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Abstract

We consider linear slices of the space of Kleinian once-punctured
torus groups; a linear slice is obtained by fixing the value of the trace
of one of the generators. The linear slice for trace 2 is called the Maskit
slice. We will show that if traces converge ‘horocyclically’ to 2 then
associated linear slices converge to the Maskit slice, whereas if the traces
converge ‘tangentially’ to 2 the linear slices converge to a proper subset
of the Maskit slice. This result will be also rephrased in terms of complex
Fenchel-Nielsen coordinates. In addition, we will show that there is a
linear slice which is not locally connected.

1 Introduction

One of the central issues in the theory of Kleinian groups is to understand the

structures of deformation spaces of Kleinian groups. In this paper we consider

Kleinian punctured torus groups, one of the simplest classes of Kleinian groups

with a non-trivial deformation theory.

Let S be a once-punctured torus and let R(S) be the space of conjugacy

classes of representations ρ : π1(S) → PSL(2,C) which takes a loop surround-

ing the cusp to a parabolic element. The space AH(S) of Kleinian punctured

torus groups is the subset of R(S) of faithful representations with discrete

images. Although the interior of AH(S) is parameterized by a product of

Teichmüller spaces of S, its boundary is quite complicated. For example, Mc-

Mullen [Mc2] showed that AH(S) self-bumps, and Bromberg [Br] showed that
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AH(S) is not even locally connected. We refer the reader to [Ca] for more

information on the topology of deformation spaces of general Kleinian groups.

In this paper we investigate the shape of AH(S) from the point of view

of the trace coordinates. Let us fix a pair a, b of generators of π1(S). Then every

representation ρ inR(S) is essentially determined by the data (tr ρ(a), tr ρ(b)) =

(α, β) ∈ C2. Thus we identify R(S) with C2 in this introduction (see Section

2 for more accurate treatment). We want to understand when (α, β) ∈ C2

corresponds to a point of AH(S). More precisely, we consider in this paper

the shape the linear slice

L(β) := {α ∈ C : (α, β) ∈ AH(S)}

of AH(S) when β close to 2. Note that L(2) is known as the Maskit slice, cor-

responding to the set of representations ρ ∈ AH(S) such that ρ(b) is parabolic.

It is natural to ask the following question: “When β tends to 2, does L(β) con-

verge to L(2)?” Parker and Parkkonen [PP] studied this question in the case

that a real number β > 2 tends to 2, and obtained an affirmative answer for

this case. In this paper, we consider the question above in the general case

that a complex number β ∈ C \ [−2, 2] tends to 2, and obtain the complete

answer to this question. In fact, the answer depends on the manner how β

tends to 2.

To describe our results, we need to introduce the notion of complex length.

Let ρ ∈ R(S) and assume that β = trρ(b) is close to 2. Then the complex

length λ of ρ(b) is determined by the relation β = 2 cosh(λ/2) and the normal-

ization Reλ > 0, Imλ ∈ (−π, π]. We denote this λ by λ(β). Note that β → 2

if and only if λ(β) → 0. We say that a sequence βn ∈ C \ [−2, 2] converges

horocyclically to 2 if for any disk in the right-half plane C+ touching at zero,

λ(βn) are eventually contained in this disk. On the other hand, we say that

the sequence βn converges tangentially to 2 if there is a disk in C+ touching

at zero which does not contain any λ(βn). Now we can state our main result.

(See Theorems 6.6 and 6.8 for more precise statements. See also Figure 3.)

Theorem 1.1. Suppose that a sequence βn ∈ C\[−2, 2] converges to 2. If βn →
2 horocyclically, then L(βn) converge to L(2) in the sense of Hausdorff. On the

other hand, if βn → 2 tangentially, then L(βn) converge (up to subsequence)

to a proper subset of L(2) in the sense of Hausdorff.

We now sketch the essential idea which is underlying this phenomenon.

Especially, in the case where βn → 2 tangentially, we will explain that there
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is a proper subset of L(2) in which any limits α ∈ C of convergent sequences

αn ∈ L(βn) should be contained. Let us take a sequence ρn ∈ AH(S) such that

(tr ρn(a), tr ρn(b)) = (αn, βn). Since (αn, βn) → (α, 2) as n → ∞, and since

AH(S) is closed, we have (α, 2) ∈ AH(S), and hence α ∈ L(2). By taking

conjugations, we may assume that ρn(a) → Aα and ρn(b) → B in PSL(2,C),

where

Aα =

(
α −i
−i 0

)
and B =

(
1 2

0 1

)
.

In addition, by pass to a subsequence if necessary, we may also assume that

the sequence ρn(π1(S)) converges geometrically to a Kleinian group Γ, which

contains the algebraic limit 〈Aα, B〉. From the assumption that βn → 2 tan-

gentially, one can see that the cyclic groups 〈ρn(b)〉 converge geometrically to

rank-2 abelian group 〈B,C〉, where C is of the form

C =

(
1 ζ

0 1

)
for some ζ ∈ C\R, see Theorem 6.5. Therefore the geometric limit Γ contains

the group 〈Aα, B, C〉. For any given integer k, one can see from CkAα = Aα−kiζ

that the group 〈Aα−kiζ , B〉 is a subgroup of the Kleinian group Γ. Hence the

group 〈Aα−kiζ , B〉 is discrete and thus α− kiζ ∈ L(2). Therefore α should be

contained in the intersection ∩
k∈Z

(kiζ + L(2)),

which is a proper subset of L(2).

In the proof of Theorem 1, we will make an essential use of Bromberg’s

theory in [Br]. In fact, Bromberg obtained in [Br] a coordinate system for

representations in AH(S) close to the Maskit slice. The poof of Theorem 1 is

then obtained by comparing Bromberg’s coordinates and the trace coordinates.

Some other topics and computer graphics of linear slices can be fond in

[Mc2], [MSW] and [KY], as well as [PP].

This paper is organized as follows; In section 2, we recall some basic fact

about spaces of representations and their subspaces. In section 3, we in-

troduce the trace coordinates for the space R(S) of representations of the

once-punctured torus group. In section 4, we recall Bromberg’s theory in [Br]

which gives us a local model of the space AH(S) of Kleinian once-punctured

torus groups near the Maskit slice. In section 5, we consider relation between
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Bromberg’s coordinates and the trace coordinates, and obtain an estimate

which will be used in the proofs of the main results. We will show our main

results, Theorems 6.6 and 6.8, in section 6. We also show that there is a linear

slice which is not locally connected. In section 7, we translate our main results

in terms of the complex Fenchel-Nielsen coordinates.

The following is the mainstream of this paper, where the top (resp. bottom)

line is corresponding to the tangential (resp. horocyclic) convergence:

Theorem 5.1 +3

$,QQQQQQQQQQQQQ

QQQQQQQQQQQQQ
Proposition 5.2 +3 Lemma 6.7 +3 Theorem 6.6

Proposition 5.3 +3 Lemma 6.9 +3 Theorem 6.8

2 Spaces of representations

In this section, we recall the definitions of spaces we will work with.

Let (M,P ) be a pared manifold; that is, M is a compact, hyperbolizable

3-manifold with boundary and P is a disjoint union of tori and annuli in ∂M .

Especially, every torus component of ∂M is contained in P . Let

R(M,P ) := Homirr
P (π1(M),PSL(2,C))

denote the set of all type-preserving, irreducible representations of π1(M) into

PSL(2,C). Here a representation ρ : π1(M) → PSL(2,C) is said to be type-

preserving if ρ(γ) is parabolic or identity for every γ ∈ π1(P ). The space of

representations

R(M,P ) := R(M,P )/PSL(2,C)

is the set of all PSL(2,C)-conjugacy classes [ρ] of representations ρ in R(M,P ).

We endow this space R(M,P ) with the algebraic topology; that is, a sequence

[ρn] converges to [ρ] if there are representatives ρn in [ρn] and ρ in [ρ] such

that for every g ∈ π1(M) the sequence ρn(g) converges to ρ(g) in PSL(2,C).

The conjugacy class [ρ] of a representation ρ is also denoted by ρ if there is no

confusion. We are interested in the topological nature of the space

AH(M,P ) := {ρ ∈ R(M,P ) : ρ is faithful, discrete}.

It is known by Jørgensen [Jø] that AH(M,P ) is closed in R(M,P ). Let

MP (M,P ) denote the subset of AH(M,P ) consists of representations ρ which
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Figure 1: Paired manifolds (N,P ), (N,P ′) and (N̂ , P̂ ) (from left to right).

are minimally parabolic (i.e., ρ(g) is parabolic if and only if g ∈ π1(P )) and

geometrically finite. It is known by Marden [Mar] and Sullivan [Su] that

MP (M,P ) is equal to the interior of AH(M,P ) as a subset of R(M,P ). Re-

cently, it was shown by Brock, Canary and Minsky [BCM] that the closure of

MP (M,P ) is equal to AH(M,P ).

In this paper, we only consider the following three pared manifolds

(N,P ), (N,P ′), (N̂ , P̂ )

which are constructed as follows (see Figure 1): Let S be a torus with one

open disk removed. Throughout of this paper, we fix a pair a, b of generators

of π1(S) such that the geometric intersection number equals one. Then the

commutator [a, b] = aba−1b−1 is homotopic to ∂S. Now we set

N := S × [0, 1]

and

P := ∂S × [0, 1].

We next set P ′ := P ∪ A, where A ⊂ S × {1} is an annulus whose core curve

is freely homotopic to b ∈ π1(S). Finally, we let

(N̂ , P̂ ) := (N \W,P ∪ T ),

where W is a regular tubular neighborhood of b×{1/2} in N = S × [0, 1] and

T := ∂W .

Note that AH(N,P ′) lies in the boundary of AH(N,P ); in fact ρ ∈
AH(N,P ) lies in AH(N,P ′) if and only if ρ(b) is parabolic. This space

AH(N,P ′) is called the Maskit slice of AH(N,P ). It is known by Minsky
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[Mi] that AH(N,P ′) has exactly two connected components. Bromberg’s the-

ory in [Br] gives us an information about the topology of AH(N,P ) near

AH(N,P ′). The aim of this paper is to understand the topology of AH(N,P )

near AH(N,P ′) from the view point of the trace coordinates, which is ex-

plained in the next section.

3 Trace coordinates for AH(N,P )

In this section, we introduce a trace coordinate system on a subset of R(N,P )

containing R(N,P ′).

Recall that (N,P ) = (S × [0, 1], ∂S × [0, 1]), where S is a torus with one

open disk removed. In this case, the space R(N,P ) consists of all PSL(2,C)-

conjugacy classes of representations

ρ : π1(S) = 〈a, b〉 → PSL(2,C)

which satisfy the condition tr(ρ([a, b])) = −2. Note that the trace of the

commutator [a, b] is well defined, although the traces of ρ(a) and ρ(b) are

determined up to sign.

As we will see below, for any given (α, β) ∈ C2, there is a representation ρ ∈
R(N,P ) which satisfies tr2ρ(a) = α2, tr2ρ(b) = β2, and this ρ is determined

uniquely up to pre-composition of automorphism (a, b) 7→ (a, b−1) of π1(N).

Therefore the subset

Dtr := {(α, β) ∈ C2 : ∃ρ ∈ AH(N,P ) s.t. tr2ρ(a) = α2, tr2ρ(b) = β2}

of C2 is well-defined. For a given β ∈ C, the horizontal slice

L(β) := {α ∈ C : (α, β) ∈ Dtr}

of Dtr is called the horizontal linear slice for β. On the other hand, for a given

α ∈ C, the vertical slice

L∗(α) := {β ∈ C : (α, β) ∈ Dtr}

of Dtr is called the vertical linear slice for α. Since the set Dtr is symmetric

under the action (α, β) 7→ (β, α), we have L(β) = L∗(β) as subsets of C
for every β ∈ C. Therefore, if there is no confusion, we do not distinguish

L(β) and L∗(β) and just call them a linear slice for β. Note that linear slices

6



L(β) are symmetric under the action of z 7→ −z. The aim of this paper is to

understand the shape of L(β) when β is close to 2.

To study the shape of linear slices, it would be convenient if we could

identify R(N,P ) with C2 simply by ρ 7→ (tr ρ(a), tr ρ(b)). But the thing is not

so simple. One reason is that traces of ρ(a), ρ(b) are determined up to sign,

and the other reason is that, for a given (α, β) ∈ C2, there exist two candidate

of representations ρ which satisfy (tr2ρ(a), tr2ρ(b)) = (α2, β2). Therefore, in

this section, we will choose an appropriate open domain Ω ⊂ R(N,P ) so that

there exists an embedding Tr : Ω → C2 such that Tr(ρ) = (α, β) satisfies

(tr2ρ(a), tr2ρ(b)) = (α2, β2) for every ρ ∈ Ω.

We begin by identifying R(N,P ′) with C. For a given α ∈ C, let ρα be the

representation in R(N,P ′) defined by

ρα(a) :=

(
α −i
−i 0

)
, ρα(b) :=

(
1 2

0 1

)
.

Then we have the following lemma. (See Lemma 4.3 in [Br]. Note that we are

assuming that every element of R(N,P ′) is irreducible.)

Lemma 3.1. The map ψ : C → R(N,P ′) defined by α 7→ ρα is a homeomor-

phism.

Note that the map ψ in Lemma 3.1 induces a homeomorphism from L(2)

onto the Maskit slice AH(N,P ′).

In the next lemma, we will show that the homeomorphism ψ−1 : R(N,P ′) →
C naturally extends to an embedding from an open domain Ω ⊂ R(N,P ) con-

taining R(N,P ′) into C2.

Lemma 3.2. There exist an open, connected, simply connected domain Ω ⊂
R(N,P ) and a homeomorphism

Tr : Ω → C2

which satisfy the following:

1. Ω contains R(N,P ′), and Tr takes R(N,P ′) onto C × {2}. In addition,

we have Tr(ρα) = (α, 2) for every α ∈ C.

2. For every ρ ∈ Ω, Tr(ρ) = (α, β) satisfies tr2ρ(a) = α2 and tr2ρ(b) = β2.
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Throughout of this paper, we fix such a domain Ω. We call Tr the trace

coordinate map and (α, β) = Tr(ρ) the trace coordinates of ρ ∈ Ω. The rest of

this section is devoted to the proof of this lemma. The commutative diagram

(3.2) should be helpful for understanding the arguments. The reader may skip

this proof by admitting Lemma 3.2.

To show Lemma 3.2, it is convenient to consider the space R̃(N,P ) of

representations of π1(N) into SL(2,C), instead of PSL(2,C). More precisely,

the set R̃(N,P ) consists of SL(2,C)-conjugacy classes of representations ρ̃

of π1(S) into SL(2,C) which satisfy the condition tr(ρ̃([a, b])) = −2. The

SL(2,C)-conjugacy class of ρ̃ is also denoted by ρ̃ if there is no confusion. It is

well known that an element ρ̃ of R̃(N,P ) is uniquely determined by the triple

(trρ̃(a), trρ̃(b), trρ̃(ab)) of complex number (see for example [Bo] or [Go]):

Lemma 3.3. The map

T̃r : R̃(N,P ) → Ξ := {(α, β, γ) ∈ C3 : α2 + β2 + γ2 = αβγ} \ {(0, 0, 0)}

defined by ρ̃ 7→ (trρ̃(a), trρ̃(b), trρ̃(ab)) is a homeomorphism.

By using this lemma, we often identify R̃(N,P ) with the subset Ξ of C3.

For (α, β) ∈ C2, the numbers γ satisfying α2 + β2 + γ2 = αβγ are given by

γ =
1

2

(
αβ ±

√
α2β2 − 4(α2 + β2)

)
.

Therefore the projection

Π : Ξ → C2 \ {(0, 0)}

defined by (α, β, γ) 7→ (α, β) is a two-to-one branched covering map. If we

denote by γ1, γ2 the solutions of the equation α2 + β2 + γ2 = αβγ on γ, we

have γ1 + γ2 = αβ. On the other hand, we have

tr(AB) + tr(AB−1) = trA trB

for every A,B ∈ SL(2,C). Therefore one can see that if two representations

ρ̃1, ρ̃2 in R̃(N,P ) have the same image under the map Π ◦ T̃r, they are only

differing by pre-composition of the automorphism (a, b) 7→ (a, b−1) of π1(S).

Now let

π : R̃(N,P ) → R(N,P )

be the natural projection, which is a four-to-one covering map. The group

of covering transformation for π is isomorphic to Z2 × Z2 which is generated
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by (α, β, γ) 7→ (−α, β,−γ) and (α, β, γ) 7→ (α,−β,−γ), where R̃(N,P ) is

identified with Ξ ⊂ C3 as in Lemma 3.3.

Now let us take an open, connected and simply connected domain ∆ ⊂
C2 \ {(0, 0)} which satisfy the following:

1. ∆ contains the set C × {2}, and

2. ∆ lies in the set {(α, β) ∈ C2 : Re β > 0, α2β2 6= 4(α2 + β2)}.

Here, the condition α2β2 6= 4(α2 + β2) is equivalent to the condition that the

pair (α, β) is not a critical value of the projection Π : Ξ → C2 \ {(0, 0)}.
Throughout of this paper, we fix such a domain ∆.

Since α2β2 6= 4(α2 + β2) for every (α, β) ∈ ∆, and since ∆ is connected

and simply connected, one can take a univalent branch of the square root of

α2β2−4(α2 +β2) on ∆. We take the branch such that the value for (α, 2) ∈ ∆

is equal to −4i. Then we obtain the univalent branch of

γ = γ(α, β) =
1

2

(
αβ +

√
α2β2 − 4(α2 + β2)

)
(3.1)

on ∆, and hence the univalent branch θ : ∆ → Ξ of Π−1 on ∆.

Lemma 3.4. The map π ◦ T̃r
−1

◦ θ : ∆ → R(N,P ) is a homeomorphism onto

its image.

Proof. We only need to show that the orbit of θ(∆) under the action of Z2×Z2

on Ξ are mutually disjoint. Take two points (α, β), (α′, β′) ∈ ∆. Suppose for

contradiction that (α, β, γ(α, β)), (α′, β′, γ(α′, β′)) ∈ Ξ are equivalent under

the action of non-trivial element of the covering transformation group Z2 ×
Z2. Since Re β > 0 and Re β′ > 0, one can see that (α′, β′, γ(α′, β′)) =

(−α, β,−γ(α, β)). Then from (3.1) we have

γ(α′, β′) =
1

2

(
α′β′ +

√
α′2β′2 − 4(α′2 + β′2)

)
=

1

2

(
−αβ +

√
α2β2 − 4(α2 + β2)

)
.

But this with γ(α′, β′) = −γ(α, β) implies
√
α2β2 − 4(α2 + β2) = 0, which

contradicts to (α, β) ∈ ∆.

Now let

Ω := π ◦ T̃r
−1

◦ θ(∆)
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and

Tr :=
(
π ◦ T̃r

−1
◦ θ

)−1

: Ω → ∆.

Then we obtain the following commutative diagram:

R̃(N,P )

π

��

fTr // Ξ

R(N,P ) ⊃ Ω Tr // ∆.

θ

OO (3.2)

To show that this Ω and Tr satisfy the desired property in Lemma 3.2, we only

need to show that Tr(ρα) = (α, 2) for every α ∈ C. This can be seen from the

following two facts: (i) If we regard ρα = ψ(α) as an element of R̃(N,P ), we

have T̃r(ρα) = (α, 2, α − 2i). (ii) From our choice of the branch θ, we have

θ(α, 2) = (α, 2, α− 2i). Thus we complete the proof of Lemma 3.2.

4 Bromberg’s coordinates for AH(N,P )

This section is devoted to explain the theory of Bromberg in [Br], which tells us

the topology of AH(N,P ) near the Maskit slice AH(N,P ′). In fact, Bromberg

construct a subset of C × Ĉ such that AH(N,P ) is locally homeomorphic to

this set at every point in MP (N,P ′).

4.1 The Maskit slice

Given µ ∈ C, we define a representation σµ ∈ R(N,P ′) by

σµ(a) :=

(
−iµ −i
−i 0

)
, σµ(b) :=

(
1 2

0 1

)
.

This representation σµ is nothing but the representation ρα with α = −iµ,

which is defined in the previous section. The subset

M := {µ ∈ C : σµ ∈ AH(N,P ′)}

of C is also called the Maskit slice. Since that the map C → R(N,P ′) defined

by µ 7→ σµ is a homeomorphism from Lemma 3.1, M is homeomorphic to

AH(N,P ′), and the interior int(M) of M is homeomorphic to MP (N,P ′).

Since µ ∈ M if and only if −iµ ∈ L(2), we have

L(2) = iM = {iµ : µ ∈ M}.
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Note that M is invariant under the translation µ 7→ µ+2. We refer the reader

to [KS] for basic properties of M. It is known by Minsky (Theorem B in [Mi])

that M has two connected components M+, M−, where M+ contained in the

upper half-plane and M− is the complex conjugation of M+

4.2 Coordinates for AH(N̂ , P̂ )

We now introduce a coordinate system on the space AH(N̂ , P̂ ). Recall that N̂

is N minus a regular tubular neighborhood W of b× {1/2}, and P̂ is a union

of P and T = ∂W . Bromberg’s idea in [Br] is that the space AH(N̂ , P̂ ) can

be used as a local model of AH(N,P ) near a point of AH(N,P ′).

The fundamental group of N̂ is expressed as

π1(N̂) = 〈a, b, c : [b, c] = id〉,

where a, b is the pair of generators of the fundamental group of S × {0} ⊂ N̂ ,

and c is freely homotopic to an essential simple closed curve on T that bounds

a disk in W . We regard π1(T ) = 〈b, c〉. The space R(N̂ , P̂ ) of representations

for (N̂ , P̂ ) is expressed as

R(N̂ , P̂ ) = {ρ : π1(N̂) → PSL(2,C) : trρ([a, b]) = −2, tr2ρ(c) = 4}/PSL(2,C).

For a given (µ, ζ) ∈ C2, we define a representation σ̂µ,ζ ∈ R(N̂ , P̂ ) by

σ̂µ,ζ(a) := σµ(a), σ̂µ,ζ(b) := σµ(b), σ̂µ,ζ(c) :=

(
1 ζ

0 1

)
.

Then we have the following:

Lemma 4.1 (Lemma 4.5 in [Br]). The map C2 → R(N̂ , P̂ ) defined by (µ, ζ) 7→
σ̂µ,ζ is a homeomorphism.

Remark. Following the rule of notation in [Br], the representation σ̂µ,ζ should

be written as σµ,ζ . But we reserve the notation σµ,ζ for another representation,

which will be defined in the next subsection.

We define a subset B of C2 by

B := {(µ, ζ) ∈ C2 : σ̂µ,ζ ∈ AH(N̂ , P̂ )}.

Then, by the above lemma, the map

B → AH(N̂ , P̂ )
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defined by (µ, ζ) 7→ σ̂µ,ζ is a homeomorphism. Note that (µ, ζ) ∈ B implies

µ ∈ M since the restriction of σ̂µ,ζ to the subgroup 〈a, b〉 of π1(N̂) is equal to

σµ. Note also that if Im ζ = 0 then (µ, ζ) 6∈ B; in fact, if Im ζ = 0, it violates

discreteness or faithfulness of the representation σ̂µ,ζ .

For any (µ, ζ) ∈ B, the quotient manifold M̂ = H3/σ̂µ,ζ(π1(N̂)) is homeo-

morphic to the interior of N̂ , and has a rank-2 cusp whose monodromy group

is the rank-2 parabolic subgroup of PSL(2,C) generated by σ̂µ,ζ(b) and σ̂µ,ζ(c).

Since

σ̂µ,ζ(c
−ka) =

(
−i(µ− kζ) −i

−i 0

)
and σ̂µ,ζ(b) =

(
1 2

0 1

)
,

one can see that if (µ, ζ) ∈ B then µ − kζ ∈ M for every k ∈ Z. Bromberg

showed that the converse is also true if Im ζ 6= 0 (see Proposition 4.7 in [Br]):

Theorem 4.2 (Bromberg). Let (µ, ζ) ∈ C2 with Im ζ 6= 0. Then (µ, ζ) ∈ B if

and only if µ− kζ ∈ M for every integer k.

4.3 Bromberg’s coordinates for AH(N,P )

Following [Br], we now introduce a coordinate system on AH(N,P ) by using

the coordinate system on AH(N̂ , P̂ ) introduced in the previous subsection.

Now let

B+ := {(µ, ζ) ∈ B : Im ζ > 0}

and define a set A ⊂ C × Ĉ by

A := B+ ∪ (M×{∞}).

The following theorem due to Bromberg claim that the set A can be used for

a local model of AH(N,P ) at every point of MP (N,P ′) ⊂ AH(N,P ).

Theorem 4.3 (Bromberg (Theorem 4.13 in [Br])). For any ν ∈ int(M), there

exist a neighborhood U of (ν,∞) in A, a neighborhood V of σν in AH(N,P ),

and a homeomorphism Φ : U → V.

Remark. Although Bromberg restricted to the case that ν ∈ int(M+) in [Br],

it is obvious that the same argument works well for ν ∈ int(M−).

In this situation, we say that (µ, ζ) ∈ U is Bromberg’s coordinates of the

representation Φ(µ, ζ) ∈ V . In what follows, we also write

σµ,ζ := Φ(µ, ζ).

12



We now briefly explain the definition of the map Φ : U → V, (µ, ζ) 7→ σµ,ζ

to what extent we need in the following argument. See [Br] for the full details.

Given ν ∈ int(M), a neighborhood U of (ν,∞) in A is chosen sufficiently small

so that the following argument works well. Let (µ, ζ) ∈ U . If ζ = ∞ then σµ,∞

is defined to be σµ. If ζ 6= ∞, the quotient manifold

M̂µ,ζ = H3/σ̂µ,ζ(π1(N̂))

has a rank-2 cusp whose monodromy group is generated by σ̂µ,ζ(b) and σ̂µ,ζ(c).

Since we are choosing U sufficiently small, it follows from the filling theorem

due to Hodgson, Kerckhoff and Bromberg (see Theorem 2.5 in [Br]) that there

exists a c-filling Mµ,ζ of M̂µ,ζ for every (µ, ζ) ∈ U with ζ 6= ∞. More precisely,

there is a complete hyperbolic manifold Mµ,ζ homeomorphic to the interior of

N and an embedding

φµ,ζ : M̂µ,ζ →Mµ,ζ

which satisfy the following properties:

1. the image of φµ,ζ is equals to Mµ,ζ minus the geodesic representative of

(φµ,ζ)∗(σ̂µ,ζ(b)),

2. (φµ,ζ)∗(σ̂µ,ζ(c)) is trivial in π1(Mµ,ζ), and

3. φµ,ζ extends to a conformal map between the conformal boundaries of

M̂µ,ζ and Mµ,ζ .

The map φµ,ζ is called the c-filling map. We will define σµ,ζ to be an element

in AH(N,P ) associated to Mµ,ζ . To this end, we need to determine a marking

N → Mµ,ζ . Since the restriction of the representation σ̂µ,ζ to the subgroup

〈a, b〉 ⊂ π1(N̂) is equal to σµ, the manifold Mµ = H3/σµ(π1(N)) covers M̂µ,ζ .

The covering map is denoted by

Πµ,ζ : Mµ → M̂µ,ζ .

Let fµ : N → Mµ be a homotopy equivalence which induces σµ. Then σµ,ζ

is defined to be a representation of π1(N) into PSL(2,C) induced from φµ,ζ ◦
Πµ,ζ ◦ fµ;

N
fµ−−−−→

marking
Mµ

Πµ,ζ−−−−→
covering

M̂µ,ζ

φµ,ζ−−−→
filling

Mµ,ζ .

This σµ,ζ is faithful, and hence, is contained in AH(N,P ) (see Lemma 3.6 in

[Br]). Note from the construction of σµ,ζ that the geodesic in Mµ,ζ associated

to σµ,ζ(a) is homotopic to the image of the geodesic M̂µ,ζ associated to σ̂µ,ζ(a)

by φµ,ζ .

13



5 Relation between the trace coordinates and

Bromberg’s coordinates

Let us consider the situation in Theorem 4.3. Without loss of generality, we

may always assume that V is contained in the domain Ω of the trace coordinate

map by choosing U and V sufficiently small. In this section, we will study the

relation between Bromberg’s coordinates (µ, ζ) ∈ U of σµ,ζ ∈ V and its trace

coordinates (α, β) = Tr(σµ,ζ). More precisely, we will observe in Theorem 5.1

that (µ, ζ) is approximated by (iα, 4πi/λ(β)), where λ(β) = 2 cosh−1(β/2) is

the complex length of σµ,ζ(b).

5.1 Complex length

For any element g ∈ PSL(2,C), its complex length l(g) ∈ C is a value which

satisfies

tr2g = 4 cosh2

(
l(g)

2

)
.

If g is not parabolic, this is equivalent to say that g is conjugate to the Möbius

transformation z 7→ el(g)z. For a loxodromic element g ∈ PSL(2,C), its com-

plex length l(g) determined uniquely if we take it in the set

Λ := {z ∈ C : Re z > 0, −π < Im z ≤ π}.

In what follows, we always assume that l(g) ∈ Λ for loxodromic transformation

g.

We now want to fix one-to-one correspondence between the complex length

l(g) of loxodromic element g ∈ SL(2,C) and its trace tr g. Note that the map

z 7→ 2 cosh(z/2) takes the interior of Λ into the right-half plane

C+ := {z ∈ C : Re z > 0}.

We define a map

λ : C+ \ (0, 2) → Λ

as its inverse. Then we have

λ(z) = 2 cosh−1
(z

2

)
= 2(z − 2)1/2 + o(z − 2) (z → 2),
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where the real part of a square root is chosen positive. We have

λ(tr g) = l(g)

for every loxodromic element g ∈ SL(2,C) with tr g ∈ C+ \ (0, 2].

5.2 Main estimates

The following theorem tells us a relation between Bromberg’s coordinates and

the trace coordinates for representations close to the Maskit slice.

Theorem 5.1. Let ν ∈ int(M). For any ε > 0, we can choose a neighborhood

U of (ν,∞) in Theorem 4.3 so that it also satisfy the following: for any (µ, ζ) ∈
U with ζ 6= ∞, we have

1. |µ− iα| ≤ ε, and

2. |ζ − 4πi/λ(β)| ≤ ε Im ζ,

where (α, β) = Tr(σµ,ζ) is the trace coordinates of σµ,ζ.

Remark. These estimates 1 and 2 follow from the fact that we can choose the

c-filling map φµ,ζ : M̂µ,ζ →Mµ,ζ close to the isometry outside a neighborhood

of the rank-2 cusp. Then the estimates 1 and 2 are obtained from estimates

due to McMullen (Lemma 3.20 in [Mc1]) and Magid (Theorem 1.2 in [Mag]),

respectively.

Proof of Theorem 5.1. Let us take a neighborhood U of (ν,∞) in A, a neigh-

borhood V of σν in AH(N,P ) and a homeomorphism Φ : U → V as in the

statement of Theorem 4.3. Recall that we are assuming that V ⊂ Ω. We will

show below that estimates 1 and 2 are obtained if we modify U sufficiently

small.

For (µ, ζ) ∈ U with ζ 6= ∞, let

φµ,ζ : M̂µ,ζ →Mµ,ζ

be the c-filling map. To control the distortion of the map φµ,ζ , we need to

recall the notion of normalized length.

Suppose that δ > 0 is less than the Margulis constant for hyperbolic 3-

manifolds, and let Tδ(T ) denote the component of δ-thin part of M̂µ,ζ associ-

ated to the rank-2 cusp. We endow the boundary ∂Tδ(T ) of Tδ(T ) with the
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natural Euclidean metric. The marking map N̂ → M̂µ,ζ induces a marking

map T → ∂Tδ(T ). Via this marking, the pair of generators b, c of π1(T ) are

also regarded as the pair of generators of π1(∂Tδ(T )). In this setting, the

normalized length L(c) of the free homotopy class of c ⊂ ∂Tδ(T ) is defined by

L(c) :=
length(c′)√

Area(∂Tδ(T ))
,

where length(c′) is the Euclidean length of the geodesic representative c′ of c

in ∂Tδ(T ). This L(c) does not depend on the choice of δ. Since

σ̂µ,ζ(b) =

(
1 2

0 1

)
and σ̂µ,ζ(c) =

(
1 ζ

0 1

)
,

the normalized length L(c) can be calculated concretely as

L(c) =
|ζ|√
2 Im ζ

.

For any given K > 0, we can choose the neighborhood U sufficiently small

so that for all (µ, ζ) ∈ U with ζ 6= ∞, the normalized length L(c) of c at the

rank-2 cusp of M̂µ,ζ is greater than K. We will show below that if we take

such K sufficiently large, the estimates 1 and 2 hold.

We may assume that there is a uniform upper bound of |µ| for (µ, ζ) ∈ U .

Then, since tr2σ̂µ,ζ(a) = −µ2, there is an upper bound R > 0 for hyperbolic

lengths of geodesic representatives a∗ of σ̂µ,ζ(a) in M̂µ,ζ for all (µ, ζ) ∈ U

with ζ 6= ∞. Therefore we can take δ > 0 small enough so that the unit

neighborhood N (a∗, 1) of a∗ in M̂µ,ζ does not intersect the δ-thin part Tδ(T ) ⊂
M̂µ,ζ for all (µ, ζ) ∈ U with ζ 6= ∞.

It follows from the filling theorem (see Theorem 2.5 in [Br]) that for δ > 0

chosen as above and for any ε1 > 0, there exists K > 0 such that if the

normalized length of c in M̂µ,ζ is greater than K then the c-filling map can be

chosen so that it restricts to a (1 + ε1)-bi-Lipschitz diffeomorphism

φµ,ζ : M̂µ,ζ \ Tδ(T ) →Mµ,ζ \ Tδ(b
∗),

where Tδ(b
∗) ⊂ Mµ,ζ is the δ-Margulis tube of the geodesic representative b∗

of σµ,ζ(b); i.e., the core curve of the filled torus in Mµ,ζ . We can now apply a

theorem of McMullen (Lemma 3.20 in [Mc1]) to obtain

|tr2(σ̂µ,ζ(a)) − tr2(σµ,ζ(a))| < C(R)ε1,
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where C(R) > 0 is a constant which depends only on R. (Recall that R is

the upper bounds of the hyperbolic length of a∗.) Since tr2 σ̂µ,ζ(a) = −µ2,

tr2 σµ,ζ(a) = α2, and since α is close to −iµ, we obtain

|µ− iα| < ε

for a given ε > 0 by taking K large enough. Thus we obtain the first estimate.

We next show the second estimate. One can expect to obtain this kind

of estimate since the Teichmüller parameter of the torus ∂Tδ(T ) ⊂ M̂µ,ζ with

respect to the generators b, c is equal to ζ/2 and that of ∂Tδ(b
∗) ⊂Mµ,ζ is equal

to 2πi/λ(β), and since there is a bi-Lipschitz map of small distortion between

these tori. Magid accomplish this estimate in [Mag]. In fact, by simplifying

his estimates (ii) and (iv) of Theorem 1.2 in [Mag], we see that there is some

constant C > 0 such that if the normalized length L(c) = |ζ|/
√

2 Im ζ of c is

sufficiently large, we have∣∣∣∣λ(β) − 4πi

ζ

∣∣∣∣ ≤ C
(Im ζ)2

|ζ|4
=

4C

L(c)4
. (5.1)

One can also see from L(c) = |ζ|/
√

2 Im ζ that Re(4πi/ζ) = 2π/L(c)2. Com-

bining this with (5.1), we have

|λ(β)| > 1

2

∣∣∣∣4πiζ
∣∣∣∣ =

2π

|ζ|
(5.2)

for L(c) large enough. Finally, multiplying |ζ/λ(β)| on both sides of (5.1) and

using the estimate (5.2), we obtain∣∣∣∣ζ − 4πi

λ(β)

∣∣∣∣ ≤ C ′ (Imζ)
2

|ζ|2
=

C ′

2L(c)2
Im ζ < ε Im ζ

for a given ε > 0 if L(c) is large enough. Thus we obtain the second estimate.

5.3 A and D
Since the shape of A is well understood from Theorem 4.2, we can expect

to understand the shape of Dtr from that of A. To apply Theorem 5.1, it is

convenient to consider the image of the set Dtr by the transformation (α, β) 7→
(iα, 4πi/λ(β)). More precisely, we define a map

F : C × (C+ \ (0, 2)) → C × Ĉ
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by

F (z, w) :=

(
iz,

4πi

λ(w)

)
and set

D+
tr := {(α, β) ∈ Dtr : β ∈ C+}

and

D := F (D+
tr).

Note that, since we are interested in the shape of Dtr where the second entry

is close to 2, we may restrict our attention to D+
tr. Note also that F (z, 2) =

(iz,∞) for every z.

Let us now consider the situation of Theorem 5.1. We define a homeomor-

phism ϕ from U onto its image by ϕ = F ◦ Tr ◦ Φ;

ϕ : U
Φ−−−→ V

Tr−−−→ Dtr
F−−−→ D.

Then by definition we have ϕ(µ,∞) = (µ,∞) for any (µ,∞) ∈ U . It follows

from Theorem 5.1 the point ϕ(µ, ζ) is close to (µ, ζ) ∈ U even if ζ 6= ∞. There-

fore, we expect that the shape of A is similar to that of D in a neighborhood

of (ν,∞) for every ν ∈ int(M).

We will justify this expectation in Propositions 5.2 and 5.3 below. In what

follows, we denote by Bε(z) the ε-neighborhood of z in C, and by Bε(z, w) the

ε-neighborhood of (z, w) in C2.

Proposition 5.2. For any ν ∈ int(M), there exists ε0 > 0 which satisfy the

following: For any 0 < ε < ε0 and I > 0, there exists K > 0 such that for all

z ∈ C with |z| > K and 0 < Im z < I, Bε(ν, z) ⊂ A implies Bε/2(ν, z) ⊂ D.

Proof. For any fixed ν ∈ int(M), let us take neighborhoods U ⊂ A, W ⊂ D
of (ν,∞) such that ϕ = F ◦ Tr ◦ Φ is a homeomorphism from U onto W . We

may assume that U is of the form

U = A ∩ {(µ, ζ) ∈ C2 : |µ− ν| < ε0, |ζ| > K/2}

for some ε0 > 0 and K > 0. Let us take 0 < ε < ε0 and I > 0 arbitrarily. One

can see from Theorem 5.1 and its proof that if we choose K large enough, we

may also assume that

dC2(ϕ(µ, ζ), (µ, ζ)) <
ε

8
(5.3)
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holds for every (µ, ζ) ∈ U with 0 < Im ζ < 2I. (Note that if |ζ| → ∞ then

|ζ|/
√

2Im ζ → ∞.)

Now let us take z ∈ C with |z| > K and 0 < Im z < I, and suppose that

Bε(ν, z) ⊂ A. Then Bε(ν, z) ⊂ U and 0 < Im ζ < 2I for every (µ, ζ) ∈ Bε(ν, z)

(since K and I are larger than ε). Thus the inequality (5.3) holds for every

(µ, ζ) ∈ Bε(ν, z). Using this fact, we will show that

Bε/2(ν, z) ⊂ ϕ(Bε(ν, z)),

which implies that Bε/2(ν, z) ⊂ D.

Suppose for contradiction that there exists some p ∈ Bε/2(ν, z)\ϕ(Bε(ν, z)).

Let consider a line segment

γ(t) := (1 − t)ϕ(p) + tp, t ∈ [0, 1]

in C2 which joins ϕ(p) to p. Since dC2(ϕ(p), p) < ε/8 and p ∈ Bε/2(ν, z), we

have γ([0, 1]) ⊂ B5ε/8(ν, z). Now let

t∞ := inf{t : γ(t) 6∈ ϕ(Bε(ν, z))}.

Since ϕ(p) lies in ϕ(Bε(ν, z)) but p does not, and since ϕ(Bε(ν, z)) is open, one

can see that 0 < t∞ ≤ 1. Let take an increasing sequence tn → t∞ (n → ∞)

and let qn := ϕ−1(γ(tn)) ∈ Bε(ν, z). Since ϕ(qn)(= γ(tn)) lie in B5ε/8(ν, z)

and dC2(ϕ(qn), qn) < ε/8, we have qn ∈ B3ε/4(ν, z) for all n. Therefore an

accumulation point q∞ of {qn} lies in Bε(ν, z). It follows from the continuity of

ϕ that ϕ(q∞) = γ(t∞). Since ϕ is local homeomorphism at q∞, this contradicts

the definition of t∞. Thus we obtain Bε/2(ν, z) ⊂ ϕ(Bε(ν, z)) ⊂ D.

We set

Bε,I(ν) := Bε(ν) × {z ∈ C : Im z > I}.

Proposition 5.3. For any ν ∈ int(M), there exists ε0 > 0 which satisfy the

following: For any 0 < ε < ε0 there is I > 0 such that Bε,I(ν) ⊂ A implies

Bε/2,2I(ν) ⊂ D.

Proof. The proof is almost parallel to that of Proposition 5.2. For any fixed

ν ∈ int(M), let us consider the homeomorphism ϕ : U → W as in the proof

of Proposition 5.2. One can see from Theorem 4.2 that there exist ε0 > 0

and I > 0 such that Bε0,I(ν) ⊂ U . Now let us take 0 < ε < ε0 arbitrarily.

Theorem 5.1 implies that if we choose I large enough, we have the following:
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for any (µ, ζ) ∈ Bε,I(ν), (µ′, ζ ′) := ϕ(µ, ζ) satisfies |µ′−µ| < ε/8 and |ζ ′− ζ| <
(ε/8) Im ζ. Using this fact, we can show that

Bε/2,2I(ν) ⊂ ϕ(Bε,I(ν)),

which implies that Bε/2,2I(ν) ⊂ D. The remaining argument is almost the

same to that of Proposition 5.2, so we leave it for the reader.

6 Main Results

In this section, we will show our main results, Theorems 6.6 and 6.8. More

precisely, for a given sequence βn ∈ C\ [−2, 2] converging to 2, we consider the

Hausdorff limit of the linear slices L(βn) and the Carathéodory limit of the

interiors int(L(βn)) of the linear slices.

6.1 Horizontal slices of A
We first consider horizontal slices of A: let

M(ζ) := {µ ∈ C : (µ, ζ) ∈ A}

denote the slice of A by fixing the second entry ζ ∈ C ∪ {∞} in the product

structure. These subsets M(ζ) will be appear as Hausdorff limits of linear

slices L(βn) as βn → 2. By definition of A, one can see that (i) M(ζ) lies in

M for every ζ, (ii) M(ζ) is empty if Im ζ ≤ 0, and that (iii) M(∞) = M. It

follows from Theorem 4.2 that if Im ζ > 0 the set M(ζ) can be written as

M(ζ) =
∩
k∈Z

(kζ + M), (6.1)

where kζ+M = {kζ+µ : µ ∈ M}. (Note that (6.1) does not hold if Im ζ ≤ 0.)

Note that M(ζ) is invariant under the action of 〈z + 2, z + ζ〉. It is known by

Wright [Wr] that the stripe {z ∈ C : −1 ≤ Im z ≤ 1} does not intersect M.

Therefore one can see that M(ζ) = ∅ if 0 < Im ζ ≤ 2.

We now consider relationship between horizontal slices of A and linear

slices, or horizontal slices of Dtr. By definition, we have

α ∈ L(β) ⇐⇒ (α, β) ∈ Dtr ⇐⇒
(
iα,

4πi

λ(β)

)
∈ D
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and (
iα,

4πi

λ(β)

)
∈ A ⇐⇒ α ∈ iM

(
4πi

λ(β)

)
.

Recall from Theorem 5.1 that (µ, ζ) ∈ A is almost equivalent to (µ, ζ) ∈ D if

µ lies in int(M) and |ζ| is large enough. Therefore we may expect that L(β) is

similar to iM(4πi/λ(β)) when β is close to 2. We will justify this observation

below. To this end, we first recall the definitions of Hausdorff convergence and

Carathéodory convergence.

Definition 6.1 (Hausdorff convergence). Let Fn (n ∈ N), F∞ be closed sub-

sets in C. We say that the sequence Fn converges F∞ in the sense of Hausdorff

if the following two conditions are satisfied:

1. For any x∞ ∈ F∞, there is a sequence xn ∈ Fn such that xn → x∞.

2. If there is a sequence xnj
∈ Fnj

such that xnj
→ x∞, then x∞ ∈ F∞.

Definition 6.2 (Carathéodory convergence). Let Ωn (n ∈ N), Ω∞ be open

subsets in C. We say that the sequence Ωn converges to Ω∞ in the sense of

Carathéodory if the following two conditions are satisfied:

1. For any compact subset X of Ω∞, X ⊂ Ωn for all large n.

2. If there is an open subset O of C and an infinite sequence {nj}∞j=1 such

that O ⊂ Ωnj
, then O ⊂ Ω∞.

Note that closed subsets Fn ⊂ C converge to F∞ ⊂ C in the sense of

Hausdorff if and only of their complements C \ Fn converge to C \ F∞ in the

sense of Carathéodory.

The next lemma implies that M(ζn) converge to M if and only if Im ζn →
∞, which is a direct consequence of (6.1):

Lemma 6.3. Suppose that a sequence {ζn}∞n=1 in C with Im ζn > 0 converges

to ∞ in Ĉ. Then the followings are equivalent:

1. Im ζn → ∞ as n→ ∞.

2. M(ζn)converge to M in the sense of Hausdorff as n→ ∞.

3. int(M(ζn)) converge to int(M) in the sense of Carathéodory as n→ ∞.

21



Figure 2: Horocyclic convergence (left) and tangential convergence (right).

6.2 Horocyclic and tangential convergence

To describe our main theorems, we also need the following definition (see

Figure 2):

Definition 6.4. Suppose that a sequence {λn}∞n=1 in the right-half plane C+ =

{z ∈ C |Re z > 0} converges to 0. We say that λn → 0 horocyclically if for

any ε > 0, |λn − ε| < ε for all large n, and that λn → 0 tangentially if there is

a constant ε0 > 0 such that |λn − ε0| > ε0 for all n.

Note that λn → 0 horocyclically if and only if |Im(2πi/λn)| → ∞, and that

tangentially if and only if |Im(2πi/λn)| are uniformly bounded above.

When a sequence βn ∈ C \ [−2, 2] converges to 2, the limit of the sequence

L(βn) depends on whether λ(βn) → 0 horocyclically or tangentially. The

essence of the difference between horocyclic and tangential convergence can be

found in the next theorem on geometric limits of cyclic groups, which was first

observed by Jørgensen. See, for example, Theorem 3.3 in [It] for the proof.

We say that a sequence of discrete subgroups Gn of PSL(2,C) converges

geometrically to a subgroup G of PSL(2,C) if Gn converge to G in the sense

of Hausdorff as closed subsets of PSL(2,C).

Theorem 6.5. Suppose that a sequence Bn of loxodromic elements converges

to

B =

(
1 2

0 1

)
in PSL(2,C). Let λn denote the complex length of Bn. Then we have the

following:

1. If λn → 0 horocyclically, then the sequence 〈Bn〉 converges geometrically

to 〈B〉.
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2. Suppose that λn → 0 tangentially. We further assume that there exists

a complex number ξ with Im ξ ≥ 0 and a sequence mn of integers with

|mn| → ∞ such that

lim
n→∞

(
2πi

λn

−mn

)
= ξ.

In this situation, we have

lim
n→∞

B−mn
n = C :=

(
1 2ξ

0 1

)
.

In addition, if Im ξ 6= 0, the sequence 〈Bn〉 converges geometrically to

the rank-2 parabolic group 〈B,C〉.

Remark. When λn → 0 tangential, there is a constant M > 0 such that

0 < Im(2πi/λn) < M for every n. Therefore we may assume that, by pass to

a subsequence if necessary, the sequence 2πi/λ(βn) converges to some ξ ∈ C
with Im ξ ≥ 0 up to the action of z 7→ z + 1.

6.3 Main theorem for tangential convergence

We can now state our main theorem for linear slices L(βn) such that λ(βn)

converge tangentially to 0. See Figure 3, left column.

Theorem 6.6. Let {βn}∞n=1 be a sequence in C \ [−2, 2] which converges to 2

as n→ ∞. Suppose that λ(βn) converge tangentially to 0. We further assume

that there exists a complex number ξ with Im ξ ≥ 0 and a sequence mn of

integers with |mn| → ∞ such that

lim
n→∞

(
2πi

λ(βn)
−mn

)
= ξ.

Then we have the following:

1. L(βn) converge to iM(2ξ) in the sense of Hausdorff as n→ ∞.

2. int(L(βn)) converge to int(iM(2ξ)) in the sense of Carathéodory as n→
∞.

The following lemma is an essential part of the proof of Theorem 6.6.
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Figure 3: Computer-generated figure of linear slices L(β) (gray parts) for β

close to 2, restricted to the square of width 24 centered at 0. Left column

corresponds to tangential convergence λ(β) → 0, where λ(β) are points on

the circle |z − 1| = 1 whose imaginary part equal 0.7 (top), 0.3 (middle) and

0.1 (bottom). Right column corresponds to horocyclic convergence λ(β) → 0,

where λ(β) equal 0.7 + 0.7i (top), 0.3 + 0.3i (middle) and 0.1 + 0.1i (bottom).
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Lemma 6.7. Under the same assumption as in Theorem 6.6, we have the

following: For any α ∈ int(iM(2ξ)) there exists ε > 0 such that Bε(α) ⊂
int(L(βn)) for all large n.

Proof. Suppose that α ∈ int(iM(2ξ)). Then (iα, 2ξ) ∈ int(A). Let ε0 > 0 be

the constant in Proposition 5.2 for ν = iα. Since (iα, 2ξ) ∈ int(A), one can

find 0 < ε < ε0 such that Bε(iα, 2ξ) ⊂ A. Since the set A is invariant under

the action (z, w) 7→ (z, w + 2), we have Bε(iα, 2ξ + 2mn) ⊂ A. Let K > 0 be

the constant in Proposition 5.2 for ε > 0 chosen above and I = Im(2ξ) + 1.

Since |mn| → ∞ as n→ ∞, we have |2ξ + 2mn| > K for all large n. Then by

Proposition 5.2, we have

Bε/2(iα, 2ξ + 2mn) ⊂ D

for all large n. On the other hand, since the sequence {2πi/λ(βn) − mn}
converges to ξ as n→ ∞, we have∣∣∣∣ 4πi

λ(βn)
− (2ξ + 2mn)

∣∣∣∣ < ε/4

for all large n. Therefore

Bε/4

(
iα,

4πi

λ(βn)

)
⊂ D

hold for all large n. Thus we obtain Bε/4(α) ⊂ int(L(βn)) for all large n.

Proof of Theorem 6.6. We need to prove the following four conditions (H1),

(H2), (C1) and (C2), where (H1) and (H2) are corresponding to the Haus-

dorff convergence and (C1) and (C2) are corresponding to the Carathéodory

convergence:

(H1) For any α ∈ iM(2ξ) there exists a sequence αn ∈ L(βn) such that

αn → α.

(H2) If αnj
∈ L(βnj

) and αnj
→ α then α ∈ iM(2ξ).

(C1) For any compact subset X ⊂ int(iM(2ξ)), X ⊂ int(L(βn)) for all large

n.

(C2) If there exist an open subset O ⊂ C and a infinite sequence {nj}∞j=1 such

that O ⊂ int(L(βnj
)), then O ⊂ int(iM(2ξ)).
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Proof of (H1): For any α ∈ iM(2ξ), there exists a sequence {α(j)}∞j=1 in

the interior of iM(2ξ) such that α(j) → α as j → ∞. It follows from Lemma

6.7 that for every j, there exists positive constant N(j) such that α(j) ∈ L(βn)

for all n ≥ N(j). Thus we obtain the result. To be more precise, let us choose

{N(j)}∞j=1 so that N(j + 1) > N(j) and N(j) → ∞ as j → ∞, and set

αn := α(j) for every N(j) ≤ n < N(j). Since j → ∞ as n → ∞, we obtain

αn ∈ L(βn) and αn → α as n→ ∞.

Proof of (C1): LetX be a compact subset of int(iM(2ξ)). For every α ∈ X,

it follows from Lemma 6.7 that there exist ε(α) > 0 and N(α) > 0 such that

Bε(α)(α) ⊂ int(L(βn)) for all n ≥ N(α). Since∪
α∈X

Bε(α)(α)

is an open covering of the compact set X, we can choose finite set of points

{αj}l
j=1 ⊂ X such that ∪

1≤j≤l

Bε(αj)(αj)

is also an open covering of X. Set N := max1≤j≤l N(αj). Then Bε(αj)(αj) ⊂
int(L(βn)) for all n ≥ N and all 1 ≤ j ≤ l. Thus we obtain X ⊂ int(L(βn))

for all n ≥ N .

Proof of (H2): For simplicity, we denote {nj} by {n} and assume that

αn ∈ L(βn) converge to α as n → ∞. Take ρn ∈ AH(N,P ) ∩ Ω such that

Tr(ρn) = (αn, βn). Since αn → α and βn → 2, the sequence {ρn}∞n=1 converges

algebraically to the conjugacy class of σiα in AH(N,P ). We may assume that

the representatives of the conjugacy classes ρn, which are also denoted by ρn,

converge algebraically to σiα.

We now consider representations χn of π1(N̂) = 〈a, b, c : [b, c] = id〉 into

PSL(2,C) defined by

χn(a) := ρn(a), χn(b) := ρn(b), χn(c) := (ρn(b))−mn .

One can see from Theorem 6.5 that the sequence χn converges algebraically

to χ∞ := σ̂iα,2ξ, which is defined in 4.2. We now claim that χ∞ = σ̂iα,2ξ is

faithful and discrete. If this is true, we obtain (iα, 2ξ) ∈ B. Especially we

have Im ξ 6= 0. It then follows from Im ξ ≥ 0 that (iα, 2ξ) ∈ A, and thus

α ∈ iM(2ξ). Therefore we only have to show the claim above.
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Since π1(N̂) is finitely generated and since the image χn(π1(N̂)) of χn is

equal to the discrete group ρn(π1(N)), it follows from the theorem due to

Jørgensen and Klein in [JK] that χ∞(π1(N̂)) is discrete and that there exist

group homomorphisms

ψn : χ∞(π1(N̂)) → χn(π1(N̂))

satisfying χn = ψn ◦ χ∞. Now suppose for contradiction that there is a non-

trivial element g in kerχ∞. Then it must lie in kerχn for all n. Since kerχn

is normally generated by a word bmnc, and since the word length of g ∈ π1(N̂)

with respect to the generators a, b, c is bounded, we obtain a contradiction.

Thus we obtain the claim.

Proof of (C2): By the same argument as in the proof for (H2), we have

α ∈ iM(2ξ) for every α ∈ O. Therefore O ⊂ iM(2ξ). Since O is open, we

have O ⊂ int(iM(2ξ)).

6.4 Main theorem for horocyclic convergence

We now state our main theorem for linear slices L(βn) such that λ(βn) converge

horocyclically to 0. See Figure 3, right column.

Theorem 6.8. Let {βn}∞n=1 be a sequence in C \ [−2, 2] which converges to 2

as n→ ∞. Suppose that λ(βn) converge horocyclically to 0. Then we have the

following:

1. L(βn) converge to iM in the sense of Hausdorff as n→ ∞.

2. int(L(βn)) converge to int(iM) in the sense of Carathéodory as n→ ∞.

The following lemma is an essential part of the proof of Theorem 6.8.

Lemma 6.9. Under the same assumption as in Theorem 6.8, we have the

following: For any α ∈ int(iM) there exists ε > 0 such that Bε(α) ⊂ int(L(βn))

for all large n.

Proof. Let ε0 > 0 be the constant in Proposition 5.3 for µ = iα ∈ int(M).

Let us take 0 < ε < ε0 such that Bε(iα) ⊂ int(M). By Theorem 4.2, one

can see that there exists I > 0 such that Bε,I(iα) ⊂ A. Then by Proposition

5.3, if we choose I > 0 sufficiently large, we have Bε/2,2I(iα) ⊂ D. Since

λ(βn) → 0 horocyclically, Im(4πi/λ(βn)) > 2I for all large n. Thus, for every

α′ ∈ Bε/2(α), we have (iα′, 4πi/λ(βn)) ∈ D, or (α′, βn) ∈ Dtr. Therefore we

obtain Bε/2(α) ⊂ int(L(βn)) for all large n.
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Proof of Theorem 6.8. The proof is almost parallel to that of Theorem 6.6.

We need to show the following four conditions:

(H1) For any α ∈ iM there exists αn ∈ L(βn) such that αn → α.

(H2) If αnj
∈ L(βnj

) and αnj
→ α then α ∈ iM.

(C1) For any compact subset X in int(iM), X ⊂ int(L(βn)) for all large n.

(C2) If there exist an open subset O ⊂ C and a infinite sequence {nj}∞j=1 such

that O ⊂ int(L(βnj
)) then O ⊂ int(iM).

Proof of (H1): For any α ∈ iM, there exists a sequence α(j) ∈ int(iM)

such that α(j) → α (j → ∞). It follows from Lemma 6.9 that for each j we

have α(j) ∈ L(βn) for all large n. Thus we obtain the claim.

Proof of (C1): Let X ⊂ int(iM) be a compact subset. For each α ∈ X,

it follows from Lemma 6.9 that there exist ε(α) > 0 and N(α) > 0 such

that Bε(α)(α) ⊂ int(L(βn)) for all n ≥ N(α). Since
∪

α∈X Bε(α)(α) is an open

covering of X, we may choose a finite set of points {αj} ⊂ X such that∪
j Bε(αj)(αj) is also an open covering. Since Bε(αj)(αj) ⊂ int(L(βn)) for all

n ≥ N := maxj N(αj), we have X ⊂ int(L(βn)) for all n ≥ N .

Proof of (H2): For simplicity we denote {nj} by {n}, and assume that αn ∈
L(βn) converge to α. Take ρn ∈ AH(N,P ) ∩ Ω such that Tr(ρn) = (αn, βn).

Since αn → α, βn → 2, the sequence {ρn}∞n=1 converges to σiα ∈ R(N,P ),

and since AH(N,P ) is closed, we have σiα ∈ AH(N,P ). Therefore we obtain

iα ∈ M and hence α ∈ iM.

Proof of (C2): By the same argument as in (H2), we have α ∈ iM for

every α ∈ O. Therefore O ⊂ iM. Since O is open, we have O ⊂ int(iM).

6.5 Non local connectivity

Here we will show that there exists a linear slice which is not locally connected

at their boundary (see Figure 4). This is a direct consequence of Bromberg’s

argument in [Br] showing that AH(N,P ) is not locally connected. This re-

sult is concerned with vertical slices of A, whereas Theorems 6.6 and 6.8 are

concerned with horizontal slices of A.

Theorem 6.10. There exists α ∈ C such that L(α) is not locally connected

at 2 ∈ ∂L(α); that is, U ∩ L(α) is disconnected for any sufficiently small

neighborhood U ⊂ C of 2.
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Figure 4: The linear slice L(α) (gray part) for α = 5.9 + 0i; restricted to a

neighborhood of 2 whose width is about 0.2. (The horizontal line thorough 2

is the locus where the computer can not detect non-discreteness.)

Proof. Recall from section 3 that a horizontal linear slice L(α) is equal to the

vertical linear slice L∗(α) as subsets of C. Therefore we will show that L∗(α) is

not locally connected at 2 for some α ∈ C. The homeomorphism F : D+
tr → D

defined in section 5.3 induces a homeomorphism from

L∗(α) ∩ C+ = {β ∈ C : (α, β) ∈ D+
tr}

to a slice

{ζ ∈ Ĉ : (iα, ζ) ∈ D}

of D. Since F (α, 2) = (iα,∞), to show that L∗(α) is not locally connected

at 2 for some α, it suffices to show that the set {ζ ∈ Ĉ : (iα, ζ) ∈ D} is not

locally connected at ζ = ∞. We will show this by using the fact observed in

[Br] that the vertical slice {ζ ∈ Ĉ : (iα, ζ) ∈ A} of A is not locally connected

at ζ = ∞ for some α.

From the argument of Bromberg in the proof of Theorem 4.15 in [Br], there

exist µ ∈ int(M), ζ ∈ C with Im ζ > 0, and ε > 0 such that Bε(µ, ζ + 2n) are

contained in different connected components of

{(ν, z) ∈ A : |ν − µ| < 2ε}

for every integer n. By Theorem 4.3, we can take neighborhoods U , W of

(µ,∞) in A, D, respectively, such that ϕ = F ◦ Tr ◦ Φ : U → W is a homeo-

morphism. We may assume that U is of the form

U = A ∩ {(ν, z) ∈ C2 : |ν − µ| < 2ε, |z| > K}.
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Then for all large n, Bε(µ, ζ + 2n) are contained in U , and thus contained in

distinct connected components of U .

By choosing ε > 0 sufficiently small and K > 0 sufficiently large, we see

from Proposition 5.2 that Bε/2(µ, ζ + 2n) ⊂ D for all large n. Therefore,

Bε/2(µ, ζ + 2n) are contained in distinct connected components of W for all

large n. Since W ⊂ D is a neighborhood of (µ,∞), we see that the set

{ζ ∈ Ĉ : (µ, ζ) ∈ D} is not locally connected at ζ = ∞. Letting α = −iµ, we

obtain the result.

7 Complex Fenchel-Nielsen coordinates

In this section, we restate Theorems 6.6 and 6.8 in terms of the complex

Fenchel-Nielsen coordinates. We begin with recalling the definition of the real

Fenchel-Nielsen coordinates for Fuchsian representations.

Given λ > 0, we define a representation ηλ ∈ R(N,P ) by

ηλ(a) :=
1

sinh(λ/2)

(
cosh(λ/2) −1

−1 cosh(λ/2)

)
, ηλ(b) :=

(
eλ/2 0

0 e−λ/2

)
.

Then ηλ(π1(N)) acts properly discontinuously on the upper-half plane H2,

and hence is a Fuchsian group (see Figure 5, left). Note that ηλ(a) fixes −1, 1,

ηλ(b) fixes 0,∞, and thus the axes of ηλ(a) and ηλ(b) are perpendicular to each

other. In addition, the complex length of ηλ(b) is equal to λ ∈ R.

Now we add a twisting parameter τ . Given (λ, τ) ∈ R+ × R, we define a

fuchsian representation ηλ,τ ∈ R(N,P ) by

ηλ,τ (a) :=

(
eτ/2 0

0 e−τ/2

)
ηλ(a), ηλ,τ (b) := ηλ(b).

Note that the quotient surface H2/ηλ,τ (π1(N)) is obtained by cutting the sur-

face H2/ηλ(π1(N)) along the geodesic representative of ηλ(b), twisting by hy-

perbolic length τ and re-glueing (see Figure 5, right).

Now we obtain a map

FN : R+ × R → R(N,P )

defined by (λ, τ) 7→ ηλ,τ . It is well-known that this map is a homeomorphism

onto the space of Fuchsian representations. By allowing the parameters λ, τ

to be complex numbers, we obtain a map

FN : (C \ 2πiZ) × C → R(N,P ).
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Figure 5: Fundamental domains of images of ηλ (left) and ηλ,τ (right).

We say that (λ, τ) is the complex Fenchel-Nielsen coordinates of the represen-

tation ηλ,τ . Note that if λ ∈ R and τ ∈ C, ηλ,τ is the complex earthquake of ηλ,

see [Mc2]. It is known by Kourouniotis [Ko] and Tan [Ta] that there is an open

subset of (C \ 2πiZ)× C containing R+ × R such that the map FN induces a

homeomorphism from this set onto the quasifuchsian space MP (N,P ).

Let

DFN := {(λ, τ) ∈ (C \ 2πiZ) × C : ηλ,τ ∈ AH(N,P )}.

Since we have

tr2ηλ,τ (a) = 4 coth2

(
λ

2

)
cosh2

(τ
2

)
,

tr2ηλ,τ (b) = 4 cosh2

(
λ

2

)
,

the map Θ : (C \ 2πiZ) × C → C2 defined by

Θ(λ, τ) :=

(
2 coth

(
λ

2

)
cosh

(τ
2

)
, 2 cosh

(
λ

2

))
takes DFN onto Dtr. For a given λ ∈ C \ 2πiZ, let

L̃(λ) := {τ ∈ C : ηλ,τ ∈ AH(N,P )}

(see Figure 6). We define a map fλ : C → C by

fλ(z) := 2 coth

(
λ

2

)
cosh

(z
2

)
so that we have Θ(λ, τ) = (fλ(τ), 2 cosh(λ/2)). Then the map fλ takes L̃(λ)

onto L(β) where β = 2 cosh(λ/2). Note that L̃(λ) is 〈z+λ, z+2πi〉-invariant,

where the translation z 7→ z + λ corresponds to the Dehn twist about b.
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We want to understand the shape of L̃(λ) by using the Maskit slice M
when λ lies in C+ and is close to zero. To this end, we normalize L̃(λ) so that

the action of the Dehn twist about b corresponds to the translation z 7→ z+2.

(Recall that the Maskit slice M has this property.) Let us define a map

gλ : C → C by

gλ(z) :=
2

λ
(z − πi)

and set

L̂(λ) := gλ(L̃(λ))

Then L̂(λ) is 〈z + 2, z + 4πi/λ〉-invariant and the map

hλ(z) := fλ ◦ g−1
λ (z)

takes zero to zero and L̂(λ) onto L(β), where β = 2 cosh(λ/2).

Since

hλ(z) = 2 coth

(
λ

2

)
cosh

(
λz

4
+
πi

2

)
= 2i coth

(
λ

2

)
sinh

(
λz

4

)
,

one can see that if λn → 0 as n → ∞, then hλn(z) → iz uniformly on any

compact subset of C. Thus we obtain the following corollary of Theorems 6.6

and 6.8 (see Figure 6):

Corollary 7.1. Suppose that λn ∈ C+, λn → 0 as n→ ∞.

1. If λn → 0 horocyclically, then L̂(λn) converge to M in the sense of Haus-

dorff, and int(L̂(λn)) converge to int(M) in the sense of Carathéodory.

2. Suppose that λn → 0 tangentially. In addition we assume that there

exist a sequence of integers {mn}∞n=1 such that the sequence 2πi/λn −mn

converges to some ξ ∈ C as n → ∞. Then L̂(λn) converge to M(2ξ)

in the sense of Hausdorff, and int(L̂(λn)) converge to int(M(2ξ)) in the

sense of Carathéodory.

Proof. The statement for Hausdorff convergence can be easily seen. The state-

ment for Carathéodory convergence follows from Hausdorff convergence of the

complements.
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Figure 6: Computer-generated figure of L̃(λ) (gray parts) for λ close to 0,

restricted to the square of width 2π centered at πi. The left column corresponds

to tangential convergence λ → 0, where λ are points on the circle |z − 1| = 1

whose imaginary part equal 0.7 (top), 0.3 (middle) and 0.1 (bottom). The

right column corresponds to horocyclic convergence λ → 0, where λ equal

0.7 + 0.7i (top), 0.3 + 0.3i (middle) and 0.1 + 0.1i (bottom).
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