Periodicity of selfinjective algebras of polynomial growth

Jerzy Białkowski

(Nagoya, November 2013)
joint work with Karin Erdmann and Andrzej Skowroński
K - algebraically closed field
algebra - finite dimensional K-algebra
A an algebra
$\bmod A$ category of finitely dimensional right A-modules
M module in $\bmod A$, exact sequence in $\bmod A$

$$
\underset{\text { syzygy module of } M}{ } \longrightarrow \Omega_{A}(M) \quad P_{A}(M) \longrightarrow 0
$$

M is periodic if $\Omega_{A}^{n}(M) \cong M$ for some $n \geq 1$
A selfinjective and M periodic, then the Ext-algebra of M

$$
\operatorname{Ext}_{A}^{*}(M, M)=\bigoplus_{i \geq 0} \operatorname{Ext}_{A}^{i}(M, M)
$$

is a graded noetherian algebra (Schultz, 1986)
$A^{e}=A^{\circ \mathrm{O}} \otimes_{K} A$ enveloping algebra of A
$\bmod A^{e}=\operatorname{bimod} A \quad$ category of finite dimensional A-A-bimodules
A projective in $\bmod A^{e} \Longleftrightarrow A$ is a semisimple algebra
A is a periodic algebra if A is a periodic module in $\bmod A^{e}$ (periodic A - A-bimodule)
A periodic algebra $\Rightarrow A$ selfinjective algebra
A periodic algebra $\Rightarrow \bmod A$ is a periodic category $\binom{$ every module in $\bmod A$ without pro- }{ jective direct summands is periodic }

In fact, we have
$\Omega_{A^{e}}^{n}(A) \cong A$ in $\bmod A^{e} \Rightarrow \Omega_{A}^{n}(M) \cong M$ for any module M in $\bmod A$ without projective direct summands
$H H^{*}(A)=\operatorname{Ext}_{A^{e}}^{*}(A, A)$ the Hochschild cohomology algebra of A
A selfinjective $\Rightarrow A^{e}$ selfinjective $\Rightarrow \operatorname{Ext}_{A^{e}}^{i}(A, A) \cong \underline{\operatorname{Hom}}_{A^{e}}\left(\Omega_{A^{e}}^{i}(A), A\right)$ for $i \geq 0$
A periodic algebra $\Rightarrow H H^{*}(A)$ a graded noetherian algebra
$D^{b}(\bmod A)$ derived category of bounded complexes over $\bmod A$
A, Λ algebras
A and Λ are derived equivalent if $D^{b}(\bmod A)$ and $D^{b}(\bmod \Lambda)$ are equivalent as triangulated categories
A and Λ are derived equivalent $\xlongequal{\text { Happel, Rickard }} H H^{*}(A) \cong H H^{*}(\Lambda)$ as graded K-algebras

Theorem (Rickard)

Let A and \wedge be derived equivalent algebras.
A is a periodic algebra $\Longleftrightarrow \Lambda$ is a periodic algebra Moreover, if A and \wedge are periodic, then their periods coincide.

PROBLEM

Determine the periodic algebras (up to Morita equivalence, derived equivalence)

PERIODICITY CONJECTURE

Assume A is an algebra for which all simple modules in $\bmod A$ are periodic. Then A is a periodic algebra.

Theorem (Green-Snashall-Solberg, 2003)

Let A be an algebra such that every simple module in $\bmod A$ is periodic. Then A is a selfinjective algebra and $\Omega_{A^{e}}^{d}(A) \cong{ }_{1} A_{\sigma}$ for a positive integer d and a K-algebra automorphism σ of A.

Is then σ of finite order?

Selfinjective Nakayama algebras

$N_{n}^{m}(K)=K \Delta_{n} / I_{m, n}, m \geq 2, n \geq 1$

$K \Delta_{n}$ path algebra of Δ_{n}
$I_{m, n}$ ideal generated by all compositions of m consecutive arrows in Δ_{n}
$N_{n}^{m}(K)$ symmetric algebra $\Longleftrightarrow n \mid m+1$
$N_{n}^{m}(K)$ a periodic algebra (Erdmann-Holm, 1999)
period of $N_{n}^{m}(K)=\left\{\begin{array}{c}n \\ \frac{2 \operatorname{lcm}(m, n)}{m},\end{array}\right.$, othar $K=2, m=2, n$ odd
Hence every Brauer tree algebra is a periodic algebra
Brauer tree algebras are derived equivalent to symmetric Nakayama algebras (Rickard, 1989)

Tame and wild algebras

Theorem (Drozd, 1979)

Every algebra A is either tame or wild, and not both.
A and algebra
A is wild if there is a $K\langle x, y\rangle$-bimodule M such that:

- M is a finite rank free left $K\langle x, y\rangle$-module
- the functor $-\otimes_{K\langle x, y\rangle} \bmod K\langle x, y\rangle \rightarrow \bmod A$ preserves indecomposability and respects isomorphism classes
A a wild algebra \Rightarrow for any algebra Λ over K there is an exact functor $F: \bmod \Lambda \rightarrow \bmod A$ which preserves indecomposability and respects isomorphism classes
A is tame if, for any dimension d, there is a finite number of $K[x]$-A-bimodules $M_{i}, 1 \leq i \leq n_{d}$, such that
- $M_{i}, 1 \leq i \leq n_{d}$, are finite rank free left $K[x]$-modules,
- $K[x] /(x-\lambda) \otimes_{K[x]} M_{i}, \lambda \in K, i \in\left\{1, \ldots, n_{d}\right\}$, exhaust all but finitely many isomorphism classes of indecomposable modules of dimension d in $\bmod A$ $\mu_{A}(d)$ the least number of $K[x]-A$-bimodules satisfying the above condition for d

Hierarchy of algebras

finite type $\forall d \geq 1 \mu_{A}(d)=0$ domestic type

$$
\exists m \geq 1 \forall d \geq 1 \mu_{A}(d) \leq m
$$

polynomial growth
$\exists_{m \geq 1} \forall d \geq 1 \mu_{A}(d) \leq d^{m}$
tame type

$$
\forall d \geq 1 \mu_{A}(d)<\infty
$$

wild

Preprojective algebras of Dynkin type

Δ Dynkin graph of type $\mathbb{A}_{n}(n \geq 1), \mathbb{D}_{n}(n \geq 4), \mathbb{E}_{6}, \mathbb{E}_{7}, \mathbb{E}_{8}$
Q_{Δ} double quiver of Δ
$P(\Delta)=K Q_{\Delta} / I_{\Delta}$ preprojective algebra of type Δ
$K Q_{\Delta}$ the path algebra of Q_{Δ}
I_{Δ} the ideal of $K Q_{\Delta}$ generated by the sums $\sum_{a, i a=v} a \bar{a}$ for all 2-cycles at the vertices v of Q_{Δ}
$P(\Delta)$ finite dimensional selfinjective K-algebra
$\Omega_{P(\Delta)^{e}}^{6}(P(\Delta)) \cong P(\Delta)$ for $\Delta \neq \mathbb{A}_{1}$
Schofield (1990), Erdmann-Snashall (1998), Brenner-Butler-King (2002),

For $\Delta \neq \mathbb{A}_{n}(n \leq 5)$ and \mathbb{D}_{4}, the algebras $P(\Delta)$ are wild

$Q_{\mathbb{E}_{7}}:$

Algebras of quaternion type

A is of quaternion type if

- A is indecomposable and symmetric
- A is tame of infinite type
- every indecomposable nonprojective module in $\bmod A$ is periodic with period dividing 4
- the Cartan matrix C_{A} is nonsingular

Erdmann proved (1988) that every algebra of quaterion type is Morita equivalent to an algebra in 12 families of algebras listed bellow.
Moreover, A is of pure quaternion type, if A is not of polynomial growth.

Theorem (Erdmann-Skowroński, 2006)

Let A be an algebra of pure quaternion type. Then A is a periodic algebra of period 4 .

The derived equivalence clasification of algebras of pure quaternion type established by Holm (1999) is applied.

The algebras of pure quaternion type are tame.
$Q^{k}(c):$

$$
\begin{gathered}
\alpha^{2}=(\beta \alpha)^{k-1} \beta+c(\alpha \beta)^{k} \\
\beta^{2}=(\alpha \beta)^{k-1} \alpha \\
(\alpha \beta)^{k}=(\beta \alpha)^{k},(\alpha \beta)^{k} \alpha=0 \\
k \geq 2
\end{gathered}
$$

$Q(2 \mathcal{B})_{1}^{k, s}(a, c):$
$Q(2 \mathcal{B})_{2}^{s}(a, c):$

$$
\begin{gathered}
\alpha \beta=\beta \eta, \eta \gamma=\gamma \alpha, \beta \gamma=\alpha^{2} \\
\gamma \beta=\eta^{2}+a \eta^{s-1}+c \eta^{s} \\
\alpha^{s+1}=0, \eta^{s+1}=0 \\
\gamma \alpha^{s-1}=0, \alpha^{s-1} \beta=0 \\
s \geq 4, a \in K^{*}, c \in K
\end{gathered}
$$

$Q(2 \mathcal{A})^{k}(c):$

$$
\begin{gathered}
\gamma \beta \gamma=(\gamma \alpha \beta)^{k-1} \gamma \alpha \\
\beta \gamma \beta=(\alpha \beta \gamma)^{k-1} \alpha \beta \\
\alpha^{2}=(\beta \gamma \alpha)^{k-1} \beta \gamma+c(\beta \gamma \alpha)^{k} \\
\alpha^{2} \beta=0 \\
k \geq 2, c \in K
\end{gathered}
$$

$Q(2 \mathcal{B})_{3}^{t}(a, c):$

$$
\begin{gathered}
\alpha \beta=\beta \eta, \eta \gamma=\gamma \alpha, \beta \gamma=\alpha^{2} \\
\gamma \beta=a \eta \eta^{t-1}+c \eta^{t} \\
\alpha^{4}=0, \eta^{t+1}=0, \gamma \alpha^{2}=0 \\
\alpha^{2} \beta=0 \\
t \geq 3, a \in K^{*}, c \in K \\
(t=3 \Rightarrow a \neq 1, t \geq 3 \Rightarrow a=1)
\end{gathered}
$$

$$
\begin{aligned}
& Q(3 \mathcal{A})_{1}^{k, s}(d): \\
& \bullet \stackrel{\beta}{\gamma} \stackrel{\delta}{\underset{\eta}{\longleftrightarrow}} \text { • } \\
& \beta \delta \eta=(\beta \gamma)^{k-1} \beta \\
& \delta \eta \gamma=(\gamma \beta)^{k-1} \gamma \\
& \eta \gamma \beta=d(\eta \delta)^{s-1} \eta \\
& \gamma \beta \delta=d(\delta \eta)^{s-1} \delta \\
& \beta \delta \eta \delta=0, \eta \gamma \beta \gamma=0 \\
& k, s \geq 2, d \in K^{*} \\
& (k=s=2 \Rightarrow d \neq 1 \text {, else } d=1) \\
& Q(3 \mathcal{A})_{2}^{k}: \\
& \beta \gamma \beta=(\beta \delta \eta \gamma)^{k-1} \beta \delta \eta \\
& \gamma \beta \gamma=(\delta \eta \gamma \beta)^{k-1} \delta \eta \gamma \\
& \eta \delta \eta=(\eta \gamma \beta \delta)^{k-1} \eta \gamma \beta \\
& \delta \eta \delta=(\gamma \beta \delta \eta)^{k-1} \gamma \beta \delta \\
& \beta \gamma \beta \delta=0, \eta \delta \eta \gamma=0 \\
& k \geq 2
\end{aligned}
$$

$Q(3 \mathcal{C})^{k, s}$:

$\beta \varrho=0, \varrho \gamma=0, \eta \varrho^{2}=0$

$$
\begin{gathered}
\varrho^{2} \delta=0 \\
\delta \eta-\gamma \beta=\varrho^{s-1}, \eta \varrho=(\eta \delta)^{k-1} \eta \\
\varrho \delta=(\delta \eta)^{k-1} \delta,(\beta \gamma)^{k-1} \beta \delta=0 \\
(\eta \delta)^{k-1} \eta \gamma=0 \\
k \geq 2, s \geq 3
\end{gathered}
$$

$Q(3 \mathcal{B})^{k, s}:$

$$
\begin{gathered}
\beta \gamma=\alpha^{s-1} \\
\alpha \beta=(\beta \delta \eta \gamma)^{k-1} \beta \delta \eta \\
\gamma \alpha=(\delta \eta \gamma \beta)^{k-1} \delta \eta \gamma \\
\eta \delta \eta=(\eta \gamma \beta \delta)^{k-1} \eta \gamma \beta \\
\delta \eta \delta=(\gamma \beta \delta \eta)^{k-1} \gamma \beta \delta \\
\alpha^{2} \beta=0, \beta \delta \eta \delta=0 \\
k \geq 1, s \geq 3
\end{gathered}
$$

$Q(3 \mathcal{K})^{a, b, c}$:

$$
\begin{gathered}
\beta \delta=(\kappa \lambda)^{a-1} \kappa, \eta \gamma=(\lambda \kappa)^{a-1} \lambda \\
\delta \lambda=(\gamma \beta)^{b-1} \gamma, \kappa \eta=(\beta \gamma)^{b-1} \beta \\
\lambda \beta=(\eta \delta)^{c-1} \eta, \gamma \kappa=(\delta \eta)^{c-1} \delta \\
\gamma \beta \delta=0, \delta \eta \gamma=0, \lambda \kappa \eta=0 \\
a, b, c \geq 1 \text { (at most one equal 1) }
\end{gathered}
$$

Theorem (Dugas, 2010)

Let A be a nonsimple, indecomposable, selfinjective algebra of finite type.
Then A is a periodic algebra.
Special cases:

- Erdmann-Holm-Snashall $(1999,2002)$ Dynkin type \mathbb{A}_{n}
- Brenner-Butler-King (2002): the trivial extension algebras $\mathrm{T}(B)=B \ltimes D(B)$ of titled algebras B of Dynkin type
- Erdmann-Skowroński (2008): almost all standard selfinjective algebras of finite type

Basic, nonsimple, indecomposable, selfinjective algebras of finite type
standard algebras (admit simply connected Galois coverings) Riedtmann, Waschbüsch (1980-1983) nonstandard algebras (occur only in characteristic 2)

Periodicity of standard selfinjective algebras of finite type follows from the periodicity of preprojective algebras of Dynkin type (Brenner-Butler-King, Dugas)

Periodicity of nonstandard selfinjective algebras of finite type follows from the periodicity of a family of Brauer tree algebras (Dugas)
Λ basic, indecomposable algebra
$1_{\wedge}=e_{1}+\cdots+e_{n}$,
e_{1}, \ldots, e_{n} pairwise orthogonal primitive idempotents of Λ
G a finite subgroup of $\operatorname{Aut}_{K}(\Lambda)$ acting freely on the chosen set e_{1}, \ldots, e_{n} of primitive idempotents

Then we have a finite Galois covering $\Lambda \rightarrow \Lambda / G$ where Λ / G is the orbit algebra of Λ with respect to G

In fact, we have an isomorphism of K-algebras
$\Lambda / G \cong \Lambda^{G}=\{\lambda \in \Lambda \mid g(\lambda)=\lambda$ for all $g \in G\}$ invariant algebra (Auslander-Reiten-Smalø, 1989)

Theorem (Dugas, 2010)

Let A and \wedge be basic indecomposable algebras related by a finite Galois covering $\Lambda \rightarrow A=\Lambda / G$. Then
Λ is a periodic algebra $\Longleftrightarrow A$ is a periodic algebra

Selfinjective algebras of polynomial growth

Theorem (Skowroński, 1989, 2006)

Let A be a basic, indecomposable, selfinjective algebra over an algebraically closed field K. Then
(1) A is representation-infinite domestic $\Longleftrightarrow A$ is socle equivalent to an orbit algebra \widehat{B} / G, where B is a tilted algebra of Euclidean type and G is an admissible infinite cyclic group of automorphisms of \widehat{B}.
(2) A is nondomestic of polynomial growth $\Longleftrightarrow A$ is socle equivalent to an orbit algebra \widehat{B} / G, where B is a tubular algebra and G is an admissible infinite cyclic group of automorphisms of \widehat{B}.

Two selfinjective algebras A and Λ are socle equivalent if the quotient algebras $A / \operatorname{soc}(A)$ and $\Lambda / \operatorname{soc}(\Lambda)$ are isomorphic

Riedtmann's classification of selfinjective algebras of finite type can be presented as follows

Theorem

Let A be a basic, nonsimple, indecomposable, selfinjective algebra over an algebraically closed field. Then A is of finite type $\Longleftrightarrow A$ is socle equivalent to an orbit algebra \widehat{B} / G, where B is a tilted algebra of Dynkin type and G is an admissible infinite cyclic group of automorphisms of \widehat{B}.

THEOREM (Białkowski-Erdmann-Skowroński, 2013)

Let A be a basic, indecomposable, representation-infinite selfinjective algebra of polynomial growth. The following statements are equivalent.
(1) All simple modules in mod A are periodic.
(2) A is a periodic algebra.
(3) A is socle equivalent to an orbit algebra \widehat{B} / G, where B is a tubular algebra and G is an admissible infinite cyclic group of automorphisms of the repetitive category \widehat{B} of B.
(2) \Rightarrow (1) Known
(1) \Rightarrow (3 socle equivalent to $\widehat{B} / G, B$ tilted algebra of Euclidean type, then Γ_{A} admits an acyclic component \mathcal{C} (with the stable part $\mathcal{C}^{s}=\mathbb{Z} \Delta$ for a Euclidean quiver Δ) containing a simple module S. But then S is not periodic, because for simple modules the periodicity is equivalent to τ_{A}-periodicity.
(3) \Rightarrow (2) New (difficult) part.

We will present the main ingredients of our proof of this implication.

Tubular algebras

A tubular algebra B is a tubular (branch) extension of a tame concealed algebra of one of the tubular types (2,2,2,2),
$(3,3,3),(2,4,4)$, or (2,3,6) (Ringel, 1984)

- gl. $\operatorname{dim} B=2$
- rk $K_{0}(B)=6,8,9$, or 10
- B is triangular nondomestic of polynomial growth
- The Auslander-Reiten quiver Γ_{B} of B is of the form

\mathcal{P}^{B}
preprojective component of Euclidean type

$$
\mathcal{T}_{0}^{B}
$$

$\mathbb{P}_{1}(K)$-family of ray tubes

$$
\bigvee_{q \in \mathbb{Q}^{+}} \mathcal{T}_{q}^{B}
$$

$\mathbb{P}_{1}(K)$-family of stable tubes

\mathcal{T}_{∞}^{B}
$\mathbb{P}_{1}(K)$-family of coray tubes
preinjective component of Euclidean type

Canonical tubular algebras

$\Lambda(2,2,2,2, \lambda), \lambda \in K \backslash\{0,1\}$, given by the quiver

and the relations $\alpha_{2} \alpha_{1}+\beta_{2} \beta_{1}+\gamma_{2} \gamma_{1}=0, \alpha_{2} \alpha_{1}+\lambda \beta_{2} \beta_{1}+\delta_{2} \delta_{1}=0$. $\Lambda(p, q, r),(p, q, r) \in\{(3,3,3),(2,4,4),(2,3,6)\}$, given by the quiver

and the relation $\alpha_{p} \ldots \alpha_{2} \alpha_{1}+\beta_{q} \ldots \beta_{2} \beta_{1}+\gamma_{r} \ldots \gamma_{2} \gamma_{1}=0$.

Theorem (Ringel, 1984)

Let B be a basic, indecomposable algebra. Then
$\left.\begin{array}{c}B \text { is a tubular } \\ \text { algebra }\end{array} \Longleftrightarrow \begin{array}{c}B=\text { End }_{\wedge}(T) \text { for a canonical tubular } \\ \text { algetra } \Lambda \text { and a (multiplicity-free) } \\ \text { tiltitig module } T \text { in the additive } \\ \text { category of } \mathcal{P}_{0}^{\wedge} \cup \mathcal{T}_{0}^{\wedge} \cup\left(\cup_{q \in \mathbb{Q}^{+}} \mathcal{T}_{q}^{\wedge}\right)\end{array}\right]$

Hence, any two tubular algebras B and C of the same tubular type $(p, q, r) \in\{(3,3,3),(2,4,4),(2,3,6)\}$ are derived equivalent.

Similarly, every two tubular algebras B and C of tubular type $(2,2,2,2)$ given by the same canonical tubular algebra $\Lambda(2,2,2,2, \lambda)$ are derived equivalent.
B tubular algebra, G admissible infinite cyclic group of automorphisms of $\widehat{B}, A=\widehat{B} / G$ Then $\Gamma_{A}=\Gamma_{\widehat{B}} / G$ and has the following clock structure

where $*$ denote projective modules, $r \geq 3, \mathbb{Q}_{i}^{i-1}=\mathbb{Q} \cap(i-1, i)$ for any $i \in\{1, \ldots, r\}$, and
(1) for each $i \in\{0,1, \ldots, r-1\}, \mathcal{T}_{i}^{A}$ is a $\mathbb{P}_{1}(K)$-family of quasi-tubes (the stable parts are stable tubes);
(2) for each $q \in \mathbb{Q}_{i}^{i-1}, i \in\{1, \ldots, r\}, \mathcal{T}_{q}^{A}$ is a $\mathbb{P}_{1}(K)$-family of stable tubes;
(3) all $\mathbb{P}_{1}(K)$-families $\mathcal{T}_{q}^{A}, q \in \mathbb{Q} \cap[0, r]$, have the same tubular type $(2,2,2,2)$, $(3,3,3),(2,4,4)$, or $(2,3,6)$.

For an algebra B and a positive integer r, we have the r-fold trivial extension algebra of B

$$
\mathrm{T}(B)^{(r)}=\widehat{B} /\left(\nu_{\widehat{B}}^{r}\right)=\left\{\begin{array}{c}
{\left[\begin{array}{cccccc}
b_{1} & 0 & 0 & & \\
f_{2} & b_{2} & 0 & & \\
0 & f_{3} & b_{3} & & & \\
& & \ddots & \ddots & & \\
& 0 & & f_{r-1} & b_{r-1} & 0 \\
& & 0 & f_{1} & b_{1}
\end{array}\right]} \\
b_{1}, \ldots, b_{r-1} \in B, f_{1}, \ldots, f_{r-1} \in D(B)
\end{array}\right\}
$$

$\mathrm{T}(B)^{(1)} \cong \mathrm{T}(B)=B \ltimes D(B)$ the trivial extension algebra of B by the injective cogenerator $D(B)=\operatorname{Hom}_{B}(B, K)$
$\mathrm{T}(B)^{(r)}$ is a symmetric algebra $\Longleftrightarrow r=1$

Standard selfinjective algebra of tubular type: a selfinjective

 algebra of the form $A=\widehat{B} / H$, where B is a tubular algebra and H is an admissible infinite cyclic group of automorphisms of \widehat{B}Then A admits a simply connected Galois covering $\widehat{B} \rightarrow \widehat{B} / H=A$

Theorem

Let A be a basic, indecomposable algebra. The following statements are equivalent.
(1) A is a standard selfinjective algebra of tubular type.
(2) A is isomorphic to an orbit algebra $T(B)^{(r)} / G$, where B is a tubular algebra, r a positive integer, and G an admissible finite automorphism group of $\mathrm{T}(B)^{(r)}$.

Białkowski-Skowroński (2002): tubular types (2, 2, 2, 2), (3, 3, 3), $(2,4,4)$
Lenzing-Skowroński (2000): tubular type (2,3,6)
Note that $\mathrm{T}(B)^{(r)} / G \cong\left(\mathrm{~T}(B)^{(r)}\right)^{G}$ invariant algebra

Theorem (Rickard, 1989)

Let B and C be derived equivalent algebras. Then the trivial extension algebras $\mathrm{T}(B)$ and $\mathrm{T}(C)$ are derived equivalent.

We may consider the following scheme of finite Galois coverings

where B and C are derived equivalent tubular algebras, r, s positive integers, G, H admissible finite automorphism groups of $T(B)^{(r)}$ and $T(C)^{(s)}$, respectively.
Then
$T(B)^{(r)} / G$ is a periodic algebra $\Longleftrightarrow \mathrm{T}(C)^{(s)} / H$ is a periodic algebra

Nonstandard nondomestic selfinjective algebras of polynomial growth

 (socle deformations of standard selfinjective algebras of tubular type)Occur only in characteristic 2 and 3
^ nonstandard nondomestic selfinjective algebra of polynomial growth

Then there exists a unique standard selfinjective algebra Λ^{\prime} of tubular type such that
(1) $\operatorname{dim}_{K} \Lambda=\operatorname{dim}_{K} \Lambda^{\prime}$
(2) Λ an Λ^{\prime} are socle equivalent (but $\Lambda \not \equiv \Lambda^{\prime}$)
(0) Λ^{\prime} is a geometric degeneration of an Λ (belongs to the closure $\overline{\mathrm{GL}}_{K}(d) \Lambda$ in the affine variety of K-algebras of dimension $d=\operatorname{dim}_{K} \Lambda=\operatorname{dim}_{K} \Lambda^{\prime}$)
Λ^{\prime} the standard form of Λ
The pairs Λ an Λ^{\prime} are described by the tables (Białkowski-Skowroński, 2004)

characteristic	3		2		
tubular type	$(3,3,3)$		(2,2,2,2)	$(3,3,3)$	$(2,3,6)$
nonstandard algebras	Λ_{1} ${ }^{\alpha} C \bullet \stackrel{\rightharpoonup}{\underset{\beta}{\rightleftarrows}} \bullet$ $\begin{gathered} \alpha^{2}=\gamma \beta, \\ \beta \alpha \gamma=\beta \alpha^{2} \gamma, \\ \beta \alpha^{2}=0, \\ \alpha^{2} \gamma=0 \end{gathered}$	$\begin{gathered} \Lambda_{2}^{\Lambda_{2}} \stackrel{\gamma}{{ }_{\alpha} C} \stackrel{\gamma}{\rightleftarrows} \bullet \\ \alpha^{2} \gamma=0, \\ \beta \alpha^{2}=0, \\ \gamma \beta \gamma=0, \\ \beta \gamma \beta=0, \\ \beta \gamma=\beta \alpha \gamma, \\ \alpha^{3}=\gamma \beta \end{gathered}$	$\begin{gathered} \Lambda_{3}(\lambda), \lambda \in K \backslash\{0,1\} \\ { }_{\alpha} C \bullet \stackrel{\sigma}{\leftarrow} \stackrel{\sigma}{\rightleftarrows} \bullet \\ \alpha^{4}=0, \gamma \alpha^{2}=0, \\ \alpha^{2} \sigma=0, \\ \alpha^{2}=\sigma \gamma+\alpha^{3}, \\ \lambda \beta^{2}=\gamma \sigma, \gamma \alpha=\beta \gamma, \\ \sigma \beta=\alpha \sigma \end{gathered}$	$\begin{gathered} \beta \alpha+\varrho \gamma+\varepsilon \xi=0, \\ \xi \varepsilon=0, \gamma \varrho=0 \\ \alpha \beta \alpha=0, \beta \alpha \beta=0, \\ \alpha \beta=\alpha \varrho \gamma \beta \end{gathered}$	Λ_{10} $\begin{gathered} \mu \beta=0, \alpha \eta=0, \\ \beta \alpha=\delta \gamma, \xi \sigma=\eta \mu, \\ \sigma \delta=\gamma \xi+\sigma \delta \sigma \delta, \\ \delta \sigma \delta \sigma \delta=0 \\ \sigma \delta \sigma \delta \sigma=0 \\ \xi \sigma \delta \sigma \delta=0 \\ \sigma \delta \sigma \delta \gamma=0 \end{gathered}$
standard algebras	$\begin{gathered} \Lambda_{1}^{\prime} \\ { }_{\alpha} C \cdot \stackrel{\gamma}{\underset{\beta}{\rightleftarrows}} \bullet \\ \alpha^{2}=\gamma \beta, \\ \beta \alpha \gamma=0 \end{gathered}$	$\begin{gathered} { }_{\alpha} C_{2}^{\prime} \stackrel{\gamma}{\bullet} \stackrel{\gamma}{\stackrel{(}{\rightleftarrows}} \bullet \\ \alpha^{2} \gamma=0, \\ \beta \alpha^{2}=0, \\ \beta \gamma=0, \\ \alpha^{3}=\gamma \beta \end{gathered}$	$\begin{aligned} & \Lambda_{3}^{\prime}(\lambda), \lambda \in K \backslash\{0,1\} \\ & \alpha \bigcup \bullet \underset{\gamma}{\sigma} \bullet{ }^{\sigma}, \\ & \alpha^{2}=\sigma \gamma, \lambda \beta^{2}=\gamma \sigma, \\ & \gamma \alpha=\beta \gamma, \sigma \beta=\alpha \sigma \end{aligned}$	$\begin{gathered} \beta \alpha+\varrho \gamma+\varepsilon \xi=0, \\ \alpha \beta=0, \xi \varepsilon=0, \\ \gamma \varrho=0 \end{gathered}$	$\begin{gathered} \Lambda_{10}^{\prime} \\ \mu \beta=0, \alpha \eta=0, \\ \beta \alpha=\delta \gamma, \xi \sigma=\eta \mu, \\ \sigma \delta=\gamma \xi \end{gathered}$

characteristic	2				
tubular type	$(2,4,4)$				
nonstandard algebras	Λ_{4} $\begin{gathered} \delta \beta \delta=\alpha \gamma, \\ (\beta \delta)^{3} \beta=0, \\ \gamma \beta \alpha \gamma=0, \\ \alpha \gamma \beta \alpha=0, \\ \gamma \beta \alpha=\gamma \beta \delta \beta \alpha \end{gathered}$		Λ_{6} $\begin{gathered} \alpha \delta \gamma \delta=0 \\ \gamma \delta \gamma \beta=0, \\ \alpha \beta \alpha=0 \\ \beta \alpha \beta=0 \\ \alpha \beta=\alpha \delta \gamma \beta \\ \beta \alpha=\delta \gamma \delta \gamma \end{gathered}$	$\begin{aligned} & \beta \delta=\beta \alpha \delta, \alpha \sigma=0, \\ & \alpha \delta=\sigma \gamma, \gamma \beta \alpha=0, \\ & \alpha^{2}=\delta \beta, \gamma \beta \delta=0, \\ & \beta \delta \beta=0, \delta \beta \delta=0 \end{aligned}$	$\begin{gathered} \delta \beta=\delta \alpha \beta, \sigma \alpha=0, \\ \delta \alpha=\gamma \sigma, \alpha \beta \gamma=0, \\ \alpha^{2}=\beta \delta, \delta \beta \gamma=0, \\ \beta \delta \beta=0, \delta \beta \delta=0 \end{gathered}$
standard algebras	$\begin{gathered} \delta \beta \delta=\alpha \gamma \\ (\beta \delta)^{3} \beta=0, \\ \gamma \beta \alpha=0 \end{gathered}$	$\begin{gathered} \alpha^{2}=\gamma \beta, \alpha^{3}=\delta \sigma, \\ \beta \delta=0, \sigma \gamma=0, \\ \alpha \delta=0, \sigma \alpha=0, \\ \beta \gamma=0 \end{gathered}$	$\begin{gathered} \stackrel{\Lambda_{6}^{\prime}}{\stackrel{\alpha}{\rightleftarrows}} \stackrel{\delta}{\stackrel{\delta}{\rightleftarrows}} \bullet \\ \alpha \delta \gamma \delta=0 \\ \gamma \delta \gamma \beta=0, \alpha \beta=0, \\ \beta \alpha=\delta \gamma \delta \gamma \end{gathered}$	$\begin{gathered} \beta \delta=0, \alpha \sigma=0 \\ \alpha \delta=\sigma \gamma, \gamma \beta \alpha=0, \\ \alpha^{2}=\delta \beta \end{gathered}$	$\begin{gathered} \delta \beta=0, \sigma \alpha=0, \\ \delta \alpha=\gamma \sigma, \alpha \beta \gamma=0, \\ \alpha^{2}=\beta \delta \end{gathered}$

Theorem (Białkowski-Holm-Skowroński, 2003)

(1) Λ_{1} and Λ_{2} are derived equivalent (char $K=3$)
(2) Λ_{1}^{\prime} and Λ_{2}^{\prime} are derived equivalent (char K arbitrary)
(3) $\Lambda_{4}, \Lambda_{5}, \Lambda_{6}, \Lambda_{7}, \Lambda_{8}$ are derived equivalent (char $K=2$)
(4) $\Lambda_{4}^{\prime}, \Lambda_{5}^{\prime}, \Lambda_{6}^{\prime}, \Lambda_{7}^{\prime}, \Lambda_{8}^{\prime}$ are derived equivalent (char K arbitrary)

- Λ_{i} and $\Lambda_{i}^{\prime}, i \in\{1, \ldots, 8\}$ are symmetric algebras
- Λ_{9} (char $K=2$) is weakly symmetric but not symmetric
- $\Lambda_{9}^{\prime}(\operatorname{char} K=2)$ is symmetric
- $\Lambda_{9}^{\prime}($ char $K \neq 2)$ is weakly symmetric but not symmetric
- Λ_{10} and Λ_{10}^{\prime} are not weakly symmetric

THEOREM

- Λ_{1} (char $K=3$) periodic algebra of period 6
- Λ_{1}^{\prime} (char K arbitrary) periodic algebra of period 6
- $\Lambda_{3}(\lambda)$ (char $K=2$) periodic algebra of period 4
- $\Lambda_{3}^{\prime}(\lambda)$ (char K arbitrary) periodic algebra of period 4
- Λ_{6} (char $K=2$) periodic algebra of period 8
- Λ_{6}^{\prime} (char K arbitrary) periodic algebra of period 8
- $\Lambda_{9}($ char $K=2)$ periodic algebra of period 6
- Λ_{9}^{\prime} periodic algebra of period $= \begin{cases}3 & \text { char } K=2 \\ 6 & \text { char } K \neq 2\end{cases}$
- Λ_{10} (char $K=2$) periodic algebra of period 6
- Λ_{10}^{\prime} periodic algebra of period $= \begin{cases}3 & \text { char } K=2 \\ 6 & \text { char } K \neq 2\end{cases}$
Λ basic, indecomposable, finite dimensional algebra, K algebraically closed $1_{A}=e_{1}+\cdots+e_{n}, e_{1}, \ldots, e_{n}$ pairwise orthogonal primitive idempotents of A $e_{i} \otimes e_{j}, i, j \in\{1, \ldots, n\}$, pairwise orthogonal primitive idempotents of $A^{e}=A^{\circ \mathrm{p}} \otimes_{K} A$ $1_{A^{e}}=\sum_{1 \leq i, j \leq n} e_{i} \otimes e_{j}$
$P(i, j)=\left(e_{i} \otimes e_{j}\right) A^{e}=A e_{i} \otimes e_{j} A, i, j \in\{1, \ldots, n\}$, complete set of pairwise nonisomorphic indecomposable projective modules in $\bmod A^{e}=\operatorname{bimod} A$
$S_{i}=e_{i} A / e_{i} \operatorname{rad} A, i \in\{1, \ldots, n\}$, complete set of pairwise nonisomorphic simple modules in $\bmod A$
The following theorem describes the terms of a minimal projective bimodule resolution of A.

Theorem (Happel, 1989)

A admits a minimal projective resolution in $\bmod A^{e}$ of the form

$$
\cdots \longrightarrow \mathbb{P}_{r} \xrightarrow{d_{r}} \mathbb{P}_{r-1} \longrightarrow \cdots \longrightarrow \mathbb{P}_{1} \xrightarrow{d_{1}} \mathbb{P}_{0} \xrightarrow{d_{0}} A \longrightarrow 0,
$$

where

$$
\mathbb{P}_{r}=\bigoplus_{0 \leq i, j \leq n} P(i, j)^{\operatorname{dim}_{K} \operatorname{Ext}_{A}^{t}\left(S_{i}, S_{j}\right)}
$$

Theorem (Białkowski-Erdmann-Skowroński, 2013)
 Let A and \wedge be representation-infinite periodic algebras of polynomial growth such that Λ is a nonstandard algebra and A a standard algebra.
 Then A and \wedge are not derived equivalent.

Symmetric algebras case Holm-Skowroński (2011), using Külshammer ideals

A similar result holds for representation-finite selfinjective algebras Asashiba (1999)

Holm-Skowroński (2006): different proof using Külshammer ideals

