finite algebras
  - A **cycle** in mod *A* is a sequence

$$X = X_0 \xrightarrow{f_1} X_1 \longrightarrow \dots \xrightarrow{f_r} X_r = X$$

of nonzero nonisomorphisms in ind A

Such a cycle is called finite, provided that f<sub>1</sub>,..., f<sub>r</sub> ∉ rad<sup>∞</sup><sub>A</sub>.
 Following Assem and Skowroński, an algebra A is said to be cycle-finite, iff all cycles in mod A are finite.

# Classes of algebras

The class of cycle-finite algebras is large and contains, for example: algebras of finite representation type, tame tilted algebras, tame generalized double tilted algebras, tubular algebras, tame quasitilted algebras, tame generalized multicoil algebras, and strongly simply connected algebras of polynomial growth.

## Motivation

Recall that there are two important full subcategories of ind A, defined as follows:

- £<sub>A</sub> is the full subcategory of ind A formed by all indecomposable modules X such that any predecessor Y of X in ind A satisfies pd<sub>A</sub> Y ≤ 1;
- *R<sub>A</sub>* is the full subcategory of ind *A* formed by all indecomposable modules *X* such that any successor *Y* of *X* in ind *A* satisfies id<sub>A</sub> *Y* ≤ 1.

# Motivation

The following theorem of Skowroński is the starting point of our considerations.

### Theorem

For an algebra A, the following conditions are equivalent.

- (i) A is a generalized double tilted algebra or a quasitilted algebra.
- (ii) ind  $A \setminus (\mathcal{L}_A \cup \mathcal{R}_A)$  is finite.
- (iii) There are at most finitely many isomorphism classes of modules X in ind A lying on paths from an injective module to a projective module.

# Problems (1) and (2)

Note that, if one of the above statements (i)-(iii) hold, then the following two conditions are satisfied.

- (H1) For all but finitely many isomorphism classes of modules X in ind A, we have  $pd_A X \leq 1$  or  $id_A X \leq 1$ .
- (H2) For all but finitely many isomorphism classes of modules X in ind A, we have  $\text{Hom}_A(D(A), X) = 0$  or  $\text{Hom}_A(X, A) = 0$ .

We are interested in the following two problems, posed by Skowroński:

**Problem (1).** Let A be an algebra satisfying the condition (H1). Is then A a generalized double tilted algebra or a quasitilted algebra?

**Problem (2).** Let A be an algebra satisfying the condition (H2). Is then A a generalized double tilted algebra or a quasitilted algebra?

## Theorem A

The following theorem provides the solution of the Problems (1) and (2), for cycle-finite algebras.

### Theorem A

For a cycle-finite algebra, the following conditions are equivalent.

- (i) A is a generalized double tilted algebra or a quasitilted algebra.
- (ii) For all but finitely many isomorphism classes of modules X in ind A, we have  $pd_A X \leq 1$  or  $id_A X \leq 1$ .
- (iii) For all but finitely many isomorphism classes of modules X in ind A, we have  $\text{Hom}_A(D(A), X) = 0$  or  $\text{Hom}_A(X, A) = 0$ .

# A remark

There are weaker versions of homological conditions (H1) and (H2). Namely, we consider the following conditions:

 $(H1^*)$  For all but finitely many isomorphism classes of modules X in ind A, we have  $pd_A X \leq 1$ .

(H1<sup>\*\*</sup>) For all but finitely many isomorphism classes of modules X in ind A, we have  $id_A X \leq 1$ .

(H2<sup>\*</sup>) For all but finitely many isomorphism classes of modules X in ind A, we have  $\text{Hom}_A(D(A), X) = 0$ .

 $(H2^{**})$  For all but finitely many isomorphism classes of modules X in ind A, we have  $Hom_A(X, A) = 0$ .

It has been proved by Skowroński that, if A is an algebra satisfying one of the above conditions  $(H1^*)$ ,  $(H1^{**})$ ,  $(H2^*)$ ,  $(H2^{**})$ , then A is a generalized double tilted algebra.

# Problem (3)

The origins of the third problem go back to the concept of a short chain, introduced and investigated by **Reiten**, **Smalø** and **Skowroński**. Recall that a **short chain** (in mod *A*) is a sequence  $X \rightarrow M \rightarrow \tau_A X$  of nonzero homomorphisms in mod *A* with *X* being indecomposable, and *M* is then called the middle of this short chain. The following theorem due to **Jaworska**, **Malicki and Skowroński**, characterizes the class of tilted algebras in terms of short chains.

**Theorem.** Let A be an algebra. Then A is a tilted algebra if and only if mod A admits a faithful module which is not the middle of a short chain.



The last (third) of the Skowroński's problems is formulated as follows.

**Problem(3).** A is a generalized double tilted algebra iff mod A admits a faithful module M which is the middle of at most finitely many short chains.

## Theorem B

The following theorem provides the solution of Problem(3) for cycle-finite algebras.

### Theorem B

Let A be a cycle-finite algebra. The following conditions are equivalent.

- (i) A is a generalized double tilted algebra.
- (ii) mod A admits a faithful module being the middle of at most finitely many short chains.

Semiregular case Non-semiregular case

# Proof of Theorem A: Semiregular case

**Theorem A.1.** Let A be a cycle-finite algebra such that all components of  $\Gamma_A$  are semiregular. Then tfcae

- (i) A is a quasitilted algebra of cannonical type.
- (ii) For all but finitely many isomorphism classes of modules X in ind A, we have  $pd_A X \leq 1$  or  $id_A X \leq 1$ .
- (iii) For all but finitely many isomorphism classes of modules X in ind A, we have  $\text{Hom}_A(D(A), X) = 0$  or  $\text{Hom}_A(X, A) = 0$ .

Semiregular case Non-semiregular case

# Proof of Theorem A: Semiregular case

Obviously, implications (i) $\Rightarrow$ (ii) and (i) $\Rightarrow$ (iii) hold. We assume that one of the conditions (ii) or (iii) holds. We need the following theorem.

- **Theorem[Białkowski, Skowroński, -, Wiśniewski]** Let A be a cycle-finite algebra such that all components of  $\Gamma_A$  are semiregular. Then there is a sequence  $\mathbb{B} = (B_1, \ldots, B_n)$  of tame quasitilted algebras of canonical type such that
- (1) B<sub>1</sub><sup>(l)</sup> and B<sub>n</sub><sup>(r)</sup> are tilted algebras of Euclidean type and B<sub>i</sub><sup>(r)</sup> = B<sub>i+1</sub><sup>(l)</sup> is a tubular algebra, for any i ∈ {1,..., n-1}.
   (2) Γ<sub>A</sub> has the following form

$$\Gamma_{\mathcal{A}} = \mathcal{P}^{\mathbb{B}} \cup \left(igcup_{q \in \mathbb{Q} \cap [1,n]} \mathcal{T}^{\mathbb{B}}_{q}
ight) \cup \mathcal{Q}^{\mathbb{B}},$$

where

Semiregular case Non-semiregular case

# Proof of Theorem A: Semiregular case

- $\blacktriangleright \mathcal{P}^{\mathbb{B}} = \mathcal{P}^{B_1^{(l)}}$
- $\blacktriangleright \mathcal{Q}^{\mathbb{B}} = \mathcal{Q}^{B_n^{(r)}}$
- ▶ for each  $i \in \{1, ..., n\}$ ,  $\mathcal{T}_i^{\mathbb{B}} = \mathcal{T}^{B_i}$
- For each rational number q ∈ [1, n] \ {1,...,n}, T<sub>q</sub><sup>B</sup> is an infinite family of pairwise orthogonal stable tubes of Γ<sub>A</sub>

## (3) A is isomorphic to the following pushout algebra:

$$A(\mathbb{B}) = B_1 \bigsqcup_{B_1^{(r)}} B_2 \bigsqcup_{B_2^{(r)}} \dots \bigsqcup_{B_{n-2}^{(r)}} B_{n-1} \bigsqcup_{B_{n-1}^{(r)}} B_n$$

**Corrolary.** Let  $A = A(\mathbb{B})$  be a cycle-finite algebra with all components of  $\Gamma_A$  semiregular,  $\mathbb{B} = (B_1, \ldots, B_n)$ . Then, if A is not a quasitilted algebra of canonical type, then  $n \ge 2$  and there is  $i \in \{1, \ldots, n-1\}$  such that  $\mathcal{T}_i^{\mathbb{B}}$  has a coray tube containing an injective module and  $\mathcal{T}_{i+1}^{\mathbb{B}}$  has a ray tube containing a projective module.

Semiregular case Non-semiregular case

# Proof of Theorem A: Semiregular case

The above corrolary implies theorem A.1. Indeed, it follows that, if A is a cycle-finite algebra of semiregular type which is not a quasitilted algebra of canonical type, then there exists a stable tube  $\mathcal{T}_{q,\lambda}^{\mathbb{B}}$  of  $\mathcal{T}_{q}^{\mathbb{B}}$ ,  $q \in (i, i + 1)$ , such that

 $\operatorname{Hom}_{A}(D(A),\mathcal{T}^{\mathbb{B}}_{q,\lambda}) \neq 0 \text{ and } \operatorname{Hom}_{A}(\mathcal{T}^{\mathbb{B}}_{q,\lambda},A) \neq 0,$ 

which leads to a contradiction with (ii) and (iii).

Semiregular case Non-semiregular case

# Proof of Theorem A: Non-semiregular case

The remaining statement is formulated as follows.

**Theorem A.2.** Let A be a cycle-finite algebra such that  $\Gamma_A$  admits a non-semiregular component. Then tfcae

- (i) A is a generalized double tilted algebra.
- (ii) For all but finitely many isomorphism classes of modules X in ind A, we have  $pd_A X \leq 1$  or  $id_A X \leq 1$ .
- (iii) For all but finitely many isomorphism classes of modules X in ind A, we have  $\text{Hom}_A(D(A), X) = 0$  or  $\text{Hom}_A(X, A) = 0$ .

Semiregular case Non-semiregular case

# Proof of Theorem A: Non-semiregular case

As before, implications (i) $\Rightarrow$ (ii) and (i) $\Rightarrow$ (iii) of theorem A.2 hold. Assume that one of the conditions (ii) or (iii) holds. The following proposition is playing a prominent role in this part of the proof of theorem A.

### Proposition 1.

Let A be a cycle-finite algebra such that one of the conditions (H1) or (H2) is satisfied. Then every infinite cyclic component of  $\Gamma_A$  is the cyclic part  $_cC$  of a semiregular tube C of  $\Gamma_A$ .

Let C be a non-semiregular component of  $\Gamma_A$ . Proposition 1. implies that C is an almost acyclic component of  $\Gamma_A$  ( $\Rightarrow C$  admits a multisection).

Semiregular case Non-semiregular case

# Proof of Theorem A: Non-semiregular case

We prove that C is faithful and generalized standard component. We investigate the structure of  $\Gamma_A$ .

- $\mathcal{C} = \mathcal{C}_I \cup \Delta_c \cup \mathcal{C}_r \\ \mathcal{C}_I = \mathcal{C}_I^{(1)} \cup \cdots \cup \mathcal{C}_I^{(p)}$
- ▶ assume, for simplicity, that  $C_I^{(i)}$  is infinite, for all *i*'s
- ▶ for all  $i \in \{1, ..., p\}$ ,  $C_I^{(i)}$  admits a left stable acyclic full translation subquiver  $\mathcal{D}^{(i)}$ , closed under predecessors.

We use the following theorem due to Malicki, de la Pẽna, and Skowroński

**Theorem.** Let A be a cycle-finite algebra, C a component of  $\Gamma_A$ . Then, for every left stable acyclic full translation subquiver  $\mathcal{D}$  of  $\mathcal{C}$ , closed under predecessors in  $\mathcal{C}$ , there exists a tilted algebra  $B = \operatorname{End}_H(T)$  of Euclidean type such that  $\mathcal{Y}(T) \cap C_T$  is a full translation subquiver of  $\mathcal{D}$  closed under predecessors.

Semiregular case Non-semiregular case

## Proof of Theorem A: Non-semiregular case

The above theorem implies that, for every  $i \in \{1, ..., p\}$ , there is a factor tilted algebra  $B_i = \text{End}_{H_i}(T_i)$  of A such that

- B<sub>i</sub> is of Euclidean type
- $C_{T_i} \cap \mathcal{Y}(T_i)$  is a full translation subquiver of  $\mathcal{D}^{(i)}$  closed under predecessors in C
- $B = B_1 \times \cdots \times B_p$  is a factor tilted algebra of A
- ►  $\Gamma_{B_i} = \mathcal{P}^{B_i} \cup \mathcal{T}^{B_i} \cup \mathcal{Q}^{B_i}$ , where  $\mathcal{T}^{B_i}$  is a family of ray tubes, and  $\mathcal{P}^{B_i}$  is the postprojective component, and  $\mathcal{Q}^{B_i} = C_{\mathcal{T}_i}$ contains all injective modules in ind  $B_i$ ,

• A is cycle-finite + Proposition 1.  $\Rightarrow$  for every ray tube  $\mathcal{T}_{\lambda}^{B}$  of  $\mathcal{T}^{B} = \mathcal{T}^{B_{1}} \cup \cdots \cup \mathcal{T}^{B_{p}}$ , there is a semiregular tube  $\mathcal{T}_{\lambda}^{A}$  of  $\Gamma_{A}$ , containing all modules from  $_{c}\mathcal{T}_{\lambda}^{B}$ .

Semiregular case Non-semiregular case

# Proof of Theorem A: Non-semiregular case

- ► Next we prove that T<sup>A</sup> = (T<sup>A</sup><sub>λ</sub>) has no coray tubes with injective modules. Assume that this is not the case. Then
  - ► there is a module V in ind  $B_i$ , lying on the mouth of a stable tube of  $\Gamma_{B_i}$  and an epimorphism  $I \rightarrow V$  with I an indecomposable injective A-module
  - ► there is a module R in D<sup>(i)</sup> and a monomorphism R → P with P a projective module (in C)

But this leads to a contradiction with (i) and (ii), because the following lemma is satisfied.

Semiregular case Non-semiregular case

# Proof of Theorem A: Non-semiregular case

**Lemma 1.** Let *B* be a tilted algebra of Euclidean type with infinite preinjective connecting component. Assume that *V* and *R* are modules in ind *B* such that *V* lies on the mouth of a stable tube of  $\Gamma_B$  and *R* is contained in the preinjective component of  $\Gamma_B$ . Then the following holds.

(1) There are infinitely many pairwise nonisomorphic indecomposable modules  $Z_k$  in  $Q^B$ ,  $k \ge 0$ , such that

 $\operatorname{Hom}_B(V, \tau_B Z_k) \neq 0 \text{ and } \operatorname{Hom}_B(\tau_B^{-1} Z_k, R) \neq 0,$ 

for all  $k \ge 0$ .

(2) There are infinitely many pairwise nonisomorphic indecomposable modules  $Z_k$  in  $Q^B$ ,  $k \ge 0$ , such that

 $\operatorname{Hom}_B(V, Z_k) \neq 0$  and  $\operatorname{Hom}_B(Z_k, R) \neq 0$ ,

for all  $k \ge 0$ .

Semiregular case Non-semiregular case

# A remark

The proof of Lemma 1 is based on the tilting Theorem of **Brenner** and **Butler** and the tables of composition vectors of mouth modules over hereditary algebras of Euclidean type from Memoirs by **Dlab and Ringel**.

Semiregular case Non-semiregular case

# Proof of Theorem A: Non-semiregular case

- Further, we prove that  $\mathcal{T}^{A} = \mathcal{T}^{B}$
- Dually, we prove that there exists a factor tilted algebra B' = B'<sub>1</sub> × ··· × B'<sub>q</sub> of A such that the family T<sup>B'</sup> of all coray tubes of Γ<sub>B'</sub> is a family of components of Γ<sub>A</sub>.
- Finally, we deduce that  $\Gamma_A = \mathcal{P}^B \cup \mathcal{T}^B \cup \mathcal{C} \cup \mathcal{T}^{B'} \cup \mathcal{Q}^{B'}$ , where

$$\blacktriangleright \mathcal{P}^{\mathcal{B}} = \mathcal{P}^{\mathcal{B}_1} \cup \cdots \cup \mathcal{P}^{\mathcal{B}_p}$$

$$\blacktriangleright \mathcal{Q}^{B'} = \mathcal{Q}^{B'_1} \cup \cdots \cup \mathcal{Q}^{B'_q}$$

Using obtained information on  $\Gamma_A$ , we deduce that C is a faithful and generalized standard component of  $\Gamma_A$ . Summarizing, C is a generalized standard component with a faithful multisection  $\Delta$ .  $\Box$ 

# Proof of Theorem B

The proof of Theorem B is very similar to the proof of Theorem A.2. Observe first that (i) implies (ii), because, if A is a generalized double tilted algebra, then mod A admits a faithful module M which is the middle of at most finitely many short chains (for example, M may be defined as the direct sum of all modules lying on  $\Delta$ ).

Now, assume that the condition (ii) is satisfied. We prove that A is a generalized double tilted algebra in the same manner as in the proof of Theorem A.2. Instead of the Proposition 1, we use the following proposition.

**Proposition 2.** Let *A* be a cycle-finite algebra such that the condition (ii) is satisfied. Then every infinite cyclic component of  $\Gamma_A$  is the cyclic part  $_cC$  of a semiregular tube C of  $\Gamma_A$ .

# Proof of Theorem B

Analogue of Lemma 1 is stated as follows.

**Lemma 2.** Let B, V, and R be as in Lemma 1. Then the following holds.

(1) There are infinitely many pairwise nonisomorphic indecomposable modules  $Z_k$  in  $Q^B$ ,  $k \ge 0$ , such that

 $\operatorname{Hom}_B(V, \tau_B Z_k) \neq 0$  and  $\operatorname{Hom}_B(Z_k, R) \neq 0$ ,

for all  $k \ge 0$ .

### Thank you for your attention !!!