Weil-Petersson metric on the square integrable Teichmüller space

Masahiro Yanagishita

Faculty of Education and Integrated Arts and Sciences, Waseda University
JSPS Research Fellow

Riemann surfaces and Discontinuous groups 2015
February 15th, 2016
1. p-integrable Teichmüller space

2. Weil-Petersson metric

3. Main results
Teichmüller space

\[\mathbb{H} = \{ \text{Im} z > 0 \}: \text{upper half-plane} \]
\[\Gamma: \text{Fuchsian group on } \mathbb{H} \text{ (discrete subgroup of } \text{Möb}(\mathbb{H})) \]
\[L^\infty(\mathbb{H}, \Gamma) = \{ \mu: \text{measurable } (-1, 1)-\text{differential on } \mathbb{H} \mid \| \mu \|_\infty < \infty \} \]

\[\mu(\gamma(z))(\gamma'(z))^{-1}\gamma'(z) = \mu(z) \quad \forall z \in \mathbb{H} \]

\[\| \mu \|_\infty = \text{ess sup}_{z \in N} |\mu(z)| \quad (N: \text{fundamental region}) \]
Teichmüller space

\[\text{Bel}(\mathbb{H}, \Gamma) = \{ \mu \in L^\infty(\mathbb{H}, \Gamma) ||\mu||_\infty < 1 \}: \text{space of Beltrami coefficients} \]

Fact (measurable Riemann mapping theorem)

For every \(\mu \in \text{Bel}(\mathbb{H}, \Gamma) \), \(\exists f^\mu : \mathbb{H} \to \mathbb{H} \) sense-pres. homeo. s.t.

\[\bar{\partial} f^\mu(z) = \mu(z) \partial f^\mu(z) \quad \text{a.e. } z \in \mathbb{H} \]

\(f^\mu \) is called a quasiconformal mapping. We normalize \(f^\mu \) by fixing 0, 1, \(\infty \).
Teichmüller space

Teichmüller space of \(\Gamma \)

\[
T(\Gamma) = \frac{\text{Bel}(\mathbb{H}, \Gamma)}{\sim_T}
\]

- \(\mu \sim_T \nu \iff f^\mu|_\mathbb{R} = f^\nu|_\mathbb{R} \)
- if \(\mu \sim_T \nu \), then \(\Gamma^\mu(= f^\mu \Gamma (f^\mu)^{-1}) = \Gamma^\nu \).

\([\mu] : \) Teichmüller equivalence class represented by \(\mu \in \text{Bel}(\mathbb{H}, \Gamma) \)

0 := [0] : base point of \(T(R) \)

\(\Gamma^\tau := \Gamma^\mu \) for \(\tau = [\mu] \in T(\Gamma) \)
Teichmüller space

Basic fact

Theorem

For every Fuchsian group Γ, the Teichmüller space $T(\Gamma)$ has a complex structure modeled on the Banach space $B(\mathbb{H}^*, \Gamma)$.

- $\mathbb{H}^* = \{\text{Im } z < 0\}$: lower half-plane
- $\rho_{\mathbb{H}^*}(z) = (-2 \text{Im } z)^{-1}$: Poincaré metric on \mathbb{H}^*
- $B(\mathbb{H}^*, \Gamma) = \{\varphi : \text{hol. (2, 0)-diff. on } \mathbb{H}^* | \|\varphi\|_\infty < \infty\}$

$$\varphi(\gamma(z))\gamma'(z)^2 = \varphi(z) \quad \forall z \in \mathbb{H}^*$$

$$\|\varphi\|_\infty = \sup_{z \in N^*} |\varphi(z)|\rho_{\mathbb{H}^*}(z)^{-2}(N^* : \text{fundamental region})$$

$$\beta : T(\Gamma) \to B(\mathbb{H}^*, \Gamma) \text{ homeo. (Bers embedding)}$$
p-integrable Teichmüller space

p-integrable Teichmüller space ($p \geq 1$)

$T^p(\Gamma) = \{ \tau \in T(\Gamma) | \exists \mu \in \tau \text{ s.t. } \mu \in \text{Ael}^p(\mathbb{H}, \Gamma) \}$

- $\rho_\mathbb{H}(z) = (2 \text{Im } z)^{-2}$: Poincaré metric on \mathbb{H}
- $L^p(\mathbb{H}, \Gamma) = \{ \mu : \text{measurable (-1, 1)-differential} \|\| \mu \|_p < \infty \}$

$$\|\mu\|_p = \left(\int_{\mathbb{H}} |\mu(z)|^p \rho_\mathbb{H}(z)^2 dx dy \right)^{\frac{1}{p}} < \infty$$

- $\text{Ael}^p(\mathbb{H}, \Gamma) = \text{Bel}(\mathbb{H}, \Gamma) \cap L^p(\mathbb{H}, \Gamma)$: space of p-integrable Beltrami coefficients
Fact

If \(\Gamma \) is cofinite (i.e. \(\mathbb{H}/\Gamma \) has a finite hyperbolic area), then

\[
T^p(\Gamma) = T(\Gamma) \quad \forall p \geq 1.
\]

Hence

This study is significant for coinfinite type.

Remark. \(T(\Gamma) \) is an infinite dimensional manifold for \(\Gamma \) of coinfinite type.
p-integrable Teichmüller space

Fact

If Γ is cofinite (i.e. \mathbb{H}/Γ has a finite hyperbolic area), then

$$T^p(\Gamma) = T(\Gamma) \quad \forall p \geq 1.$$

\[\downarrow\text{Hence}\]

This study is significant for coinfinite type.

Remark. $T(\Gamma)$ is an infinite dimensional manifold for Γ of coinfinite type.
History

2000 G. Cui considered $T^2(1)$ ($1 = \{id_H\}$: trivial group).

- Introduction of a complex structure on $T^2(1)$
- Completeness of Weil-Petersson metric on $T^2(1)$

2000 L. A. Takhtajan, L.-P. Teo also considered $T^2(1)$.

- Kählerity of Weil-Petersson metric on $T^2(1)$
- Curvatures of Weil-Petersson metric on $T^2(1)$

2013 S. Tang extended the arguments of Cui to $p \geq 2$.

2014 D. Radnell, E. Schippers, W. Staubach introduced a complex structure of $T^2(\Gamma)$ for \mathbb{H}/Γ: (g, n)-type bordered

Purpose of this study

We extend their arguments to more general Fuchsian groups.
Let Γ be a Fuchsian group with Lehner’s condition and $p \geq 2$. Then the p-integrable Teichmüller space $T^p(\Gamma)$ has a complex structure modeled on the Banach space $A^p(\mathbb{H}^*, \Gamma)$.

\[A^p(\mathbb{H}^*, \Gamma) = \{ \varphi : \text{hol. (2, 0)-diff.} \| \varphi \|_p < \infty \} \]

\[\| \varphi \|_p = \left(\int \int_{N^*} |\varphi(z)|^p \rho_{\mathbb{H}^*}(z)^{2-2p} \, dx \, dy \right)^{\frac{1}{p}} \]

→ We can consider the complex analytic structure of p-integrable Teichmüller spaces.
History

Let Γ be a Fuchsian group with Lehner’s condition and $p \geq 2$. Then the p-integrable Teichmüller space $T^p(\Gamma)$ has a complex structure modeled on the Banach space $A^p(\mathbb{H}^*, \Gamma)$.

$$A^p(\mathbb{H}^*, \Gamma) = \{ \varphi : \text{hol. } (2, 0)\text{-diff.} \| \varphi \|_p < \infty \}$$

$$\| \varphi \|_p = \left(\iint_{N^*} |\varphi(z)|^p \rho_{\mathbb{H}^*}(z)^{2-2p} \, dx \, dy \right)^{1/p}$$

→ We can consider the complex analytic structure of p-integrable Teichmüller spaces.
Lehner’s condition

A Fuchsian group Γ satisfies Lehner’s condition

$$\text{def} \iff \inf\{\text{length of simple closed geodesics on } \mathbb{H}/\Gamma\} > 0.$$

A Fuchsian group Γ satisfies Lehner’s condition if and only if

$$A^p(\mathbb{H}^*, \Gamma) \subset B(\mathbb{H}^*, \Gamma) \exists \forall p \geq 1.$$
1. p-integrable Teichmüller space

2. Weil-Petersson metric

3. Main results
Holomorphic tangent vector space on $T^p(\Gamma)$

Harmonic Beltrami differential

For $\mu \in L^{p,\infty}(\mathbb{H}, \Gamma^\tau)$,

$$H^\tau[\mu](z) = -2\rho_\mathbb{H}(z)^{-2}D\Phi_\tau(0)\mu(\bar{z}) \quad (z \in \mathbb{H})$$

is called the harmonic Beltrami differential for μ.

Φ_τ: lift of $\beta_\tau : T^p(\Gamma^\tau) \rightarrow A^p(\mathbb{H}^*, \Gamma^\tau)$ for the Teichmüller projection

$\varpi_\tau : \text{Ael}^p(\mathbb{H}, \Gamma^\tau) \rightarrow T^p(\Gamma^\tau)$

Set $\text{HB}^p(\mathbb{H}, \Gamma^\tau) = H^\tau(L^{p,\infty}(\mathbb{H}, \Gamma^\tau))$.

$H^\tau : L^{p,\infty}(\mathbb{H}, \Gamma) \rightarrow L^{p,\infty}(\mathbb{H}, \Gamma)$ bdd. lin. operator
Holomorphic tangent vector space on $T^p(\Gamma)$

For $\tau \in T^p(\Gamma)$,

$$T_\tau T^p(\Gamma) \simeq A^p(\mathbb{H}^*, \Gamma^\tau) \simeq HB^p(\mathbb{H}, \Gamma^\tau).$$

Hereafter, let $p = 2$.

Hence, $T_\tau T^2(\Gamma)$ has the Hermitian inner product on $HB^2(\mathbb{H}, \Gamma^\tau)$ as

$$h^\tau(\mu, \nu) = \iint_{N^\tau} \mu(z)\overline{\nu(z)}\rho_{\mathbb{H}}(z)^2 dx dy \quad (\mu, \nu \in HB^2(\mathbb{H}, \Gamma^\tau))$$
Weil-Petersson metric

For a nbd. $\tau \in U_0$ of the base point 0 and $\mu, \nu \in \text{HB}^2(\mathbb{H}, \Gamma)$,

$$h_{WP}(\tau)(\mu, \nu) = h^\tau (H^\tau \circ L^\varsigma(\tau)[\mu], H^\tau \circ L^\varsigma(\tau)[\nu]).$$

- $\varsigma(\tau) \in \omega^{-1}_0(U_0) \subset \text{HB}^2(\mathbb{H}, \Gamma)$
- $L^\varsigma(\tau) : L^{2,\infty}(\mathbb{H}, \Gamma) \rightarrow L^{2,\infty}(\mathbb{H}, \Gamma^\tau)$ certain Banach isomorphism

Remark. For every $\eta \in T^2(\Gamma)$, h_{WP} can be defined on a nbd. U_η of η similarly.
Weil-Petersson metric

For a nbd. $\tau \in U_0$ of the base point 0 and $\mu, \nu \in \text{HB}^2(\mathbb{H}, \Gamma)$,

$$h_{WP}(\tau)(\mu, \nu) = h^\tau(H^\tau \circ L^{\varsigma(\tau)}[\mu], H^\tau \circ L^{\varsigma(\tau)}[\nu]).$$

- $\varsigma(\tau) \in \mathcal{W}_0^{-1}(U_0) \subset \text{HB}^2(\mathbb{H}, \Gamma)$
- $L^{\varsigma(\tau)} : L^{2,\infty} (\mathbb{H}, \Gamma) \to L^{2,\infty} (\mathbb{H}, \Gamma^\tau)$ certain Banach isomorphism

Remark. For every $\eta \in T^2(\Gamma)$, h_{WP} can be defined on a nbd. U_η of η similarly.
1. p-integrable Teichmüller space

2. Weil-Petersson metric

3. Main results
Kähler metric

Hermitian metric

\(M \): complex Hilbert manifold

\(h_p \): Hermitian inner product on \(T_p M \) (\(p \in M \))

For every \(C^\infty \)-vector fields \(\xi, \eta \) on \(M \), if the function

\[\tilde{h}(p) = h_p(\xi(p), \eta(p)) \]

is of class \(C^\infty \), \(h = \{h_p\}_{p \in M} \) is called a **Hermitian metric** on \(M \).
Kähler metric

(M, h): Hermitian manifold

The function \(\omega = -2 \text{Im} \ h \) is a real 2-form on \(M \).

\[
h \text{ is a Kähler metric } \iff d\omega \equiv 0
\]

Remark. (Darboux’s theorem)

If \(M \) is a \(n \)-dimensional Kähler manifold, for every \(p \in M \), there exists a \(C^\infty \)-function \(f \) on a neighborhood of \(p \) s.t.

\[
\omega = \partial \bar{\partial} f = \sum_{j,k=1}^{n} \frac{\partial^2 f}{\partial z_j \partial \bar{z}_k} dz_j \wedge d\bar{z}_k.
\]
Theorem (Ahlfors 1961)

Let Γ be an arbitrary cocompact Fuchsian group.

(i) The Weil-Petersson metric h_{WP} on $T(\Gamma)$ is Kähler;

(ii) The holomorphic sectional curvature and Ricci curvature of h_{WP} are negative.

Takhtajan-Teo showed this result is also valid for $T^2(1)$.
Can we extend this theorem to Fuchsian groups with Lehner’s condition?

If we can do that, $T^2(\Gamma)$ has fruitful properties as the Kähler manifold.
How should we overcome the problem?

Can we apply Ahlfors’s proofs?
characterization of Kählerity

proposition (finite dim. version)

let \((M, h)\) be a hermitian manifold \((n = \dim M < \infty)\) and
\[h_{k\ell} = h\left(\frac{\partial}{\partial z_k}, \frac{\partial}{\partial z_{\ell}}\right). \]
then the following conditions are equivalent:

(i) \(h\) is a Kähler metric on \(M\);

(ii) for \(\forall j, k, \ell = 1, \ldots, n,\)
\[
\frac{\partial h_{k\ell}}{\partial z_j} = \frac{\partial h_{j\ell}}{\partial z_k};
\]

(iii) for \(\forall p \in M, \exists (w_1, \ldots, w_n)\): local coordinate s.t. \(w(p) = 0,\)
\[h_{k\ell}(0) = \delta_{k\ell} \quad \text{and} \]
\[
\frac{\partial h_{k\ell}}{\partial w_j}(0) = 0 \quad \forall j, k, \ell = 1, \ldots, n.
\]

M. Yanagishita (Waseda Univ.)
Theorem (infinite dim. version, Y. 2015?)

Let \((M, h)\) be a Hermitian manifold. Then the following conditions are equivalent:

(i) \(h\) is a Kähler metric on \(M\);
(ii) For every \(\xi, \eta, \zeta \in \Gamma(TM)\),
\[
D'h\xi(\eta, \zeta) = D'h\eta(\xi, \zeta);
\]
(iii) For \(\forall p \in M\), \(\exists (w_1, \cdots, w_n)\): local coordinate s.t. \(w(p) = 0\) and
\[
h(w) = \langle \cdot, \cdot \rangle + o(\|w\|).
\]

Remark. In this talk, we use the representation of finite dim. version for simplicity of explanation.
Rough sketch of proof of Kählerity

The computation itself is same as Ahlfors’s one.

\[
\frac{\partial h_{k\bar{\ell}}}{\partial t_j} = -\frac{24}{\pi^2} \int \int_{N(t)} \left\{ \int \int_{\mathbb{H}} \nu_k(t)(\zeta)T_j(z, \zeta)K(\zeta, \bar{z})d^2\zeta \right\} \nu_\ell(t)(z)d^2z
\]

\[
= -\frac{24}{\pi^2} \int \int_{N(t)} \left\{ \int \int_{\mathbb{H}} \nu_j(t)(w)T_k(z, w)K(w, \bar{z})d^2w \right\} \nu_\ell(t)(z)d^2z
\]

\[
= \frac{\partial h_{j\bar{\ell}}}{\partial t_k},
\]

Here, \(d^2z = dx dy\) and

\[
T_j(z, \zeta) = \int \int_{\mathbb{H}} \nu_j(t)(w)K(w, \zeta)K(w, \bar{z})d^2w,
\]

\[
\nu_j(t) = L^{\nu(t)}[\nu_j] \quad (t \in \ell^2(\mathbb{C}), \nu(t) = \sum_{j=1}^{\infty} t_j \nu_j \in \text{HB}^2(\mathbb{H}, \Gamma)),
\]

\[
N(t) = f^{\nu(t)}(N), \quad K(\zeta, z) = (\zeta - z)^{-2}.
\]
We have to check the commutativity between the signs of differentiation and integration.

It is necessary to show the expression

$$\int \int_{N(t)} \int \int_{\mathbb{H}} |\nu_k(t)(\zeta)\nu_\ell(t)(z)T_j(z, \zeta)K(\zeta, \bar{z})|d^2\zeta d^2z$$

converges uniformly on t in a nbd. of 0.

Ahlfors used the finiteness of the hyperbolic area of \mathbb{H}/Γ.
We have to check the commutativity between the signs of differentiation and integration. It is necessary to show the expression

\[
\int \int_{N(t)} \int \int_{\mathbb{H}} |\nu_k(t)(\zeta)\nu_\ell(t)(z)T_j(z, \zeta)K(\zeta, \bar{z})| \, d^2\zeta \, d^2z
\]

converges uniformly on \(t \) in a nbd. of 0.

Ahlfors used the finiteness of the hyperbolic area of \(\mathbb{H}/\Gamma \).
For $r > e$, let $u(r) = \log \log r$ and

\[D_1(t, r) = N(t) \cap B_h(i, u(r)), \quad D_2(r) = \mathbb{H} \cap \{|z| < r\}. \]

Here, $B_h(i, u(r))$ is the hyperbolic disk centered at i of radius $u(r)$.

Then,

\[(N(t) \times \mathbb{H}) \setminus (D_1(t, r) \times D_2(r)) = (D_1(t, r)^c \times \mathbb{H}) \sqcup (D_1(t, r) \times D_2(t)^c). \]

(1) \hspace{3cm} (2)

\[\rightarrow \text{It is sufficient to show both of the integrations on (1) and (2) converges to 0 as } r \to \infty \text{ uniformly on } t. \]
For $r > e$, let $u(r) = \log \log r$ and

$$D_1(t, r) = N(t) \cap B_h(i, u(r)), \quad D_2(r) = \mathbb{H} \cap \{|z| < r\}.$$

Here, $B_h(i, u(r))$ is the hyperbolic disk centered at i of radius $u(r)$. Then,

$$(N(t) \times \mathbb{H}) \setminus (D_1(t, r) \times D_2(r)) = (D_1(t, r)^c \times \mathbb{H}) \sqcup (D_1(t, r) \times D_2(t)^c).$$

\rightarrow It is sufficient to show both of the integrations on (1) and (2) converges to 0 as $r \to \infty$ uniformly on t.

Rough sketch of proof of Kählerity

(1) integration on $D_1(t, r)^c \times \mathbb{H}$

It follows from Ahlfors’s computation and the lemma as follows:

Lemma A (Takhtajan-Teo 2006)

Let $0 < a < 1$. Then, there exists a constant $C(a) > 0$ s.t. for every $z \in \mathbb{H}$ and every $\mu \in H(L^\infty(\mathbb{H}, \Gamma))$ with $\|\mu\|_\infty < a$,

$$|\partial f^\mu(z)|^2 \rho_H(f^\mu(z))^2 \leq C(a) \rho_H(z)^2.$$

$$\int \int_{D_1(t, r)^c} |\nu_j(t)(z)|^2 \rho_H(z)^2 d^2 z \leq \frac{C(a)}{(1 - a^2)^2} \|\nu_j|_{N \setminus (f^\nu(t))^{-1}(B_h(i, u(r)))}\|^2 \rightarrow 0 \quad (r \rightarrow \infty).$$
(2) integration on $D_1(t, r) \times D_2(r)^c$,

Ahlfors’s computation, Lemma A and the lemma as follows:

Lemma B (Y. 2014)

\[
F(r) = \int \int_{B_h(i,u(r))} \int \int_{D_2(r)} \frac{d^2 \zeta d^2 z}{|\zeta - \bar{z}|^4} \to 0 \quad (r \to \infty).
\]

(integration on $D_1(t, r) \times D_2(r)^c$) \leq \frac{\pi^2 C(a) \frac{1}{2} \|\nu_\ell\|_2 \|\nu_j\|_\infty \|\nu_k\|_\infty}{(1 - a^2)^3} F(r) \to 0 \quad (r \to \infty).
Rough sketch of proof of negativity

Negativity of curvature

The hol. sec. curvature (resp. the Ricci curvature) is negative if

$$\text{HSec}(0)(\nu(t)) < 0 \quad \text{resp.} \quad \text{Ric}(0)(\nu(t)) < 0$$

for every $t \in \ell^2(\mathcal{C}) \setminus \{0\}$.
Rough sketch of proof of negativity

From condition (iii),

$$h_{k\ell}(0) = \delta_{k\ell}, \quad \frac{\partial h_{k\ell}}{\partial t_j}(0) = 0 \quad \forall j, k, \ell = 1, \ldots.$$

Then for $\nu(t) = \sum_{j=1}^{\infty} t_j \nu_j \in \operatorname{HB}(\mathbb{H}, \Gamma) \setminus \{0\}$,

$$\operatorname{HSec}(0)(\nu(t)) = \sum_{j,k,\ell,m=1}^{\infty} \frac{\partial^2 h_{j\bar{k}}}{\partial t_\ell \partial \bar{t}_m}(0) t_j \bar{t}_k t_\ell \bar{t}_m,$$

$$\operatorname{Ric}(0)(\nu(t)) = \sum_{\ell=1}^{\infty} \left(\sum_{j,k=1}^{\infty} \frac{\partial^2 h_{j\bar{k}}}{\partial t_\ell \partial \bar{t}_k}(0) t_j \bar{t}_k \right).$$
Rough sketch of proof of negativity

\[\text{HSec}(0)(\nu(t)) = -\frac{3}{\pi^5} \int_{N \times \mathbb{H}} G d^2 \zeta d^2 z \leq 0. \]

Here,

\[G = \left| \sum_{j,k=1}^{\infty} (L_{j\ell}(\bar{\zeta}, \bar{z}) + L_{\ell j}(\bar{\zeta}, \bar{z})) t_j t_\ell \right|^2 + 2 \left| \sum_{j,k=1}^{\infty} L_{j\bar{k}}(\zeta, \bar{z}) t_j \bar{t}_k \right|^2, \]

\[L_{j\bar{k}}(\zeta, \bar{z}) = \int_{\mathbb{H}^2} K(z_1, \bar{\zeta}) K(z_1, w_1) K(w_1, \bar{z}) \nu_j(z_1) \nu_k(w_1) d^2 z_1 d^2 w_1, \]

\[L_{j\bar{k}}(\zeta, \bar{z}) = \int_{\mathbb{H}^2} K(z_2, \zeta) K(z_2, \bar{w}_2) K(\bar{w}_2, \bar{z}) \nu_j(z_2) \overline{\nu_k(w_2)} d^2 z_2 d^2 w_2. \]
Suppose $\text{HSec}(0)(\nu(t)) = 0$. Then for every $\zeta, z \in \mathbb{H}$,

$$
\sum_{j,k=1}^{\infty} L_{j,k}(\zeta, \bar{\zeta}) t_j \bar{t}_k = 0 \quad \forall j, k = 1, \ldots.
$$

Hence,

$$
0 = \int_{\mathbb{H}} \int_{\mathbb{H}} \sum_{j,k=1}^{\infty} L_{j,k}(\zeta, \bar{\zeta}) t_j \bar{t}_k d^2 \zeta = -\frac{1}{3} \|\nu(t)\|_2.
$$

This contradicts the assumption $\nu(t) \neq 0$.

Similarly, it follows $\text{Ric}(0)(\nu(t)) < 0$.
Rough sketch of proof of negativity

Obstruction

Is this computation valid for infinite dim. manifolds?

- Hol. sec. curvature \(\cdots \) Ahlfors’s computation + Lemma A, B
- Ricci curvature \(\cdots \) These tools + Theory of reproducing kernel Hilbert space
Rough sketch of proof of negativity

For \(\nu(t) = \sum_{j=1}^{\infty} t_j \nu_j \in \text{HB}(\mathbb{H}, \Gamma) \setminus \{0\}, \)

\[
\text{HSec}(0)(\nu(t)) = \sum_{j,k,\ell,m=1}^{\infty} \frac{\partial^2 h_{j\bar{k}}}{\partial t_\ell \partial \bar{t}_m}(0) t_j \bar{t}_k t_\ell \bar{t}_m
\]

\[
= -D' D'' h(0)(\nu(t), \nu(t))(\nu(t), \nu(t)),
\]

\[
\text{Ric}(0)(\nu(t)) = \sum_{\ell=1}^{\infty} \left(\sum_{j,k=1}^{\infty} \frac{\partial^2 h_{j\bar{\ell}}}{\partial t_\ell \partial \bar{t}_k}(0) t_j \bar{t}_k \right)
\]

\[
= -\text{Re} \sum_{\ell=1}^{\infty} D' D'' h(0)(\nu_\ell, \nu(t))(\nu(t), \nu_\ell).
\]
Rough sketch of proof of negativity

Fact

The Hilbert space $\mathcal{H}_B(\mathbb{H}, \Gamma)$ has the reproducing kernel

$$Q_\Gamma(z, \zeta) = \frac{3}{\pi} \rho_\mathbb{H}(z)^{-2} \rho_\mathbb{H}(\zeta)^{-2} \sum_{\gamma \in \Gamma} \frac{\gamma'(\zeta)^2}{(\bar{z} - \gamma(\zeta))^4},$$

that is,

$$\nu(z) = \int \int_N \nu(\zeta) Q_\Gamma(z, \zeta) d^2\zeta$$

for every $\nu \in \mathcal{H}_B^2(\mathbb{H}, \Gamma)$.

It follows that

$$Q_\Gamma(z, \zeta) = \sum_{\ell=1}^{\infty} \nu_\ell(z) \overline{\nu_\ell(\zeta)}.$$
A Fuchsian group satisfies Lehner’s condition if and only if

\[\sup_{z \in \mathbb{H}} |Q_{\Gamma}(z, z)| < \infty. \]

The convergence of Ric(0)(\nu(t)) is shown from this proposition.
Let Γ be a Fuchsian group with Lehner’s condition.

(i) The Weil-Petersson metric h_{WP} on $T^2(\Gamma)$ is Kähler;
(ii) The holomorphic sectional curvature and Ricci curvature of h_{WP} are negative.

↑ because

We can apply Ahlfors’s method.

References

Thank you for your kind attention!