Finite cycles of indecomposable modules

Piotr Malicki

(joint work with J. A. de la Peña and A. Skowroński)

Nicolaus Copernicus University, Toruń, Poland

Perspectives of Representation Theory of Algebras

November 12, 2013, Nagoya

Preliminaries

- A basic indecomposable artin algebra (over a fixed commutative artin ring K)
- mod A category of finitely generated right A-modules
- ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

 (the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

•
$$\operatorname{rad}_A^{\infty} = \bigcap_{i \ge 1} \operatorname{rad}_A^i$$
 – infinite Jacobson radical of mod A

$$\operatorname{rad}_{A}^{\infty} = 0 \xleftarrow{\operatorname{Auslander}}{A}$$
 is of finite representation type

A is of infinite representation type $\xrightarrow{\text{Coelho-Marcos-Merklen-Skowroński}}$ $(\operatorname{rad}_{A}^{\infty})^{2} \neq 0$ P. Malicki (Toruń) Finite cycles of indecomposable modules Nagova, 2013 2/35 • A cycle in ind A is a sequence

$$(\star) \quad M_0 \xrightarrow{f_1} M_1 \to \cdots \to M_{r-1} \xrightarrow{f_r} M_r = M_0$$

of nonzero nonisomorphisms in ind A.

- A cycle (⋆) is said to be finite if the homomorphisms f₁,..., f_r do not belong to rad[∞]_A.
- A module *M* in ind *A* is called directing if *M* does not lie on a cycle in ind *A*.
- A module *M* in ind *A* is said to be cycle-finite if *M* is nondirecting and every cycle in ind *A* passing through *M* is finite.
- A is cycle-finite if all cycles in ind A are finite.

Note that every algebra of finite representation type is cycle-finite.

Support algebra of a module

For a module M in ind A, consider:

- a decomposition A = P_M ⊕ Q_M of A in mod A such that the simple summands of the semisimple module P_M/rad P_M are exactly the simple composition factors of M
- the ideal $t_A(M)$ in A generated by the images of all homomorphisms from Q_M to A in mod A

Then $\text{Supp}(M) = A/t_A(M)$ is called the support algebra of M.

Theorem (Ringel)

If A is an algebra with all modules in ind A being directing, then A is of finite representation type.

Theorem (Ringel)

Let A be an algebra and M be a directing A-module. Then Supp(M) is a tilted algebra.

P. Malicki (Toruń)

Hence, if A is an algebra of infinite representation type, then ind A always contains a cycle.

Theorem (Peng–Xiao, Skowroński)

Let A be an algebra. Then Γ_A admits at most finitely many τ_A -orbits containing directing modules.

 Γ_A – Auslander-Reiten quiver of A

Remark

In order to obtain information on the support algebras Supp(M) of nondirecting modules in ind A, it is natural to study properties of cycles in ind A containing M.

An object of study - the first approach

Problem: Let A be an algebra and M be a cycle-finite module in ind A. Describe the support algebra Supp(M).

Remark (A - algebra, M - cycle-finite module in ind A)

Every cycle in ind A passing through M has a refinement to a cycle of irreducible homomorphisms in ind A containing M and consequently M lies on an oriented cycle in Γ_A (we will consider a more general problem).

- $_{c}\Gamma_{A}$ translation subquiver of Γ_{A} , called the cyclic quiver of A, obtained by removing from Γ_{A} all acyclic vertices and the arrows attached to them
- the connected components of ${}_c\Gamma_A$ are said to be cyclic components of Γ_A

 Γ – cyclic component of Γ_A $M. N \in \Gamma \xleftarrow{M.-Skowroński}{M} M$ and N lie on a common oriented cycle in Γ_A

Support algebra of a component

For a cyclic component Γ of $_{c}\Gamma_{A}$, consider:

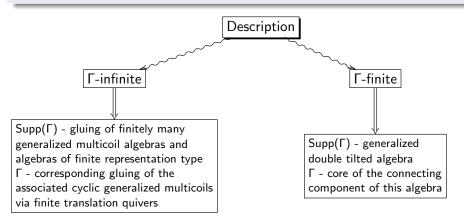
- a decomposition A = P_Γ ⊕ Q_Γ of A in mod A such that the simple summands of the semisimple module P_Γ/rad P_Γ are exactly the simple composition factors of indecomposable modules in Γ
- the ideal t_A(Γ) in A generated by the images of all homomorphisms from Q_Γ to A in mod A

Then Supp $(\Gamma) = A/t_A(\Gamma)$ is called the support algebra of Γ .

Remark

Observe that M belongs to a unique cyclic component $\Gamma(M)$ of Γ_A consisting entirely of cycle-finite indecomposable modules, and the support algebra Supp(M) of M is a quotient algebra of the support algebra Supp $(\Gamma(M))$ of $\Gamma(M)$.

A cyclic component Γ of Γ_A containing a cycle-finite module is said to be a cycle-finite cyclic component of Γ_A . **Problem:** Let A be an algebra and Γ be a cycle-finite cyclic component of Γ_A . Describe the support algebra Supp(Γ).



Separating family of components

- A an algebra
- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- C is sincere if every simple module in mod A occurs as a composition factor of a module in C
- \mathscr{C} is generalized standard if $\operatorname{rad}_{A}^{\infty}(X, Y) = 0$ for all modules X and Y in \mathscr{C}
- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ is said to be separating if the components in Γ_A split into three disjoint classes \mathcal{P}^A , $\mathscr{C}^A = \mathscr{C}$ and \mathcal{Q}^A such that:
 - 𝔅^A is sincere and generalized standard;
 𝔅 Hom_A(𝔅^A, 𝒫^A) = 0, Hom_A(𝔅^A, 𝔅^A) = 0, Hom_A(𝔅^A, 𝒫^A) = 0;
 𝔅 any morphism from 𝒫^A to 𝔅^A in mod A factors through add(𝔅^A).

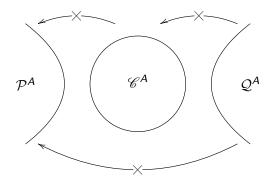
Then we write: $\Gamma_A = \mathcal{P}^A \cup \mathscr{C}^A \cup \mathcal{Q}^A$ (\mathscr{C}^A separates \mathcal{P}^A from \mathcal{Q}^A).

 $\mathcal{P}^{\mathcal{A}}$ and $\mathcal{Q}^{\mathcal{A}}$ are uniquely determined by $\mathscr{C}^{\mathcal{A}}$

- 4 ≣ ▶

- ∢ 🗇 እ

Separating family of components

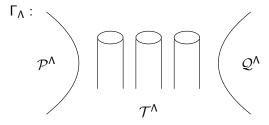


If \mathscr{C}^A is generalized standard then components in \mathscr{C}^A are pairwise orthogonal and almost periodic.

Concealed canonical algebras

Let Λ be a canonical algebra in the sense of Ringel. Then

- $\bullet \ \mathrm{gl.} \dim \Lambda \leq 2$
- $\Gamma_{\Lambda} = \mathcal{P}^{\Lambda} \cup \mathcal{T}^{\Lambda} \cup \mathcal{Q}^{\Lambda}$

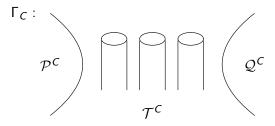


 \mathcal{T}^{Λ} – separating family of stable tubes

Let T – tilting Λ -module from the additive category $add(\mathcal{P}^{\Lambda})$ of \mathcal{P}^{Λ}

C – concealed canonical algebra (of type Λ) : C = End_Λ(T)
Γ_C = P^C ∪ T^C ∪ Q^C

Concealed canonical algebras



 $\mathcal{T}^{\mathsf{C}} = \mathsf{Hom}_{\Lambda}(\mathcal{T}, \mathcal{T}^{\Lambda})$ – separating family of stable tubes

Theorem (Lenzing-de la Peña)

Let A be an algebra. TFAE

- A is a concealed canonical algebra.
- **2** Γ_A admits a separating family of stable tubes.

A – quasitilted: gl. dim A \leq 2 and for any X \in ind A we have $pd_AX \leq 1$ or $id_AX \leq 1$

Theorem (Happel–Reiten)

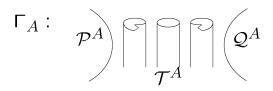
Let A be a quasitilted algebra. Then A is either a tilted algebra or a quasitilted algebra of canonical type.

Theorem (Lenzing–Skowroński)

Let A be an algebra. TFAE

- A is a quasitilted algebra of canonical type.
- A is a semiregular branch enlargement of a concealed canonical algebra C.
- **③** Γ_A admits a separating family of ray and coray tubes.

A – quasitilted algebra of canonical type



 \mathcal{T}^A – separating family of ray and coray tubes in mod A

Almost cyclic and coherent components

A – algebra, Γ – component of Γ_A

- Γ is almost cyclic if its cyclic part $_{c}\Gamma$ is a cofinite subquiver of Γ
- Γ is coherent if the following two conditions are satisfied:
 - For each projective module P in Γ there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow X_{i+2} \rightarrow \cdots$ in Γ $(X_i \neq \tau_A X_{i+2} \text{ for any } i \geq 1)$
 - **2** For each injective module I in Γ there is an infinite sectional path $\dots \rightarrow Y_{j+2} \rightarrow Y_{j+1} \rightarrow Y_j \rightarrow \dots \rightarrow Y_2 \rightarrow Y_1 = I$ in Γ $(Y_{j+2} \neq \tau_A Y_j \text{ for any } j \ge 1)$

Note that the stable tubes, ray tubes and coray tubes of Γ_A are special types of coherent almost cyclic components.

 Γ is almost cyclic and coherent $\xleftarrow{\text{M.-Skowroński}}{\Gamma}$ is a generalized multicoil (obtained from a finite family of stable tubes by a sequence of admissible operations (ad 1)-(ad 5) and their duals (ad 1*)-(ad 5*))

- C₁,..., C_m concealed canonical algebras
- $\mathcal{T}^{C_1}, \dots, \mathcal{T}^{C_m}$ separating families of stable tubes of $\Gamma_{C_1}, \dots, \Gamma_{C_m}$
- $C = C_1 \times \ldots \times C_m$
- A generalized multicoil algebra if A is a generalized multicoil enlargement of a product C using modules from T^{C1},...,T^{Cm} and a sequence of admissible operations of types (ad 1)-(ad 5) and their duals (ad 1*)-(ad 5*)

Theorem (M.–Skowroński)

Let A be an algebra. TFAE

- A is a generalized multicoil algebra.
- **2** Γ_A admits a separating family of almost cyclic coherent components.

- 4 @ > - 4 @ > - 4 @ >

Theorem (M.–Skowroński)

Let A be a generalized multicoil algebra. Then there are:

- unique quotient algebra A⁽¹⁾ of A which is a product of quasitilted algebras of canonical type having separating families of coray tubes and
- unique quotient algebra A^(r) of A which is a product of quasitilted algebras of canonical type having separating families of ray tubes
- s.t. Γ_A has a disjoint union decomposition $\Gamma_A = \mathcal{P}^A \cup \mathscr{C}^A \cup \mathcal{Q}^A$, where

Theorem (continuation)

- C^A is a family of generalized multicoils separating P^A from Q^A, obtained from stable tubes in the separating families T^{C1},..., T^{Cm} of stable tubes of the Auslander-Reiten quivers Γ_{C1},..., Γ_{Cm} of concealed canonical algebras C₁,..., C_m by a sequence of admissible operations of types (ad 1)-(ad 5) and their duals (ad 1*)-(ad 5*), corresponding to the admissible operations leading from C = C₁ × ... × C_m to A;
- C^A consists of cycle-finite modules and contains all indecomposable modules of T^{A(l)} and T^{A(r)};
- \mathcal{P}^{A} contains all indecomposable modules of $\mathcal{P}^{A^{(r)}}$;
- Q^A contains all indecomposable modules of $Q^{A^{(l)}}$.
- $A^{(l)}$ the left quasitilted algebra of A
- $A^{(r)}$ the right quasitilted algebra of A

Moreover, in the above notation, we have

- gl. dim $A \leq 3$;
- $pd_A X \leq 1$ for any indecomposable module X in \mathcal{P}^A ;
- $\operatorname{id}_A Y \leq 1$ for any indecomposable module Y in \mathcal{Q}^A ;
- $pd_A M \leq 2$ and $id_A M \leq 2$ for any indecomposable module M in \mathcal{C}^A .

A generalized multicoil algebra A is said to be tame if $A^{(I)}$ and $A^{(r)}$ are product of tilted algebras of Euclidean types or tubular algebras.

Note that every tame generalized multicoil algebra is a cycle-finite algebra.

For a subquiver Γ of Γ_A , we denote by $\operatorname{ann}_A(\Gamma)$ the intersection of the annihilators $\operatorname{ann}_A(X) = \{a \in A \mid Xa = 0\}$ of all indecomposable modules X in Γ , and call the quotient algebra $B(\Gamma) = A/\operatorname{ann}_A(\Gamma)$ the faithful algebra of Γ .

Theorem

Let A be an algebra and Γ be a cycle-finite infinite component of $_{c}\Gamma_{A}$. Then there exist infinite full translation subquivers $\Gamma_1, \ldots, \Gamma_r$ of Γ such that the following statements hold.

- **1** For each $i \in \{1, ..., r\}$, Γ_i is a cyclic coherent full translation subquiver of Γ_A .
- **2** For each $i \in \{1, ..., r\}$, Supp $(\Gamma_i) = B(\Gamma_i)$ and is a generalized multicoil algebra.
- \mathbf{S} $\Gamma_1, \ldots, \Gamma_r$ are pairwise disjoint full translation subquivers of Γ and $\Gamma^{cc} = \Gamma_1 \cup \ldots \cup \Gamma_r$ is a maximal cyclic coherent and cofinite full translation subquiver of Γ .
- $B(\Gamma \setminus \Gamma^{cc})$ is of finite representation type.
- Supp $(\Gamma) = B(\Gamma)$.

.∋...>

Generalized double tilted algebras

- Γ component of Γ_A
- Γ almost acyclic if all but finitely many modules of Γ are acyclic

 Γ is an almost acyclic $\xleftarrow{\text{Reiten-Skowroński}} \Gamma$ admits a multisection

Note that for an almost acyclic component Γ of Γ_A , there exists a finite convex subquiver $c(\Gamma)$ of Γ (possibly empty), called the core of Γ , containing all modules lying on oriented cycles in Γ

Theorem (Reiten-Skowroński)

Let A be an algebra. TFAE

- **1** Γ_A admits an almost acyclic separating component.
- A is a generalized double tilted algebra.

Theorem (Reiten-Skowroński)

Let B be a generalized double tilted algebra. Then Γ_B has a disjoint union decomposition $\Gamma_B = \mathcal{P}^B \cup \mathcal{C}^B \cup \mathcal{Q}^B$, where

- \mathcal{C}^{B} is an almost acyclic component separating \mathcal{P}^{B} from \mathcal{Q}^{B} ;
- There exist hereditary algebras $H_1^{(l)}, \ldots, H_m^{(l)}$ and tilting modules $T_1^{(l)} \in \text{mod } H_1^{(l)}, \ldots, T_m^{(l)} \in \text{mod } H_m^{(l)}$ such that the tilted algebras $B_1^{(l)} = \text{End}_{H_1^{(l)}}(T_1^{(l)}), \ldots, B_m^{(l)} = \text{End}_{H_m^{(l)}}(T_m^{(l)})$ are quotient algebras of B and \mathcal{P}^B is the disjoint union of all components of $\Gamma_{B_1^{(l)}}, \ldots, \Gamma_{B_m^{(l)}}$ contained entirely in the torsion-free parts $\mathscr{Y}(T_1^{(l)}), \ldots, \mathscr{Y}(T_m^{(l)})$ of $\text{mod } B_1^{(l)}, \ldots, \text{ mod } B_m^{(l)}$ determined by $T_1^{(l)}, \ldots, T_m^{(l)}$;

Theorem (continuation)

- There exist hereditary algebras H₁^(r),..., H_n^(r) and tilting modules T₁^(r) ∈ mod H₁^(r),..., T_n^(r) ∈ mod H_n^(r) such that the tilted algebras B₁^(r) = End_{H₁^(r)}(T₁^(r)),..., B_n^(r) = End_{H_n^(r)}(T_n^(r)) are quotient algebras of B and Q^B is the disjoint union of all components of Γ_{B₁^(r)},..., Γ<sub>B_n^(r) contained entirely in the torsion parts X(T₁^(r)),..., X(T_n^(r)) of mod B₁^(r),..., mod B_n^(r) determined by T₁^(r),..., T_n^(r);
 every indecomposable module in C^B not lying in the core c(C^B) of C^B is an indecomposable module over one of the tilted algebras
 </sub>
 - $B_1^{(I)}, \ldots, B_m^{(I)}, B_1^{(r)}, \ldots, B_n^{(r)};$
- every nondirecting indecomposable module in C^B is cycle-finite and lies in c(C^B);

Theorem (continuation)

- $pd_B X \leq 1$ for all indecomposable modules X in \mathcal{P}^B ;
- $\operatorname{id}_B Y \leq 1$ for all indecomposable modules Y in \mathcal{Q}^B ;
- for all but finitely many indecomposable modules M in C^B , we have $pd_B M \le 1$ or $id_B M \le 1$.

 C^B - connecting component of Γ_B $B^{(I)} = B_1^{(I)} \times \ldots \times B_m^{(I)}$ - left tilted algebra of B $B^{(r)} = B_1^{(r)} \times \ldots \times B_n^{(r)}$ - right tilted algebra of BA generalized double tilted algebra B is said to be tame if the tilted algebras $B^{(I)}$ and $B^{(r)}$ are generically tame in the sense of Crawley-Boevey.

Note that every tame generalized double tilted algebra is a cycle-finite algebra.

Theorem

Let A be an algebra and Γ be a cycle-finite finite component of $_{c}\Gamma_{A}$. Then the following statements hold.

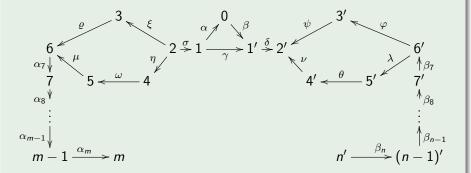
- **1** Supp(Γ) is a generalized double tilted algebra.
- **2** Γ is the core $c(\mathcal{C}^{B(\Gamma)})$ of a unique almost acyclic connecting component $\mathcal{C}^{B(\Gamma)}$ of $\Gamma_{B(\Gamma)}$.
- $Supp(\Gamma) = B(\Gamma).$

Remark

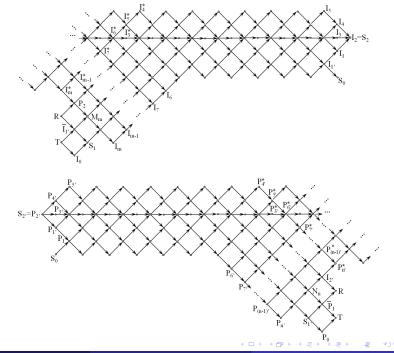
Every finite cyclic component Γ of an Auslander-Reiten quiver Γ_A contains both a projective module and an injective module, and hence Γ_A admits at most finitely many finite cyclic components.

Example

Let K be a field, $m, n \ge 8$ natural numbers, and $B_{m,n} = KQ_{m,n}/I_{m,n}$ the bound quiver algebra given by the quiver $Q_{m,n}$ of the form



and $I_{m,n}$ the ideal in the path algebra $KQ_{m,n}$ of $Q_{m,n}$ over K generated by the elements $\alpha\beta, \sigma\alpha, \beta\delta, \sigma\gamma\delta, \xi\varrho - \eta\omega\mu, \varphi\psi - \lambda\theta\nu$.



Example

Denote by $C_{m,n}$ the above component.

- $B_{m,n}$ is a generalized double tilted algebra
 - finite representation type $\iff m, n \in \{8, 9, 10\}$
 - tame $\iff m, n \in \{8, 9, 10, 11\}$

•
$$\Gamma_{B_{m,n}} = \mathcal{P}_{m,n} \cup \mathcal{C}_{m,n} \cup \mathcal{Q}_{m,n}$$

- $\mathcal{C}_{m,n}$ is an almost acyclic component of $\Gamma_{B_{m,n}}$
- cyclic part $\Gamma_{m,n}$ of $\mathcal{C}_{m,n}$ is connected and consists of all indecomposable modules in $\mathcal{C}_{m,n}$ which lie on oriented cycles passing through the simple module S_0
- $\Gamma_{m,n}$ is a faithful cyclic component of $\Gamma_{B_{m,n}}$
- $\mathcal{C}_{m,n}$ is a faithful component of $\Gamma_{\mathcal{B}_{m,n}}$

•
$$Supp(\Gamma_{m,n}) = B_{m,n}$$

An idempotent e of an algebra A is said to be convex provided e is a sum of pairwise orthogonal primitive idempotents of A corresponding to the vertices of a convex valued subquiver of the quiver Q_A of A.

Corollary

Let A be an algebra and Γ be a cycle-finite component of ${}_{c}\Gamma_{A}$. Then there exists a convex idempotent e_{Γ} of A such that Supp(Γ) is isomorphic to the algebra $e_{\Gamma}Ae_{\Gamma}$.

Theorem

Let A be an algebra. Then, for all but finitely many isomorphism classes of cycle-finite modules M in ind A, the following statements hold.

 $|\operatorname{Ext}^1_A(M,M)| \le |\operatorname{End}_A(M)| \text{ and } \operatorname{Ext}^r_A(M,M) = 0 \text{ for } r \ge 2.$

◎ $|\operatorname{Ext}_{A}^{1}(M, M)| = |\operatorname{End}_{A}(M)|$ if and only if there is a quotient concealed canonical algebra *C* of *A* and a stable tube *T* of Γ_{C} such that *M* is an indecomposable *C*-module in *T* of quasi-length divisible by the rank of *T*.

Hence, for all but finitely many isomorphism classes of cycle-finite modules M in a module category ind A, the Euler form

$$\chi_{\mathcal{A}}(M) = \sum_{i=0}^{\infty} (-1)^i |\operatorname{Ext}_{\mathcal{A}}^i(M,M)|$$

of M is well defined and nonnegative.

- A algebra
- $K_0(A)$ the Grothendieck group of A
- for a module M in mod A, we denote by [M] the image of M in $K_0(A)$

Theorem

Let A be an algebra. The following statements hold.

- There is a positive integer m such that, for any cycle-finite module M in ind A with $|\operatorname{End}_A(M)| \neq |\operatorname{Ext}_A^1(M, M)|$, the number of isomorphism classes of modules X in ind A with [X] = [M] is bounded by m.
- For all but finitely many isomorphism classes of cycle-finite modules M in ind A with | End_A(M)| = | Ext¹_A(M, M)|, there are infinitely many pairwise nonisomorphic modules X in ind A with [X] = [M].
- The number of isomorphism classes of cycle-finite modules M in ind A with $\operatorname{Ext}_{A}^{1}(M, M) = 0$ is finite.

< < p>< < p>

- X nonprojective module in ind A
- $\alpha(X)$ the number of indecomposable direct summands in the middle term

$$0 \to \tau_A X \to Y \to X \to 0$$

of the almost split sequence with the right term X

- A is an algebra of finite representation type and X a nonprojective module in ind A ^{Bautista-Brenner}→ α(X) ≤ 4
- α(X) = 4 → Y admits a projective-injective indecomposable direct summand
- Liu the same is true for any indecomposable nonprojective module
 X lying on an oriented cycle of Γ_A of any algebra A

Theorem

Let A be an algebra. Then, for all but finitely many isomorphism classes of nonprojective cycle-finite modules M in ind A, we have $\alpha(M) \leq 2$.

Theorem

Let A be a cycle-finite algebra. Then there exist tame generalized multicoil algebras B_1, \ldots, B_p and tame generalized double tilted algebras B_{p+1}, \ldots, B_q which are quotient algebras of A and the following statements hold.

- $Ind A = \bigcup_{i=1}^q ind B_i.$
- ② All but finitely many isomorphism classes of modules in ind A belong to ∪^p_{i=1} ind B_i.
- All but finitely many isomorphism classes of nondirecting modules in ind A belong to generalized multicoils of Γ_{B1},..., Γ_{Bp}.

Theorem

Let A be a cycle-finite algebra. Then, for all but finitely many isomorphism classes of modules M in ind A, we have $|\operatorname{Ext}_{A}^{1}(M, M)| \leq |\operatorname{End}_{A}(M)|$ and $\operatorname{Ext}_{A}^{r}(M, M) = 0$ for $r \geq 2$.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A is a tame algebra over an algebraically closed field, M is a directing module in ind $A \xrightarrow[de la Peña]{de la Peña} Supp(M)$ is a tilted algebra being a gluing of at most two representation-infinite tilted algebras of Euclidean type

Open question: Let A be an algebra and Γ be a cycle-finite finite component in the cyclic quiver ${}_{c}\Gamma_{A}$. Is then Supp(Γ) gluing of at most two representation-infinite tilted algebras of Euclidean type?

- P. Malicki, On the composition factors of indecomposable modules in almost cyclic coherent Auslander-Reiten components, J. Pure Appl. Algebra 207 (2006), 469–490.
- P. Malicki, J. A. de la Peña and A. Skowroński, *Finite cycles of indecomposable modules*, arXiv:1306.0929v1 [math.RT].
- P. Malicki, J. A. de la Peña and A. Skowroński, On the number of terms in the middle of almost split sequences over cycle-finite artin algebras, Centr. Eur. J. Math., **12** (2014), 39–45.
- P. Malicki and A. Skowroński, Almost cyclic coherent components of an Auslander-Reiten quiver, J. Algebra 229 (2000), 695–749.
- P. Malicki and A. Skowroński, On the indecomposable modules in almost cyclic coherent Auslander-Reiten components, J. Math. Soc. Japan 63 (2011), 1121–1154.