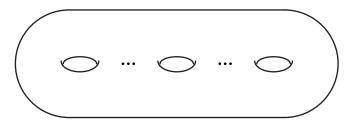
The period matrix of the hyperelliptic curve $w^2 = z^{2g+1} - 1$

Yuuki TADOKORO

Kisarazu National College of Technology

14 Feb. 2015 @Osaka

Riemann surface is an important object from analytic, algebraic, geometric, and topological viewpoints.

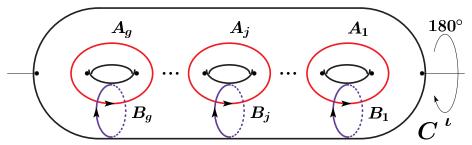


We put emphasis on a complex analytic invariant, **Period matrix**

Introduction	Hyperelliptic curves	Main theorem	Program of period matrix	Summary
Ove	rview			

First part

C_g: hyperelliptic curve w² = z^{2g+1} − 1 of genus g ≥ 2.
{A_i, B_i}_{i=1,...,g} ⊂ H₁(C_g; Z): a fixed symplctic basis(natural type)



Introduction	Hyperelliptic curves	Main theorem	Program of period matrix	Summary
Ove	rview			

First part

- C_g : hyperelliptic curve $w^2 = z^{2g+1} 1$ of genus $g \ge 2$.
- {A_i, B_i}_{i=1,...,g} ⊂ H₁(C_g; ℤ): a fixed symplectic basis(natural type)
- τ_g: period matrix of C_g with respect to {A_i, B_i}

A complex analytic invariant of Riemann surfaces

$$\Rightarrow$$
 We explicitly determine τ_g

Introduction	Hyperelliptic curves	Main theorem	Program of period matrix	Summary
Ove	rview			

Second part

X_{p,l,m}: compact Riemann surface w^p = z^l(1 − z)^m of genus g = (p − 1)/2.
F = F_N: Fermat curve w^N = 1 − z^N of genus g = (N − 1)(N − 2)/2.

 \Rightarrow We made a program which computes

$$(p,l,m) \longrightarrow \text{period matrix of } X_{p,l,m}$$
$$N \longrightarrow \text{period matrix of } F$$

Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Definition of Period matrix

- X : a compact Riemann surface of genus $g \ge 1$
- {ω₁,...,ω_g}: a basis of H^{1,0}(X) ≅ C^g
 {a_i, b_i}_{i=1,...,g}: a symplectic basis of H₁(X; Z)
 Ω_A = (∫_{a_j} ω_i), Ω_B = (∫_{b_j} ω_i): Periods
 τ_X := Ω_A⁻¹Ω_B ∈ M_g(C)

Introduction Hyperelliptic curves Main theorem Program of period matrix Summary Properties of au_X

- A complex analytic invariant of X.
- It depends only on the choice of a symplectic basis of H₁(X; ℤ).
- It is symmetric and its imaginary part is positive definite.

 $\tau_X \in \mathcal{H}_g$: Siegel upper halfspace

period map $\varphi : \mathbb{M}_g \to \operatorname{Sp}_{2g}(\mathbb{Z}) \setminus \mathcal{H}_g$

Introduction Hyperelliptic curves Main theorem Program of period matrix Summary
Motivation

Torelli's theorem

X,Y : compact Riemann surfaces of genus g
J(X) = C^g/(Z^g + τ_XC^g) : its Jacobian varieties
X ≅ Y ⇔ J(X) ≅ J(Y) as p.p.a.v.

For generic genus, few examples of period matrices are known.

The difficulty is in finding a symp. basis

- only three types of hyperelliptic curves C
- no examples of nonhyperelliptic curves (for generic genus)

We are trying to compute these examples using our program.

Introduction Hyperelliptic curves Main theorem Program of period matrix Summary
Motivation

- Torelli's theorem
 - X,Y : compact Riemann surfaces of genus g
 J(X) = C^g/(Z^g + τ_XC^g) : its Jacobian varieties
 X ≅ Y ⇔ J(X) ≅ J(Y) as p.p.a.v.
- For generic genus, few examples of period matrices are known. The difficulty is in finding a sumple basis

The difficulty is in finding a symp. basis

- only three types of hyperelliptic curves C
- no examples of nonhyperelliptic curves (for generic genus)

We are trying to compute these examples using our program.

Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Schindler's results(1993)

Method: Action of Aut C,
$$(z, w) \mapsto (\zeta z, w)$$

 $\bigcirc C: \omega^2 = z^{2g+2} - 1$
 $(\zeta = \zeta_{2g+2} = \exp(2\pi\sqrt{-1}/(2g+2)))$

$$\tau_X = \left(\frac{1}{g+1} \sum_{k=1}^g \frac{\zeta^k (\zeta^{-2ik} - 1)(\zeta^{2kj} - 1)}{1 - \zeta^{2k}}\right)_{i,j}$$

Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Schindler's results(1993)

$$\bigcirc C \cong C_g: \, \omega^2 = z(z^{2g+1}-1) \ (\zeta = \zeta_{2g+1})$$

Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Schindler's results(1993)

$$\bigcirc C\cong C_g:\,\omega^2=z(z^{2g+1}-1)$$

 $(\zeta=\zeta_{2g+1})$

$$\begin{cases} t_1 = (-1)^g \zeta^{g^2}, \quad t_2 = t_1 \zeta / (1+\zeta), \\ t_{i+1} = t_1 \left(1 - \sum_{k=2}^i \zeta^{g-i+k-1} t_k t_{i-k+2} \right) / (1+\zeta^{-i}) \end{cases}$$

Schindler's results(1993)

$$\bigcirc C\cong C_g:\,\omega^2=z(z^{2g+1}-1)$$

 $(\zeta=\zeta_{2g+1})$

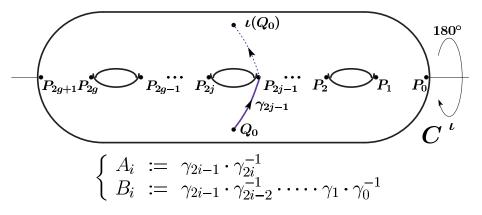
Theorem ((i,j)-th entry of $au_g^S)$

$$s_{i,j} = 1 - \sum_{k=1}^{i} t_k t_{j-i+k} / t_1$$

for $1 \leq i \leq j \leq g$ and $s_{j,i}$ for $g \geq i > j \geq 1$.

recurrence expression ③ $C: \omega^2 = z(z^{2g} - 1)$ more complex expression Introduction Hyperelliptic curves Main theorem Program of period matrix Summary A symplectic basis of hyperelliptic curves

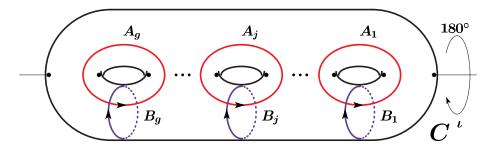
 $C \xrightarrow{2:1} \mathbb{C}P^1$: a hyperelliptic curve, ι : its involution, $\gamma_j : [0,1] \to C$: path from Q_0 to $\iota(Q_0)$



Introduction Hyperelliptic curves Main theorem Program of period matrix Summary A symplectic basis of hyperelliptic curves

$$\begin{cases} A_i := \gamma_{2i-1} \cdot \gamma_{2i}^{-1} \\ B_i := \gamma_{2i-1} \cdot \gamma_{2i-2}^{-1} \cdot \cdots \cdot \gamma_1 \cdot \gamma_0^{-1} \end{cases}$$

 $\Rightarrow \{A_i, B_i\}_{i=1,2,\dots,g}$: a symp. basis of $H_1(C;\mathbb{Z})$



Introduction Hyperelliptic curves Main theorem Program of period matrix Summary
Periods

- C_g : hyperelliptic curve $w^2 = z^{2g+1} 1$ $(g \ge 2)$.
- {A_i, B_i}_{i=1,...,g} ⊂ H₁(C_g; ℤ): the fixed symp. basis
- $\{\omega_i = z^{i-1}dz/w\}_{i=1,\dots,g} \subset H^{1,0}(C_g)$: a basis
- $\zeta := \zeta_{2g+1} = \exp(2\pi\sqrt{-1}/(2g+1))$
- τ_g : period matrix of C_g with respect to $\{A_i, B_i\}$

$$\Omega_A = \left(\int_{A_j} \omega_i\right), \ \Omega_B = \left(\int_{B_j} \omega_i\right)$$
 were obtained by Tashiro, Yamazaki, Ito, and Higuchi(1996).
Moreover $\det \Omega_A$ and $\det \Omega_B$ too.

Introduction	Hyperelliptic curves	Main theorem	Program of period matrix	Summary
Peri	ods			

Case:
$$g = 3$$

$$\Omega_{A} =
\begin{pmatrix}
1 - \zeta & 1 - \zeta + \zeta^{2} - \zeta^{3} & 1 - \zeta + \zeta^{2} - \zeta^{3} + \zeta^{4} - \zeta^{5} \\
1 - \zeta^{2} & 1 - \zeta^{2} + \zeta^{4} - \zeta^{6} & 1 - \zeta^{2} + \zeta^{4} - \zeta^{6} + \zeta^{8} - \zeta^{10} \\
1 - \zeta^{3} & 1 - \zeta^{3} + \zeta^{6} - \zeta^{9} & 1 - \zeta^{3} + \zeta^{6} - \zeta^{9} + \zeta^{12} - \zeta^{15}
\end{pmatrix}$$

$$\Omega_{B} =
\begin{pmatrix}
1 - \zeta^{2} & 1 - \zeta + \zeta^{2} - \zeta^{4} & 1 - \zeta + \zeta^{2} - \zeta^{3} + \zeta^{4} - \zeta^{6} \\
1 - \zeta^{4} & 1 - \zeta^{2} + \zeta^{4} - \zeta^{8} & 1 - \zeta^{2} + \zeta^{4} - \zeta^{6} + \zeta^{8} - \zeta^{12} \\
1 - \zeta^{6} & 1 - \zeta^{3} + \zeta^{6} - \zeta^{12} & 1 - \zeta^{3} + \zeta^{6} - \zeta^{9} + \zeta^{12} - \zeta^{18}
\end{pmatrix}$$

Introduction	Hyperelliptic curves	Main theorem	Program of period matrix	Summary
Peri	ods			
$\Omega_A = \begin{pmatrix} 1-\zeta \\ 1-\zeta^2 \\ 1-\zeta^3 \end{pmatrix}$	$1 - \zeta + \zeta^2 - 1 - \zeta^2 + \zeta^4$	$ \begin{array}{ccc} -\zeta^3 & 1-\zeta \\ -\zeta^6 & 1-\zeta^2 \\ -\zeta^9 & 1-\zeta^3 \end{array} $	$\begin{aligned} &+\zeta^{2}-\zeta^{3}+\zeta^{4}-\zeta^{4}+\zeta^{4}-\zeta^{6}+\zeta^{8}-\zeta^{6}+\zeta^{8}-\zeta^{6}+\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}-\zeta^{9}+\zeta^{12}-\zeta^{6}-\zeta^{9}$	$\left(\begin{array}{c} -\zeta^{5} \\ -\zeta^{10} \\ -\zeta^{15} \end{array} \right)$

$$= \begin{pmatrix} -1+\zeta & & \\ & -1+\zeta^2 & \\ & & -1+\zeta^3 \end{pmatrix} \\ \begin{pmatrix} \zeta & \\ & \zeta^2 & \\ & & \zeta^3 \end{pmatrix} \begin{pmatrix} 1 & \zeta^2 & \zeta^4 \\ 1 & \zeta^4 & \zeta^8 \\ 1 & \zeta^6 & \zeta^{12} \end{pmatrix}$$

Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Key lemma(Knuth's book)

Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Key lemma(Knuth's book)

Case:
$$n = 3$$

$$\begin{pmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{pmatrix}^{-1} \\ = \begin{pmatrix} \frac{bc}{(b-a)(c-a)} & -\frac{ac}{(a-b)(c-b)} & \frac{ab}{(a-c)(b-c)} \\ \frac{b+c}{(b-a)(c-a)} & -\frac{a+c}{(a-b)(c-b)} & \frac{a+b}{(a-c)(b-c)} \\ \frac{1}{(b-a)(c-a)} & -\frac{1}{(a-b)(c-b)} & \frac{1}{(a-c)(b-c)} \end{pmatrix}$$

Hyperelliptic curves

Main theorem

Program of period matrix

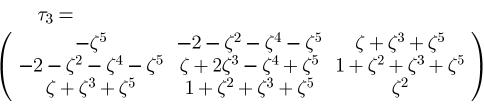
Summary

Result(2014)

Theorem ((i, j)-th entry of $\tau_g)$

$$\sum_{k=1}^{g} \frac{(-1)^{i+g}}{2g+1} (1-\zeta^{2kj}) \sigma_{g-i}(\zeta^2, \dots, \widehat{\zeta^{2j}}, \dots, \zeta^{2g})$$
$$\prod_{m=g-k+1}^{2g-k} (1-\zeta^{2m})$$

Introduction Hyperelliptic curves Main theorem Program of period matrix Summary Result(2014)



Introduction Hyperelliptic curves Main theorem Program of period matrix Summary
Result(2014)

A relation between Schindler's result and τ_q

$$L_g = \begin{pmatrix} & & -1 \\ & -1 & \\ & \ddots & \\ -1 & & \end{pmatrix} \in M_g(\mathbb{Z})$$

$$\Rightarrow \tau_g^S = L_g \tau_g L_g$$

 $\because)$ See the symplectic basis for Schindler's period matrix

Algorithms and programs

Algorithm

- Tretkoff and Tretkoff Hurwitz system and Frobenius method
- Kamata ⊂ T.T. for Fermat type curves
- Ours \subset T.T. Chord slide method for $X_{p,l,m}$

Programs

Ours	Maple algcurves	
$X_{p,l,m}$	f(x,y) = 0	
$\mathbb{Q}(\zeta)$	Approximate value	
elementary	complex	

Introduction Hyperelliptic curves Main theorem Program of period matrix Summary

 A program

- p : prime, 0 < l, m < p 1 : coprime
- $X_{p,l,m} := \{w^p = z^l(1-z)^m\}$: a compact Riemann surface of g = (p-1)/2. • $\pi : X_{p,l,m} \ni (z,w) \mapsto z \in \mathbb{C}P^1$:

p-cyclic covering branched over $0, 1, \infty \subset \mathbb{C}P^1$

Using "Chord Slide Method(CSM)", we obtain a geometric algorithm for finding symp. basis of $X_{p,l,m}$'s.

Introduction Hyperelliptic curves Main theorem Program of period matrix Summary

 A program

- p : prime, 0 < l, m < p 1 : coprime
- $X_{p,l,m} := \{w^p = z^l(1-z)^m\}$: a compact Riemann surface of g = (p-1)/2. • $\pi : X_{p,l,m} \ni (z,w) \mapsto z \in \mathbb{C}P^1$:

p-cyclic covering branched over $0, 1, \infty \subset \mathbb{C}P^1$

Using "Chord Slide Method(CSM)", we obtain a mathematica program for calculating period matrices of $X_{p,l,m}$'s.

Introduction Hyperelliptic curves Main theorem Program of period matrix Summary
Demonstration

•
$$X_{p,l,m}$$
: compact Riemann surface
 $w^p = z^l (1-z)^m$ of genus $g = (p-1)/2$.

 \Rightarrow We made a program which computes

$$(p,l,m) \longrightarrow$$
 period matrix of $X_{p,l,m}$

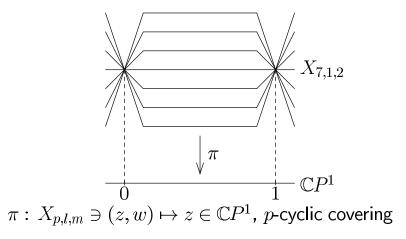
Introduction Hyperelliptic curves Main theorem Program of period matrix Summary
Intersection matrix(Outline)

- σ(z,w) = (z, ζw): automorphism with order p.
 Define c_i : [0,1] → X_{p,l,m} (i = 1,2,...,2g) paths
- $\Rightarrow A = (c_i \cdot c_j)$ intersection matrix
 - *p*-cyclic covering of $\mathbb{C}P^1$
 - Dessin d'enfants
 - $\textcircled{O} Chord diagram on S^1$

Sample: $X_{7,1,2} = \{w^7 = z(1-z)^2\}$: Klein quartic $K_4 := \{X^3Y + Y^3Z + Z^3X = 0\} \subset \mathbb{C}P^2$ $(z = X^3Y^{-2}Z^{-1} + 1, w = -XY^{-1})$

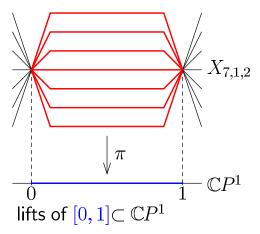
Intersection matrix(Details)

p-cyclic covering of $\mathbb{C}P^1 \rightarrow \mathsf{DD} \rightarrow \mathsf{CD}$



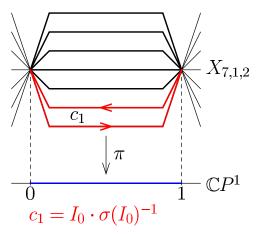
Intersection matrix(Details)

$p\text{-cyclic covering of }\mathbb{C}P^1{\rightarrow}\mathsf{D}\mathsf{D}{\rightarrow}\mathsf{C}\mathsf{D}$



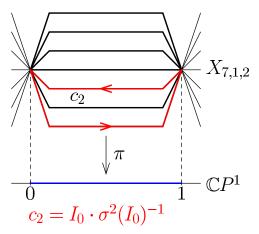
Intersection matrix(Details)

$p\text{-cyclic covering of }\mathbb{C}P^1{\rightarrow}\mathsf{D}\mathsf{D}{\rightarrow}\mathsf{C}\mathsf{D}$



Intersection matrix(Details)

$p\text{-cyclic covering of }\mathbb{C}P^1{\rightarrow}\mathsf{D}\mathsf{D}{\rightarrow}\mathsf{C}\mathsf{D}$



Hyperelliptic curves

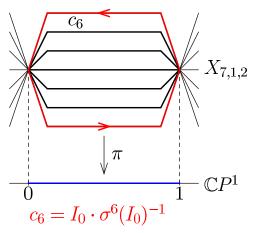
Main theorem

Program of period matrix

Summary

Intersection matrix(Details)

p-cyclic covering of $\mathbb{C}P^1 \rightarrow \mathsf{DD} \rightarrow \mathsf{CD}$



Hyperelliptic curves

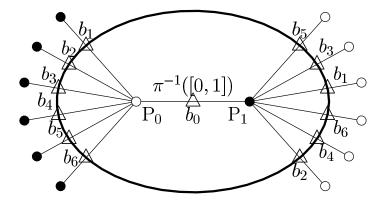
Main theorem

Program of period matrix

Summary

Intersection matrix(Details)

 $CC \rightarrow Dessin d'enfants \rightarrow CD$



A dessin d'enfants of $C_{7,2}$

Hyperelliptic curves

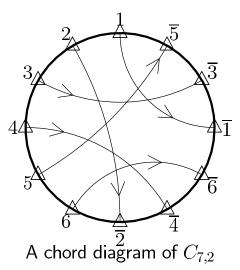
Main theorem

Program of period matrix

Summary

Intersection matrix(Details)

 $CC \rightarrow DD \rightarrow Chord diagram$



We obtain the intersection matrix $A = (c_i \cdot c_j)$

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 & 1 \\ -1 & -1 & -1 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 \end{pmatrix}$$

Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Chord diagram methods

Find
$$T \in M_{2g}(\mathbb{Z})$$
 s.t. $TA^{t}T = \begin{pmatrix} 0 & I_{g} \\ -I_{g} & 0 \end{pmatrix}$.
Then, we have a symplectic basis

$$(a_1, \ldots, a_g, b_1, \ldots, b_g) = (c_1, c_2, \ldots, c_{2g})^t T$$

Hyperelliptic curves

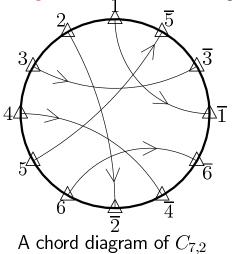
Main theorem

Program of period matrix

Summary

Chord diagram methods

Chord diagram→Linear Chord Diagrams



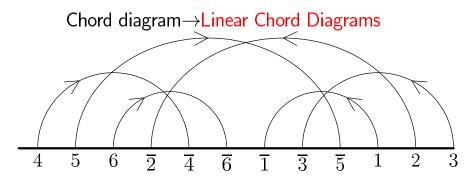
Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Chord diagram methods



A linear chord diagram of $C_{7,2}$

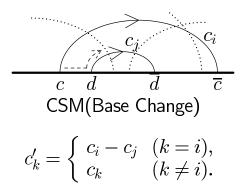
Hyperelliptic curves

Main theorem

Program of period matrix

Summary

Chord diagram methods



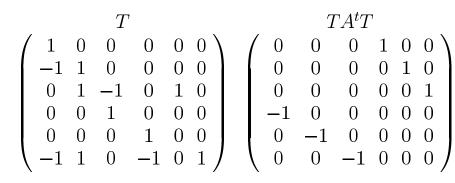
The advantage of CSM is its applicability to other curves for generic genus. In fact, we obtain another symplectic basis of C_g different to $\{A_i, B_i\}$.

Main theorem

Program of period matrix

Summary

Chord diagram methods



Main theorem

Program of period matrix

Summary

A basis of holomorphic 1-forms

•
$$\alpha_l = \lfloor nl/p \rfloor$$
, $\alpha_m = \lfloor nm/p \rfloor$
• $d_n = \lfloor n(l+m)/p \rfloor - \alpha_l - \alpha_m - 1$
• $\omega_{n,d} = z^{\alpha_l}(1-z)^{\alpha_m} z^d dz/w^n$
• $S := \{(n,d): 0 \le d \le d_n \text{ and } 1 \le n \le p-1\}$

Theorem (Bennama(1998))

$$\{\omega_{n,d}\}_{(n,d)\in S}$$
: a basis of $H^{1,0}(X)$

$$\begin{array}{c|cccc} (n,d) & (3,0) & (5,0) & (6,0) \\ \hline \omega_{n,d} & dz/w^3 & (1-z)dz/w^5 & (1-z)dz/w^6 \end{array}$$

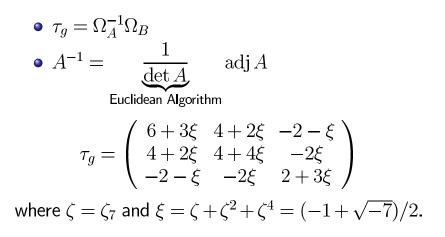
Hyperelliptic curves Main theorem Program of period matrix

Periods

•
$$\Omega_A = \left(\int_{a_j} \omega_i\right), \ \Omega_B = \left(\int_{b_j} \omega_i\right) : \text{Periods}$$

 $\Omega_A = \left(\begin{array}{cccc} 1 - \zeta & \zeta - \zeta^2 & 1 - \zeta^2 + \zeta^3 - \zeta^5 \\ 1 - \zeta^2 & \zeta^2 - \zeta^4 & 1 - \zeta^4 + \zeta^6 - \zeta^{10} \\ 1 - \zeta^4 & \zeta^4 - \zeta^8 & 1 - \zeta^8 + \zeta^{12} - \zeta^{20} \end{array}\right)$
 $\Omega_B = \left(\begin{array}{cccc} 1 - \zeta^3 & 1 - \zeta^4 & \zeta - \zeta^2 + \zeta^4 - \zeta^6 \\ 1 - \zeta^6 & 1 - \zeta^8 & \zeta^2 - \zeta^4 + \zeta^8 - \zeta^{12} \\ 1 - \zeta^{12} & 1 - \zeta^{16} & \zeta^4 - \zeta^8 + \zeta^{16} - \zeta^{24} \end{array}\right)$

Introduction Hyperelliptic curves Main theorem Program of period matrix Summary
Period matrix



- We explicitly determine τ_g by the affine equation w² = z^{2g+1} − 1, its entries being elements of the Q(ζ_{2g+1})
- We made a program which computes $(p,l,m) \to {\rm period\ matrix\ of\ } X$

Introduction	Hyperelliptic curves	Main theorem	Program of period matrix	Summary
Sum	nmary			

- We explicitly determine τ_g by the affine equation w² = z^{2g+1} − 1, its entries being elements of the Q(ζ_{2g+1})
- We made a program which computes $(p,l,m) \rightarrow \text{period matrix of } X$

Find an explicit expression of period matrices of other curves for generic genus!!

Summary

Thank you very much! ありがとうございました!