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Abstract. For Fano manifolds T. Mabuchi introduced a generalization of the Kähler-
Einstein metric, which is characterized as the critical point of the Ricci-Calabi func-
tional. We show that a Fano manifold admits Mabuchi’s metric if and only if it is
uniformly relatively D-stable.
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1. Introduction

Let X be a Fano manifold. In a central problem of complex geometry we are guided
to look for a standard Kähler metric in the first Chern class c1(X) = c1(−KX). The
fundamental result established in [CDS15] states that there exists a Kähler-Einstein
metric if and only if X is K-polystable (see also [Tia15]). Not all the Fano manifold
satisfy the stability; for example one-point blow up of P2 is never Kähler-Einstein.
On the other hand, for an arbitrary Fano manifold X we may consider a canonical
geometric flow which should optimally destabilize X. The self-similar solution of the
flow coincides with T. Mabuchi’s generalization of Kähler-Einstein metric. The purpose
of this paper is to clarify which Fano manifold admits such a metric.

For the definition, let us denote a Kähler metric by ω and the normalized Ricci
potential function by ρ which is the unique function satisfies

Ricω − ω = ddcρ,

∫
X

(eρ − 1)ωn = 0. (1.1)

We also write ω = ddcϕ locally so as to identify the metric with a collection of smooth
functions ϕ patching together to define the fiber metric of −KX . Our standard metric
first introduced by [M01] is the critical point of the Ricci-Calabi functional

R(ω) = R(ϕ) :=
1

V

∫
X

(eρ − 1)2ωn. (1.2)
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Here the volume V =
∫
X
ωn is independent of ω. From the straightforward variational

computation one can see that the metric ω is a critical point iff eρ − 1 is the Hamilton
function for some one-parameter subgroup η : Gm → Aut(X,−KX). It is clear from
the definition that the condition gives the Ricci-analogue of the extremal Kähler metric
defined in terms of the classical Calabi functional. These two metrics are not the same
but in fact the above η is generated by the extremal vector field. There as well exists
the infinite-dimensional GIT picture [D15] so that the Ricci-Calabi functional can be
seen as the square norm of a certain moment map. Then the role of the Kemp-Ness
functional in GIT is played by the famous D-energy

D(ϕ) = − log
1

V

∫
X

e−ϕ − 1

(n+ 1)V

n∑
i=0

∫
X

(ϕ− ϕ0)ω
i ∧ ωn−i0 .

It first appeared in [BM86] and was written down to this form by [D88]. The gradient
flow

∂

∂t
ϕ = 1− eρ

was initially studied in our previous work [CHT17]. In [H19], [X19] it was shown that
the flow indeed minimizes R(ϕ) and is naturally related with the optimal degeneration
of the Fano manifold. From now on we call the pair of the critical point of R(ϕ) and
the one-parameter subgroup Mabuchi soliton, since it is characterized as the self-similar
solution of the flow.

Our main result claims that the existence of Mabuchi soliton is equivalent to certain
algebraic stability condition. It extends the result of [Y17], [N17] for the toric case to
general Fano manifolds. Our approach precisely follows [BBJ18] where they give a new
variational proof of [CDS15] for a Fano manifold with finite automorphism group.

Theorem A. A Fano manifold X admits a Mabuchi soliton if and only if it is uniformly
relatively D-stable, with respect to the equivariant test configurations.

If the extremal vector field is zero i.e. η = 0, we obtain the existence result of Kähler-
Einstein metric, with no restriction for the automorphism group. For this we adopt the
equivariant formulation which was suggested in [DS16], [H18].

See Definition 3.20 for the stability. The concept of D-stability originates from [B16].
As the K-stability introduced by [D02] naturally arises from the Calabi functional and
the K-energy, D-stability arises from the above Ricci-Calabi functional and the D-
energy. The uniform stability was introduced in [BHJ15] and [Der16a] independently.
In regard to the torus containing the soliton vector field one can formulate the relative
version of the D-stability. Putting these together we formulate the uniform relative
stability which reflects the coercivity of the modified D-energy. In fact it was shown by
[LZ17] that the relevant coercivity is equivalent to the existence of Mabuchi soliton in
a slight different formulation.

If we derive the coercivity from the stability, the uniformity is critical in controlling
the sequence of test configurations. The relative consideration of the energies relies
on [BWN14]. Although they were mainly concerned with the Kähler-Ricci soliton the
techniques are valid for the general situations including the present case. Our task is
to show these ideas naturally extend and fit into the situation of Mabuchi soliton.
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Unlike K-stability, D-stability works only for Fano manifolds, however, as Theorem A
and its proof show, the treatment is much easier. Existence of extremal Kähler metric is
still open problem, even for the anti-canonical polarizations. A simple argument shows
that the Mabuchi soliton assures the extremal Kähler metric. A new circumstance
in the relative setting is that the two metrics are in fact not equivalent. The first
counterexample is raised in the latest version of [NSY17].

Compared with Kähler-Ricci soliton, Mabuchi soliton has in some sense more alge-
braic nature. For example the soliton vector field is periodic and actually generates η.
Moreover we may expect a generalization of the CM line bundle. On the other hand,
the gradient flow is not so flexible as the Kähler-Ricci flow and there exists a toric Fano
3-fold which does not admits a Mabuchi soliton. This is in contrast to the result of
[WZ04].

Along the variational approach we may naturally understand the uniqueness of
Mabuchi soliton.

Theorem B ([M03], Theorem C). Let (ω0, η0) and (ω1, η1) be smooth Mabuchi solitons.
Then there exists an automorphism f ∈ Aut0(X) in the identity component such that
f ∗ω1 = ω0, f ∗η0 = η1.

Our argument also gives a new proof of the Matsushima-type theorem in [M03],
[N19]. Namely, if a Fano manifold admits the Mabuchi soliton, the identity component
of the group of automorphism preserving the extremal vector field is reductive. The
uniqueness and the reductivity are key materials for the derivation of the coercivity
from existence of the metric.

Acknowledgment. The author express his gratitude to R. Berman, S. Boucksom, and
M. Jonsson for very fruitful discussions. Especially for the equivariant formulation he
learned a lot from the three professors, as in our previous paper [H18]. We are also
grateful to E. Inoue, S. Saito and R. Takahashi for helpful comments. This research
was supported by JSPS KAKENHI Grant Number 15H06262 and 17K14185.

2. Mabuchi soliton and modified D-energy

2.1. Notation. Throughout the paper X denotes an n-dimensional Fano manifold and
a Kähler metric ω is taken in the first Chern class c1(X). We adopt the additive notation
writing the anti-canonical bundle as −KX and the fiber metric as ϕ. While we do not fix
a specific covering {Uα}α of local coordinate patches Uα, the symbol ϕ is interpreted to
a function ϕα on each Uα ⊂ X. In a local frame any section s of −KX is identified with a
function sα and it is evaluated by the multiplication of e−ϕα to |sα|2. On the intersection
Uα ∩Uβ for two indicies α, β and coordinates ziα, z

j
β 1 6 i, j 6 n the transition function

is written to gαβ = det
[∂ziα
∂zjβ

]
ij

and the compatibility ϕα = ϕβ + log |gαβ|2 holds. If we

put dc = ∂−∂̄
4π

√
−1

, it follows that the Chern curvature ωϕ = ddcϕ is globally well-defined.
We set H(X,−KX) as the collection of smooth fiber metric ϕ on −KX such that ωϕ is
positive. By ddc-Lemma, any metric ω in c1(X) equals to ωϕ for some ϕ ∈ H(X,−KX)
which is unique up to addition of a constant. For this reason H(X,−KX) is called space
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of Kähler metrics. We essentially need ϕ in place of ω = ωϕ to look at the action of
the Hamilton diffeomorphism group.

2.2. Ricci curvature formulation. We briefly review an energy formulation to the
Kähler-Einstein problem, which make use of the Ricci potential. There has been an-
other (and probably major) scalar curvature formulation which works for a general
polarized manifold. In terms of the scalar curvature one may introduce the Calabi
functional and notion of K-stability observing the behavior of the K-energy along the
degeneration of the manifold. See the milestone works [C82], [C85], [F83], [M86], [T97],
and [D02]. D-energy which we will explain is as well classical but the determination of
the corresponding D-stability [B16] and the momentum map picture [D15] were rather
recent.

Let us start from defining two probability measures associated to a Kähler metric
ω = ωϕ, or equivalently ϕ ∈ H(X,−KX). One is the Monge-Ampère measure V −1ωnϕ.
The other one which we call the canonical measure is special for the Fano case and
defined to be

µϕ :=
e−ϕ∫
X
e−ϕ

, (2.1)

where e−ϕ denotes the global volume form described as e−ϕα
∧n
i=1 dz

i
α∧dz̄iα on a coordi-

nate patch Uα. Note that the metric is Kähler-Einstein iff it satisfies the Monge-Ampère
equation V −1ωnϕ = µϕ. Therefore we should focus on the difference of these two mea-
sures. In fact it precisely gives the infinite-dimensional moment map. Namely, once we
regard a fixed Kähler metric ω as a symplectic form and instead collect all the complex
structures J compatible with ω, one may attach to each J the measure

J 7→ µϕ − V −1ωn. (2.2)
The group of Hamilton diffeomorphisms naturally acts on the complex structures. The
Lie algebra of this group is naturally identified with smooth function space C∞(X;R)
with Poisson bracket and hence the above defines a map to the dual Lie algebra. It
indeed satisfies the moment map condition. More precisely, we should impose to J the
compatibility condition with the fiber metric ϕ, but see [D15] for the detail explanation.

The square norm of the moment map is written down to

R(ϕ) =
1

V

∫
X

(eρ − 1)2ωn, (2.3)

which we call the Ricci-Calabi functional. Our interest is the critical point of the Ricci-
Calabi functional which gives a generalization of Kähler-Einstein metric. The first
variation of R : H(X,−KX) → R is given as follows. See also [N19] for calculating the
second variation.

Proposition 2.1 ([CHT17], Proposition 2.3). Set the twisted Laplacian on functions
f ∈ C∞(X,C) by

Lρf = ∆ωf + (∂̄ρ, ∂̄f)ω. (2.4)
Then the first variation of the Ricci-Calabi functional is given as

δR(ϕ) = − 2

V

∫
X

δϕ
(
Lρf̃ + f̃

)
dµϕ, (2.5)
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where
f̃ = (eρ − 1)− 1

V

∫
X

(eρ − 1)dµϕ.

As a consequence, ϕ is the critical point of the Ricci-Calabi functional iff eρ − 1 is a
Hamilton function. One can check this by a simple application of the Bochner-Kodaira
formula. Since X is Fano any holomorphic vector field defines a function h unique up
to addition of a constant such that

√
−1∂̄h = ivω. (2.6)

We call h a Hamilton function.

Definition 2.2. A Kähler metric ω ∈ c1(X) is called a Mabuchi soliton if eρ − 1 is a
Hamilton function for some holomorphic vector field.

The vector field is zero iff ρ = 0 and in this case Mabuchi soliton is nothing but
Kähler-Einstein.

Going back to the moment map picture, we also have the canonical energy functional
D : H(X,−KX) → R with the outer derivative (dD)ϕ = µϕ − V −1ωn at ϕ. We call it
D-energy. It is in fact separated into two terms D = L−E and each term is specifically
defined as

L(ϕ) := − log
1

V

∫
X

e−ϕ, E(ϕ) :=
1

(n+ 1)V

n∑
i=0

∫
X

(ϕ− ϕ0)ω
i ∧ ωn−i0 . (2.7)

We here take a reference ϕ0 and ω0 = ddcϕ0. Note that ϕ does not define a global
function but the difference ϕ−ϕ0 does. One can easily compute to check the differential

(dL)ϕ = µϕ, (dE)ϕ = V −1ωn. (2.8)
The definition of the Monge-Ampère energy E chose ϕ0 but it is characterized by (2.8),
up to addition of a constant.

2.3. Space of finite energy metrics. The fundamental property of D-energy is that
it is convex along any geodesic in the space of Kähler metrics. Since the difference
ϕ − ψ of any two ϕ, ψ ∈ H(X,−KX) defines a global function, tangent space at any
point of H(X,−KX) is identified with C∞(X;R). Mabuchi’s inner product [M87] for
any tangents u, v ∈ C∞(X;R) at ϕ is

〈u, v〉 = 1

V

∫
X

uvωn. (2.9)

Any curve ϕt (t ∈ [a, b]) in H(X,−KX) defines a function Φ(τ, x) := ϕ− log|τ |(x) of
complex variables e−b 6 |τ | 6 e−a and x ∈ X. It is well-known (from [S92]) that the
geodesity for (2.9) is equivalent to the degenerate Monge-Ampère equation

(ddcτ,xΦ)
n+1 = 0. (2.10)

The left-hand side at the same time describes the Monge-Ampère energy by the fiber
integration

ddcτE(ϕ) =

∫
X

(ddcτ,xΦ)
n+1. (2.11)
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It follows that E is affine along any geodesics. In fact for given smooth endpoints the
bounded geodesic Φ connecting them uniquely exists, but it is not C2 in general.

Variational approach even requires the appropriate completion of the space of smooth
metrics. These facts strongly motivate to consider a singular fiber metric ϕ which is
only locally integrable and satisfies ddcϕ > 0 in the sense of current. We denote
the collection of all such singular ϕ by PSH(X,−KX). It equivalent to say that in a
coordinate patch Uα, ϕα is plurisubharmonic (psh for short) function. For the bounded
psh function the wedge product of the current ωnϕ = (ddcϕ)n is safely defined thanks to
the celebrated work of [BT76]. In particular we may define the Monge-Ampère energy
E for locally bounded ϕ. For a smooth boundary data we have the bounded solution
of (2.10). From the recent result [CTW17], the solution is actually of C1,1.

The Monge-Ampère operator ϕ 7→ V −1ωnϕ can not be continuously extended to
PSH(X,−KX). Following [BEGZ10] and [BBGZ13], one can however take the reference
ϕ0 smooth and bounded approximation ϕ(j) := max{ϕ, ϕ0 − j} of ϕ ∈ PSH(X,−KX),
to define the non-pluripolar Monge-Ampère measure

MA(ϕ) := lim
j→∞

1{ϕ>ϕ0−j}V
−1ωϕ(j) . (2.12)

By the construction MA(ϕ) drops the mass of the unbounded locus so it is no longer a
probability measure. It can be further shown that MA(ϕ) is local in plurifine topology
and has no mass on any pluripolar set. In a similar idea taking bounded ψ such that
ψ > ϕ locally we define the Monge-Ampère energy as

E(ϕ) := inf
ψ
E(ψ) ∈ R ∪ {−∞}. (2.13)

The extended Monge-Ampère energy is upper-semicontinuous in the L1-topology of
PSH(X,−KX). Moreover, the level set {E > C} is compact in this weak topology.
One can regard this fact as an analogue of Banach-Alaoglu theorem.

Let us now consider p > 1 and the Lp-Finsler distance dp of H(X,−KX), defined by
the norm of tangents

‖u‖p :=
[
1

V

∫
X

|u|p ωnϕ
] 1

p

. (2.14)

As we shall see, p = 1 plays the special role in the variational approach.

Theorem 2.3 ([D15], Theorem 2. See also [BBJ18], Theorem 1.7). Take a smooth
non-increasing sequence of ϕj ∈ PSH(X,−KX) converges to ϕ. Endow the space of
metrics with finite Monge-Ampère energy

E1(X,−KX) :=

{
ϕ ∈ PSH(X,−KX) : E(ϕ) > −∞

}
(2.15)

with the metric
d1(ϕ, ψ) := lim

j→∞
d1(ϕj, ψj). (2.16)

It then gives the coarsest refinement of the L1-topology so that E is continuous. The
Monge-Ampère energy is affine along every geodesic on (E1(X,−KX), d1). Moreover,
(E1(X,−KX), d1) realizes the completion of (H(X,−KX), d1).
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We usually refer to the L1-topology as the “weak” topology and the d1-topology as
the “strong” topology. The space E1(X,−KX) is contained in the finite energy class

E(X,−KX) :=

{
ϕ ∈ PSH(X,−KX) :

∫
X

MA(ϕ) = 1

}
. (2.17)

Restricted to E(X,−KX) the non-pluripolar Monge-Ampère operator is continuous
along any monotone sequence. The determination of the domain of Monge-Ampère
operator owes to the pioneering work [C98]. The compact setting is treated in [GZ07],
[BEGZ10]. See also the comprehensive textbook [GZ17].

As it was shown in [D17a], geodesics connecting two points are not unique in E1,
however, for any ϕ0, ϕ1 ∈ E1(X,−KX) the solution of (2.10) has the unique solution
ϕt ∈ E1(X,−KX) and provides a weak geodesic for d1. These are called psh geodesics
in [BBJ18]. The convexity of the D-energy functional along such a weak geodesic is
established by the fundamental work [B09], [BP08], and [B11]. Since it is not scale
free, i.e. E(ϕ+ c) = E(ϕ) + c for constants c, it is convenient to introduce the Aubin’s
J-functional:

J(ϕ) = L0(ϕ)− E(ϕ) := sup
X

(ϕ− ϕ0)− E(ϕ). (2.18)

It follows that J(ϕ)−d1(ϕ, ϕ0) is uniformly bounded. As we have the uniform estimate

sup
X

(ϕ− ϕ0) 6
1

V

∫
X

(ϕ− ϕ0)ω
n
0 + C (2.19)

for ϕ ∈ H(X,−KX), sometimes V −1
∫
X
(ϕ− ϕ0)ω

n
0 is adopted for the definition of J .

We say that D-energy is coercive if
D(ϕ) > εJ(ϕ)− C

for any smooth ϕ. From the weak compactness of the level set {E > −C} the coercivity
guarantees a minimizer.

Remark 2.4. If one considers coercivity for d2 there is no example of Fano manifolds
satisfy the condition. This is confirmed by [BHJ15], Proposition 8.5 for the K-energy.
We may check the same for the D-energy, using Definition 3.2.

2.4. Modified D-energy. Using the inner product (2.9) we may also modify the D-
energy such that the critical point gives the Mabuchi soliton.

It is consistent to consider the group of bundle automorphism Aut(X,−KX), indeed
any g ∈ Aut(X,−KX) pulls-back ϕ ∈ PSH(X,−KX) to g∗ϕ. More precisely, for any
x ∈ X a vector v ∈ (−KX)x is evaluated as

|v|2 e−(g∗ϕ)(x) = |g · v|2 e−ϕ(gx). (2.20)
Note that the local frame identifying the function ϕ(gx) with the pull-backed fiber
metric depends on g. Indeed we see from (2.20) that the function ϕ(gx) is unbounded
in g. Since the line bundle is anti-canonical, any automorphism of X can be lifted
to −KX , hence the group splits into Aut(X,−KX) = Aut(X) × Gm. We denote the
identity component by Aut0(X,−KX). In particular, constant multiplication on each
fiber defines the identical one-parameter subgroup 1: Gm → Aut0(X,−KX).
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Our first step is to specify the soliton vector field of the Mabuchi soliton. For
the purpose we fix an algebraic subtorus T ⊂ Aut(X,−KX). The compact part
S = Hom(S1, T ) is canonically defined. Henceforth we take a compact subgroup
K ⊂ Aut0(X,−KX) which contains S and commutes with T . We define the space
of K-invariant metrics

H(X,−KX)
K :=

{
ϕ ∈ H(X,−KX) : g

∗ϕ = ϕ for any g ∈ K

}
. (2.21)

The case K = S is possible. From the assumption that K commutes with the torus,
T acts on H(X,−KX)

K . Tangents are identified with smooth K-invariant functions.
We take K-invariant functions in 2.14 to define the distance d1. Similarly the space
of finite energy K-invariant metrics E1(X,−KX)

K can be defined and has the same
property as Theorem 2.3. Note that in the definition

d1(ϕ0, ϕ1) = inf
ϕt

∫ 1

0

1

V

∫
X

|ϕ̇s|ωnϕt
ds

a path ϕt, connecting ϕ0 to ϕ1, is taken as K-invariant. We may however take a weak
geodesic of (2.10), which is K-invariant by the uniqueness if ϕ0, ϕ1 ∈ H(X,−KX)

K . It
follows that d1 for H(X,−KX)

K equals to the previous one for H(X,−KX).
Let us denote by N := Hom(Gm, T ) the lattice of all one-parameter subgroups

µ : Gm → T . The dual lattice M := Hom(T,Gm) is identified with the set of char-
acters. Observe that the vector space NR := N ⊗ R is identified with the Lie algebera
s of S. From the basic symplectic geometry S defines the moment polytope P ⊂ MR
as the image of the moment map

mϕ : X →MR. (2.22)

Actually for any smooth K-invariant ωϕ and µ ∈ NR we have the unique map satisfying

〈µ,mϕ(x)〉 =
d

dt

∣∣∣∣
t=0

ϕ(µ(et)x). (2.23)

It is easy to show that mϕ is independent of the metric. Once µ ∈ NR is fixed hµ :=
〈µ,mϕ(x)〉 gives the (unnormalized) Hamilton function. Notice that when µ ∈ N
is generated by a vector field v ∈ t we have the relation (2.6). The S-invariance of ω
guarantees that hµ is real. For the identical one-parameter subgroup we observe h1 = 1.

In this convention following [FM95] we introduce the inner product

〈µ, ν〉 :=
∫
X

hµhνω
n (2.24)

for µ, ν ∈ NR. Of course hµ depends on the choice of metric ω but as we will see in
the next section the above inner product is determined only by µ, ν. The Hamilton
function can be regarded as the tangent vector of the associated (smooth) geodesic ray

ϕt = µ(e−t)∗ϕ0 (2.25)

for a given initial ϕ0 ∈ H(X,−KX)
K . Note again that we assumed K commutes with

T , hence ϕt is K-invariant for each t.
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The slope of D-energy along this ray is independent of t ∈ [0,∞) and explicitly
computed as

F (µ) :=
1

V

∫
X

hµ(e
ρ − 1)ωn. (2.26)

It is precisely the classical Futaki invariant [F83] for the vector field generating µ.
The extremal vector field naturally arises from the optimization of F (µ) normalized by
‖µ‖ = 〈µ, µ〉 1

2 . Actually a simple variational computation

δ

(
F (µ)

‖µ‖

)
=

1

‖µ‖

(
F (δµ)− 〈δµ, µ〉

〈µ, µ〉
F (µ)

)
suggest us to introduce the extremal one-parameter subgroup η ∈ NR, which satisfies

F (µ)− 〈µ, η〉 = 0 (2.27)
for any µ ∈ NR. Since (2.27) is a system of linear equations, one easily see that η
is uniquely characterized by the above relation. It is also easy to check η ∈ NQ and
automatically

〈1, η〉 =
∫
X

hηω
n = 0. (2.28)

On the other hand the Mabuchi soliton should minimize R(ϕ). In fact if there exists a
Mabuchi soliton ωϕ with eρ − 1 = hµ for some µ ∈ NR we have µ = η and

R(ϕ) =
F (η)

‖η‖
.

That is, the both optimizer ϕ and η attain the same value. In general the lower bound of
the Ricci-Calabi functional is attained by the normalized non-Archimedean D-energies
which we introduce in the next section. See the recent work [X19] and [H19] for this
topic. The following is a consequence of Theorem 2.8 in the next subsection.

Proposition 2.5. There exists the modified Monge-Ampère energy Eη : H(X,−KX)
K →

R satisfying
(dEη)ϕ = (1 + hη)V

−1ωnϕ

at each point ϕ ∈ H(X,−KX)
K. Moreover, Eη is geodesically affine.

We define modified D-energy as Dη := L− Eη. It follows from the proposition that
a smooth metric ω is Mabuchi soliton iff it is a critical point of the modified D-energy.

2.5. Modified Monge-Ampère measure. For the variational approach it is neces-
sary to handle with Eη(ϕ) for singular ϕ. In this part following [BWN14] we discuss
basic properties of the modified Monge-Ampère measure. In [BWN14] the case K = S is
considered but the same argument works for general K which contains S and commuts
with T . Let continuously mϕ : X → P be the moment map.

Definition 2.6 ([BWN14]). Let ϕ ∈ H(X,−KX)
K. For a non-negative continuous

function g : P → R define the modified Monge-Ampère measure
MAg(ϕ) := g(mϕ(x))MA(ϕ).
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The definition further extends to general ϕ ∈ PSH(X,−KX)
K so that the measure

MAg(ϕ) is local in plurifine topology and non-pluripolar.

Theorem 2.7 ([BWN14], Theorem 2.7). The Duistermatt-Heckmann measure

DHT := (mϕ)∗MA(ϕ)

is independent of smooth ϕ and defines a positive measure on MR. For any ϕ ∈
PSH(X,−KX)

K we have ∫
X

MAg(ϕ) 6
∫
P

gDHT .

The equality holds if ϕ ∈ E(X,−KX)
K, namely when MA(ϕ) is a probability measure.

Let 〈, 〉 be the canonical paring of the lattices N and M . We are interested in the
case

g(x) := 1 + 〈η, x〉 −
∫
P

〈η, x〉DHT . (2.29)

Note that g of this form is not necessarily non-negative. At least when g > 0 and ϕ
smooth we observe MAg(ϕ) = (1 + hη)MA(ϕ) and

(inf
P
g)MA(ϕ) 6 MAg(ϕ) 6 (sup

P
g)MA(ϕ). (2.30)

Notice that 1 + hη > 0 holds if X admits a Mabuchi soliton. As in the next section we
shall see that the condition 1 + hη > 0 is numerical, from now on we assume that the
above g is positive. Then the equation of Mabuchi soliton may be interpreted into the
Monge-Ampère type equation

MAg(ϕ) = µϕ. (2.31)

We call ϕ ∈ PSH(X,−KX)
K satisfying this condition a weak Mabuchi soliton.

On the other hand, if we choose

g(x) =
e〈µ,x〉∫

P
e〈µ,x〉DHT

(2.32)

with certain µ, equation (2.31) gives the weak Kähler-Ricci soliton. In this case g is
always positive but µ /∈ NQ.

Theorem 2.8 ([BWN14], Lemma 2.14, Proposition 2.15). We have the canonical energy
Eg : H(X,−KX)

K → R such that (dEg)ϕ = MAg(ϕ). For general ϕ ∈ PSH(X,−KX)
K

we have
Eg(ϕ) := inf

ψ>ϕ
Eg(ψ),

where ψ runs through bounded ones, or H(X,−KX)
K. The functional Eg is monotone,

upper-semicontinuous in L1-topology, and continuous for any non-increasing sequence
in PSH(X,−KX)

K.
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The description of Eg is easily specified so we briefly sketch it. For the path ϕt =
(1− t)ϕ+ tϕ0 the demanded Eg is computed as

Eg(ϕ) =

∫ 1

0

d

dt
Eg(ϕt)dt =

1

V

∫ 1

0

dt

∫
X

(ϕ− ϕ0)g(mϕt)ω
n
ϕt

=
1

V

n∑
i=0

(
n
i

)∫ 1

0

ti(1− t)n−idt

∫
X

(ϕ− ϕ0)g(mϕt)ω
i
ϕ ∧ ωn−i0 .

Note mϕt = tmϕ + (1− t)mϕ0 and that the last integrant is just a variant of modified
Monge-Ampère measure. Therefore we may exploit Definition 2.6 to derive the required
property of Eg. If infP g is positive it follows

(sup
P
g)E(ϕ) 6 Eg(ϕ) 6 (inf

P
g)E(ϕ) (2.33)

provided supX(ϕ−ϕ0) = 0. It implies that Eg(ϕ) > −∞ if ϕ has finite Monge-Ampère
energy. At any case we define the g-modified J-energy by

Jg(ϕ) := L0(ϕ)− Eg(ϕ). (2.34)
This is after all equivalent to the J-functional.

Lemma 2.9. When g > 0, we have
(inf
P
g)Jg(ϕ) 6 J(ϕ) 6 (sup

P
g)Jg(ϕ)

for all ϕ ∈ H(X,−KX)
K.

Proof. Since Jg(ϕ+c) = Jg(ϕ) for any constant c ∈ R, we may assume supX(ϕ−ϕ0) = 0.
The claim is then a consequence of (2.33). �

For a given probability measure µ one can consider the Monge-Ampère type equation
MAg(ϕ) = µ. It was also shown in [BWN14] Theorem 2.18 that there exists the unique
solution ϕ ∈ E1(X,−KX)

K iff the Legendre dual of the Monge-Ampère energy

E∗
g (µ) := sup

ϕ∈E1(X,−KX)

[
Eg(ϕ)−

∫
X

(ϕ− ϕ0)dµ

]
∈ R ∪ {∞} (2.35)

is finite. Moreover, the above supremum is attained by the solution. We denote the
dual of Eη by E∗

η .
What we will study is the g-modified D-energy Dg(ϕ) := L(ϕ) − Eg(ϕ) and the

equation (2.31).

Lemma 2.10. Let Dη : E1(X,ω0)
K → R be the modified D-energy. For each ϕ ∈

E1(X,−KX)
K, the map dη : KC → C defined by dη(g) := Dη(g

∗ϕ) is pluriharmonic. In
particular if Dη is bounded from below, then dη is constant on the center.

Proof. This is similar to [H18], Theorem 1.6 and Remark 2.6 which are for the case
η = 0. The statement simply interprets geodecically affineness of Dη into the complex
variables.

The log part is obviously pluriharmonic. We show that eη(g) := Eη(g
∗ϕ) is pluri-

harmonic. Let us take an arbitrary holomorphic map g : ∆ → Aut0(X,L) which sends
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z ∈ ∆ in the one dimensional disk to the automorphism g(z). By a direct computation
we have the fiber integration formula (compare with (2.11) of [BWN14]):

ddcEη(ϕg(z)) =
1

(n+ 1)V

∫
X

(1 + hϕg ,η)(dd
c
z,xϕg(z)(x))

n+1.

For the holomorphic map F : ∆×X → X by F (z, x) := g(z) · x we have
(ddcz,xϕg(z)(x))

n+1 = (ddcz,xF
∗ϕ)n+1 = F ∗(ddcxϕ)

n+1 = 0.

It implies that e is pluriharmonic. �

Proposition 2.11. Assume that T contains the center of the complexified Lie group
KC. If there exists a minimizer of modified D-energy Dη : E1(X,ω0)

K → R it defines a
weak solution of (2.31).

Proof. For a function v we define the point-wise upper envelope

Pv := sup

{
ψ ∈ PSH(X,−KX)

K , ψ 6 v

}
.

The proof is due to the highly non-trivial derivation formula ([BWN14], Proposition
2.16):

d

dt

∣∣∣∣
t=0

Eg(P (ϕ+ tu)) =

∫
X

uMAg(ϕ)

for ϕ ∈ E1(X,−KX)
K , u ∈ C0(X;R)K . This was first established in [BB10] for g = 1,

K = {id} case. If ϕ is a minimizer of Dη, we observe
f(t) := L(ϕ+ tu)− Eη(P (ϕ+ tu))

> L(P (ϕ+ tu))− Eη(P (ϕ+ tu))

> L(ϕ)− Eη(ϕ) = f(0).

The derivation formula yields f ′(0) = 0 and hence∫
X

uMA(ϕ) =

∫
X

uµϕ. (2.36)

for every u ∈ C0(X;R)K .
We should show that the same holds for any u ∈ C0(X;R). By Lemma 2.10, dη is

constant on the center. We observe that for any one-parameter subgroup µ ∈ N the
slope of d(µ(e−t)) is equivalent to the classical Futaki character. Since the character is
defined on the reductive Lie algebra kC which can be written as the direct sum of the
center and the derived algebra, the slopes are nontrivial only on the center. Therefore
dη is actually constant on whole KC. Thus the measure µ := (dD)ϕ is K-invariant. It
then follows that for any smooth function v and g ∈ K∫

X

vµ =

∫
X

g∗(vµ) =

∫
X

((g−1)∗v)g∗(µ) =

∫
X

((g−1)∗v)µ.

Integrating against the Haar measure we have∫
X

vµ =

∫
X

uµ = 0
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so that µ = 0 as desired.
Conversely, if ϕ ∈ E1(X,−KX)

K is a weak solution, convexity of Dg implies that ϕ
is a minimizer. �

In the next subsection a refinement of the latter argument will show the uniqueness
of the weak Mabuchi soliton.

From now on we rather start from the extremal one-parameter subgroup η. Let

Aut(X, η) :=

{
g ∈ Aut(X,−KX) : η(τ)g = gη(τ) for all τ ∈ Gm.

}
(2.37)

The identity component is denoted by Aut0(X, η). We take afresh T = C(Aut0(X, η))
as the center of the automorphisms commuting with η. Moreover, we entirely consider
a maximal compact subgroup K containing S. It clearly commutes with the center.
We set

JT (ϕ) := inf
σ∈T

J(σ∗ϕ). (2.38)

Definition 2.12. Let T = C(Aut0(X, η)) and K be a maximal compact subgroup of
Aut0(X, η), which contains the compact part of T . We say that the modified D-energy
is coercive if there exists a positive constants ε, C such that

Dη(ϕ) > εJT (ϕ)− C

holds for every invariant metric ϕ ∈ H(X,−KX)
K.

By the standard argument we may obtain the weak solution from the coercivity.
Actually for a minimizing sequence ϕj, we have σj ∈ T by the coercivity such that
σ∗
jϕj is contained in the sublevel set {Jη 6 C}. Since {E > −C} is weakly compact,

we obtain a weakly convergent subsequence σ∗
jϕj → ϕ in E1(X,−KX)

K . From Lemma
2.10 the map σ 7→ Dη(σ

∗ϕj) is constant. That is, Dη must be T -invariant. Especially
Dη(σ

∗
jϕj) = Dη(ϕj). The lower-semicontinuity concludes that ϕ is a minimizer of Dη.

Theorem 2.13 ([LZ17]). A Fano manifold X admits a Mabuchi soliton if and only if
mX > 0, Aut0(X, η) is reductive, and the modified D-energy is coercive.

We have already explained that the coercivity implies the existence of the metric.
The converse direction is based on [DR15]. Since the definition of the coercivity in
[LZ17] is slightly different from ours, we briefly sketch the proof.
Proof. Let ϕ be the Mabuchi soliton. Trivially K ⊂ Aut(M,ϕ) so the maximality
implies K = Aut(M,ϕ). Let G = Aut0(X, η). By Corollary 2.18 G = KC is reductive.
We consider the normalizer and the centralizer

NK(G) := {g ∈ G : gkg−1 ⊂ K},
CK(G) := {g ∈ G : gkg−1 = k for every k ∈ K}.

We first observe CK(G) = C(G). Indeed any t ∈ CK(G) we have the map τ : G → G
defined by τ(g) = tgt−1 and this is identical for g ∈ K. By Corollary 2.18 it implies
that τ is identical on G.

From the general theory of Lie groups we know that NK(G)/KCK(G) is finite. Let
us show NK(G) = KC(G) in our situation. Since NK(G)/KCK(G) is finite, we may
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write NK(G) = K ′CK(G) = K ′C(G) for some maximal compact subgroup K ′. By
construction K ⊂ K ′ so the maximality of K implies NK(G) = KC(G).

We now check that T = C(G) acts transitively on the smooth Mabuchi solitons. By
Theorem 2.17, for two Mabuchi solitons ϕ and ϕ′ we have f ∈ Aut0(X, η) such that
f ∗ϕ = ϕ′. Since K = Aut(M,ϕ) = Aut(M,ϕ′) as we have already observed, it follows
f−1Kf ⊂ K. Namely, f ∈ NK(G) = KC(G).

The above transitivity of T and the regularity of weak minimizers (Theorem 2.14), we
may apply [DR15], Theorem 3.4 (with R = H(X,−KX)

K , G = C(Aut0(X, η)) there)
so that have constants ε, C and

Dη(ϕ) > ε inf
σ∈T

J(σ∗ϕ)− C (2.39)

for every ϕ ∈ H(X,−KX)
K . �

2.6. Uniqueness of Mabuchi soliton. We shall first check the regularity. In [LZ17]
the corresponding step is carried out by the continuity method assuming the coercivity.
We here introduce a direct argument.

Theorem 2.14. Assume mX = infX(1+hη) is strictly positive. Then the weak Mabuchi
soliton of (2.31) is actually smooth.

Proof. Since ϕ has finite Monge-Ampère energy it has zero Lelong number (see [GZ17],
Exercise 10.7). By the uniform version of Skoda’s integrability theorem ([GZ17], The-
orem 8.11), µϕ has Lp-density for any p > 1. Noting (2.30) and applying the viscosity
theory: [EGZ11], Theorem C to MAg(ϕ) = µϕ, we deduce that ϕ is continuous. We
may further show ϕ is C∞ essentially using Yau’s C2-estimate. For example one can
apply the idea of [ST09] Theorem 1 to the present setting. See [ST19] for the detail
exposition. �

For the uniqueness the fact ϕ ∈ L∞ is important, because we need the following.

Proposition 2.15 ([B11], Theorem 1.2). Let ϕt be a weak geodesic which is uniformly
bounded in the sense that |ϕt − ϕ0| 6 C. If the convex function L(ϕt) is affine, there
exists a ft ∈ Aut(X,−KX) such that

f ∗
t ωϕt = ωϕ0 .

Moreover ft = exp(−tRe v) for some holomorphic vector v lifted to −KX such that
Im v preserves ωϕt.

Remark 2.16. By [B16], Proposition 3.3, we may further conclude f ∗
t ϕ

t = ϕ0.

For µ ∈ NR we denote by Aut(X,µ) the group of bundle automorphisms preserving
µ. Set Aut(X,ϕ) for a fiber metric ϕ in a similar manner.

Theorem 2.17. Let (ω0, η0) and (ω1, η1) be smooth Mabuchi solitons. Then there exists
some f ∈ Aut0(X,−KX) such that

f ∗ω1 = ω0, f
∗η1 = η0.

If η0 = η1 we have f ∈ Aut0(X, η1) and one can further take f generated by the
imaginary part of Aut(X,ϕ1)C.
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Proof. First we consider the case η = η0 = η1 contained in the torus T . Take potentials
ϕ0, ϕ1 of ω0, ω1 and bounded geodesic ϕt (t ∈ [0, 1]). Since ϕ0, ϕ1 are minimizers the
convex function DT (ϕ

t) should be affine. In particular L(ϕt) is affine. We may apply
Theorem 2.15 so that f ∗

t ϕ
t = ϕ0. Observe that ϕt = (f−1

t )∗ϕ0 is a weak Mabuchi
soliton, since it is a minimizer of DT . If we take the extremal vector field v generating
η and set w := (ft)∗v − v, it follows Lwω0 = 0 and hence ddchw = 0. That is, ft
preserves η.

When η0 6= η1 noting that the maximal tori are conjugate to each other we may take
some f so that η1 = f ∗η0, by the uniqueness of the extremal vector field. �

The uniqueness argument is closely related to the reductivity result.

Corollary 2.18. If a Fano manifold X admits a Mabuchi soliton (ωϕ, η) we have

Aut0(X, η) = Aut(X,ϕ)C.

That is, Aut0(X, η) is a complexification of the compact Lie group Aut(X,ϕ).

Proof. From hη = 1− eρ we know Aut(X,ϕ) ⊂ Aut0(X, η). If we take g ∈ Aut0(X, η),
g∗ϕ is Mabuchi soliton hence some f ∈ Aut(X,ϕ)C satisfies f ∗ϕ = g∗ϕ. It follows
g = (g ◦ f−1) ◦ f ∈ Aut0(X,ϕ)C. �

Mabuchi first showed Theorem 2.17 using the inverse-continuity method of [BM85].
In [M03] Corollary 2.18 is also proved by the twisted Laplacian calculas similarly to
[M57]. As it was shown in [N19], one can also derive Corollary 2.18 directly from the
second variation of the Ricci-Calabi functional. The present proofs are based on the
idea of [B11] for the Kähler-Einstein metric. A virtue of this idea more directly links
reductivity to the uniqueness.

2.7. Thermodynamical formalism and modified K-energy. Finally, following the
thermodynamical formalism of [B13] and its modified version in [BWN14], we introduce
the modified K-energy in terms of D-energy.

Recall for two probability measures µ, ν the relative entropy is defined to be

H(µ|ν) =
∫
X

log

[
dµ

dν

]
dµ. (2.40)

Its relation with D-energy is based on the Legendre transformation formula:

H(µ|µ0) = sup
f∈C0(X;R)

[ ∫
X

fdµ− log

∫
X

efdµ0

]
. (2.41)

Definition 2.19. Fix a reference ϕ0 ∈ H(X,−KX)
K and µ0 := µϕ0. Let g : P → R

be a positive continuous function on the moment polytope. For µ with finite E∗(µ) we
define the free energy

Fg(µ) := H(µ|µ0)− E∗
g (µ). (2.42)

For ϕ ∈ E1(X,−KX)
K we define the modified K-energy

Mg(ϕ) := Fg(MAg(ϕ)). (2.43)
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In [BWN14] the Kähler-Ricci soliton case (2.32) was discussed. In this case Mg is
equivalent to the energy introduced by [TZ02] for smooth metrics. The treatment is
valid for arbitrary g including Mabuchi soliton case.

Remark 2.20. There are several functionals called modified K-energy in the literatures,
which are defined mainly to characterize the extremal Kähler metric. For example the
functional M ′ :=M −Eη gives one such candidate. An extremal metric might not be a
Mabuchi soliton unless it is Kähler-Einstein. Since M > D clearly implies M ′ > Dη,
if Dη is coercive so does M ′. It follows that if X admits a Mabuchi soliton it also has
an extremal Kähler metric. The converse implication seems to be not known.

Theorem 2.21 ([BWN14], Proposition 3.2). We have Mg > Dg on E1(X,−KX)
K and

a metric ϕ attains the equality iff it is a weak Mabuchi soliton. The modified K-energy
Mg is lower bounded iff Dg is. In this case the infimums of the both functionals coincide.

Proof. For the reader’s convenience we give the proof. The one-side inequality (2.41) is
a simple consequence of Jensen’s inequality and actually holds for lower-semicontinuous
function of the form f = −(ϕ− ϕ0). It immediately shows Mg > Dg, indeed

Fg(µ) = H(µ|µ0)− E∗
g (µ)

= sup
f

[ ∫
X

fdµ− log

∫
X

efdµ0

]
− sup

ϕ

[
Eg(ϕ)−

∫
X

(ϕ− ϕ0)dµ

]
and the second supremum is attained by the weak solution of MAg(ϕ) = µ. At the
same time we obtain the formula:

Mg(ϕ) = H(MAg(ϕ)|µ0)− Eg(ϕ) +

∫
X

(ϕ− ϕ0)MAg(ϕ), (2.44)

which is analogues to the Chen-Tian formula ([C00]). On the other hand, the first
supremum is attained by the solution f of

efdµ0∫
X
efdµ0

= dµ.

Consequently, Mg(ϕ) = Dg(ϕ) iff ϕ is a weak Mabuchi soliton.
It remains to show infϕMg = infϕDg ∈ R ∪ {−∞}. Set m := infϕMg. By the

properness result [BBEGZ16], Theorem 2.18, we have
H(µ|µ0) > αE∗(µ)− C (2.45)

for any α smaller than Tian’s α-invariant. In particular, H(µ|µ0) < ∞ implies that µ
has finite energy so that some ϕ ∈ E1(X,−KX)

K solves MAg(ϕ) = µ. Substitution to
(2.44) yields

H(µ|µ0) > m+ E∗
g (µ).

Since the infimum of the inversion formula

L(ϕ) = inf
µ

[
H(µ|µ0) +

∫
X

(ϕ− ϕ0)dµ

]
is attained by µ = µϕ, it follows Dg > m. �
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Totally in the same manner we observe that the coercivityMg(ϕ) > ε infσ∈T Jg(σ
∗ϕ)−

C holds on E1(X,−KX)
K iff Dg > ε infσ∈T Jg(σ

∗ϕ)− C on E1(X,−KX)
K .

3. Relative uniform D-stability

Bearing in mind of the last section, we introduce the algebraic (non-Archimedean)
counterpart of modified energies and define the right notion of stability which should
characterize the existence of Mabuchi soliton. We first recall the notion of D-stability
introduced by [B16]. The terminology here is due to [BHJ15], [BHJ16].

3.1. Uniform D-stability. We first require that a test configuration π : (X ,L) → A1

of a polarized manifold (X,L) is a family of polarized schemes defined over the affine
line A1. In fact we may and should allow L to be only relatively semiample and
Q-Cartier divisor. Further, X is normal variety and endowed with a lifted Gm-action
λ : Gm → Aut(X ,L) such that the projection π is equivariant for λ and the standard
Gm-action to A1. Finally, we include into the datum the isomorphism

π−1(A1 \ {0}) ' X × (A1 \ {0})

which sends the line bundle L equivariantly to LA1 = p∗1L. Although we are concerned
with the case L = −KX , L is still not equivalent to −KX/P1 . Since we assumed X is
normal, KX is at least well-defined as a Weil divisor, however, it is even not the line
bundle in general. Note that some literatures consider the family over the projective
line P1. This is equivalent to our setting because one can always obtain the unique
compactified family (X̄ , L̄) → P1 which is trivial around ∞ ∈ P1.

Example 3.1. Every one-parameter subgroup µ ∈ N defines a product family XA1 =
X×A1 endowed with the non-trivial action: λ(σ)(x, τ) := (µ(σ)x, στ) for σ ∈ Gm. We
call it a product configuration generated by µ. Therefore, test configuration can be seen
as a far generalization of one-parameter subgroup. Note that the compactified family is
no longer a product space.

After the compactification (X̄ , L̄) we may take the intersection number e.g. L̄n+1.
Since we assumed X is normal, KX is at least well-defined as a Weil divisor and
KX̄ L̄n essentially gives the famous Donaldson-Futaki invariant, or equivalently, non-
Archimedean K-energy MNA(X ,L) introduced in [BHJ15].

In terms of the log-canonical threshold we define the non-Archimedean D-energy.
Recall that for given divisors B,D the log-canonical threshold lct(X̄ ,B)(D) is defined to
be the supremum of c ∈ R such that the log pair (X̄ ,B+ cD) has at worst log canonical
singularities. Choosing the boundary divisor B linearly equivalent to −KX̄/P1 − L̄, the
quantity reflects the positivity of the canonical divisor. Notice that in this choice the
log-canonical divisor KX̄ +B ∼Q −L̄+π∗KP1 is Q-Cartier so that the log discrepancies
and log canonical singularities are well defined for any (X ,L).

Definition 3.2. For a test configuration π : (X ,L) → A1 we define

LNA(X ,L) := lct(X̄ ,B)(X0)− 1, ENA(X ,L) := L̄n+1

(n+ 1)V
,
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where X0 is the scheme theoretic central fiber and the boundary divisor is chosen B ∼Q
−KX̄/P1 − L̄. We say a Fano manifold X is D-semistable if the non-Archimedean
D-energy

DNA(X ,L) := LNA(X ,L)− ENA(X ,L)
is semipositive for all test configurations.

If (X ,L) is the product test configuration generated by µ ∈ N , we write DNA(X ,L)
as DNA(µ). It is known to be equivalent to the Futaki character (2.26), i.e.

DNA(µ) = F (µ) (3.1)
holds for every µ ∈ N . One can also define D-stability and D-polystability of a Fano
manifold. See [B16], [BHJ15], and [F16] for the detail treatment. The uniform version is
more important for us. We say that a test configuration (X ′,L′) is a pull-back of (X ,L)
if a birational equivariant morphism f : X ′ → X yields L′ = f ∗L. Two test configura-
tions are equivalent if there exists a common pull-back. It is easy to see that the above
invariants have the same values for the equivalent test configurations. More substan-
tially, by [BHJ15], any test configurations can be seen as a fiber metric of the Berkovich
analytification (XNA,LNA) and any two equivalent test configurations define the same
non-Archimedean fiber metric, evaluating each valuation on the central fiber. The above
LNA and ENA are actually functionals defined on these non-Archimedean fiber metrics.
From this reason, taking a pull-back we may assume a domination ρ : (X ,L) → XA1

to the product family endowed with a possibly non-trivial action. By the projection
formula the following definition is actually independent of ρ.

Definition 3.3. Let
LNA
0 (X ,L) := V −1(ρ∗LA1)L̄n.

We define the non-Archimedean counterpart of Aubin’s J-functional as JNA(X ,L) :=
LNA
0 (X ,L)−ENA(X ,L). A Fano manifold is called uniformly D-stable if there exists a

constant ε > 0 such that
DNA(X ,L) > εJNA(X ,L)

holds for all test configurations.

Let us illustrate the key relation of the functionals E, J,D with their non-Archimedean
version. It explains that test configuration gives the algebraic formulation of the geo-
desic ray on H. In the sequel we denote the fiber of τ ∈ A1 by Xτ and the restricted
line bundle by Lτ . As well, for the unit disk ∆ we set X∆ := π−1(∆) and L∆ := L|X∆

.
For the punctured disk ∆∗ = ∆ \ {0} we have the isomorphism X∆∗ ' X ×∆∗ so that
identify a point of X∆∗ with (x, τ). Let Φ be a smooth fiber metric of L∆, having the
semipositive curvarture. It defines the ray

ϕt(x) = Φ(λ(e−t)(x, 1)) (3.2)
so that ϕt for each t ∈ [0,∞) defines a fiber metric of L, having the semipositive
curvature. This type of ray is said to be compatible with the test configuration. Any
two metrics defines the same asymptotic because the difference of the associated rays
is bounded uniformly in t. The following type of results is predicted in the origination
of K-stability and proved for arbitrary test configurations in [B16], [BHJ16].
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Theorem 3.4. Let F : H → R be a functional either E, J, or D. For a test configuration
and a ray ϕt compatible with (X ,L) we have

FNA(X ,L) = lim
t→∞

F (ϕt)

t
.

The above formula is indeed true for non-smooth but bounded Φ for which the
semipositivity ddcΦ > 0 holds in the sense of current. In particular the same result
holds for the associated weak geodesic ray ϕt which is characterized by the degenerate
Monge-Ampère equation

(ddcτ,xΦ)
n+1 = 0 (3.3)

on X∆. Given a smooth boundary value ϕ0, the bounded solution uniquely exists. For
example [B16] gives the solution in terms of the Peron-Bremermann type envelope.
After [CTW18] it is known to have the best-possible C1,1-regularity. We have already
emphasized that the consideration of weak geodesic is necessary for the variational
approach.

As an immediate consequence the coercivity of the D-energy implies that X is uni-
formly D-stable. The heart of [BBJ18] is showing the converse direction. It is known
that the uniform stability implies that the automorphism group is finite. What we are
going to discuss suggests the one of the treatment for general automorphism groups.

3.2. Associated concave function and Duistermatt-Heckmann measure. We
continuously fix an extremal one-parameter subgroup η and a torus T ⊂ Aut0(X, η).
As in the previous subsections we denote the lattice of one-parameter subgroups by N
and the dual by M . Let P ⊂MR be the moment polytope of the maximal torus and

mϕ : X → P

the moment map. Recall that the Duistermatt-Heckmann measure is the push-forward
DHT := (mϕ)∗(V

−1ωn) (3.4)
which is again independent of the metric. Any µ ∈ NR is identified with the affine
function Gµ(x) := 〈µ, x〉 on MR hence we may integrate by DHT . Let k ∈ N and
µ1, . . . , µNk

be the weight of the Gm-action to H0(X, kL), induced by µ. For any p > 1,
the equivariant Riemann-Roch formula implies∫

P

Gp
µ(x)DHT = lim

k→∞

1

kpNk

∑
µpi . (3.5)

If set DHµ := (hµ)∗(V
−1ωn) = (Gµ)∗DHT , by the Hausdorff moment theorem we obtain

the convergence of the measures on R:

DHµ = lim
k→∞

1

Nk

∑
δµi

k
. (3.6)

We also obtain that P is the closed convex hull of the set{
χ

k
∈MQ : χ ∈M, sχ ∈ H0(X, kL) with σ · sχ = χ(σ)sχ

}
(3.7)

and that DHT = 1
Nk

∑
δχ

k
where χ ∈M runs for all sχ ∈ H0(X, kL). As a consequence
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Proposition 3.5. For every µ ∈ NQ we have

mX := inf
P
G1+µ = lim

k→∞
min

k + µi
k

= inf
X
(1 + hµ)

and the final representation is independent of the metric.

More generally, a test configuration defines a concave function G(X ,L) on P . For the
purpose it is convenient to describe the test configuration in terms of the filtration.
Given s ∈ H0(X,L), we have a rational section s̄(x, τ) = λ(τ) · s(λ(τ−1)(x, τ)) of L.
Considering how extent s̄ is holomorphic we obtain a filtration of the section ring, which
fully recovers the test configuration. For each λ ∈ R we set

F λH0(X, kL) := {s ∈ H0(X,L) : τ−dλes̄ ∈ H0(X ,L)}. (3.8)
We may easily show that the filtration is monotone, left-continuous, and multiplicative
in both k and λ. By [BHJ15] lemma 2.14, λ-weightspace of the induced action to
H0(X0, kL0) is given by

H0(X0, kL0)λ ' F λH0(X, kL)/F λ+1H0(X, kL). (3.9)
It will also follow from Proposition 3.12 below. A non-trivial fact proved in [PS07] is
the linearly boundedness. Namely there exists a constant C > 0 such that

F ktH0(X, kL) = {0} (resp. H0(X, kL)) (3.10)
for any t > C (resp. t < −C) and k > 1. It is equivalent to say: |λ| 6 Ck for the
induced Gm-action.

Imitating [WN12], we construct a concave function from the filtration.

Definition 3.6. For each t ∈ R we define P t as the closed convex hull of the set{
χ

k
∈MQ : χ ∈M, sχ ∈ F ktH0(X, kL) with σ · sχ = χ(σ)sχ

}
.

The associated concave function is
G(X ,L)(x) := sup{t ∈ R : x ∈ P t}.

It is easy to check G(X ,L) = Gµ when (X ,L) is the product configuration generated
by µ ∈ N . Indeed from the definitions we compute

τ−ktsχ(x, τ) = τ−ktµ(τ) · sχ(µ(τ−1)x)

= τ−kt(µ(τ) · sχ)(x)
= τ−kt+〈µ,χ〉sχ(x).

In terms of the associated weak geodesic ray (3.3) we may extend (3.6) to T -equivariant
test configurations. Notice that the weak geodesic ray ϕt has C1,1-regularity and the
right-derivative

ϕ̇0 := inf
t>0

ϕt − ϕ0

t
(3.11)

pointwisely defined is in fact a bounded function. It reflects the linearly boundedness
(3.10).
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Theorem 3.7. Let (X ,L) be a T -equivariant test configuration. For each k ∈ N
λ1, . . . , λNk

denote the weights of the induced Gm-action to H0(X0, kL0). The push-
forward

DH(X ,L) := ϕ̇0
∗(V

−1ωn)

defines a probability measure on R, which is independent of the metric. Moreover, it is
equal to

(G(X ,L))∗DHT = lim
k→∞

1

Nk

∑
δλi

k

.

Proof. The identity DH(X ,L) = limk→∞
1
Nk

∑
δλi

k

is shown in [H16a]. For any p > 1 we
have ∫

R
tp(G(X ,L))∗

∑
δχ

k
=

∫
P

Gp
(X ,L)

∑
δχ

k
=

∑
Gp

(X ,L)(
χ

k
),

where the summation is for all sχ ∈ H0(X, kL). In view of the Hausdorff moment
theorem it remains to show ∑

Gp
(X ,L)(

χ

k
) =

∑
(
λi
k
)p.

We fix χ and by the linearly boundedness (3.10) take the largest t such that sχ ∈
F dkteH0(X, kL) but sχ /∈ F dkte+1H0(X, kL). From (3.9) such kt one-to-one corresponds
to λi so we complete the proof. �

Remark 3.8. In [WN12], the associated concave function on the Okounkov body is in
fact defined for any possibly non-equivariant test configuration. If X is toric polarized
manifold the Okounkov body and the associated concave function is equivalent to the
present construction. In our setting G(X ,L) is to be a piecewise-linear function.

We conclude this subsection describing the invariants ENA, JNA in terms of the
Gm-action.

Proposition 3.9 ([BHJ15] Proposition 7.8, Theorem 5.16). For any test configuration,
the non-Archimedean Monge-Ampère energy satisfies

ENA(X ,L) =
∫
R
tDH(X ,L) = lim

k→∞

1

Nk

Nk∑
i=1

λk
k
.

The functional L0 satisfies

LNA
0 (X ,L) = sup suppDH(X ,L) = lim

k→∞
max
i

λi
k
.

Moreover, maxi
λi
k

is stable in k. More precisely, it is enough to take a sufficiently
divisible k so that kL is globally generated. If there exists a domination ρ : X → XA1,
let E0 be the strict trandsform of X ×{0} and D := L− ρ∗LA1 be the unique Q-divisor
supported on X0. We then have

LNA
0 (X ,L) = ordE0 D.
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3.3. Relative setting. Let us discuss the relative stability. From now on we fix η,
G = Aut(X, η), T = C(G), and K ⊂ G a maximal compact subgroup containing S.
The identical one-parameter subgroup to T is denoted by 1 ∈ N . Test configurations
are assumed to be G-equivariant, as the metrics were K-invariant.

Definition 3.10. Let G be a reductive algebraic group. A test configuration (X ,L)
endowed with Gm × G-action is G-equivariant if it is compatible with the equipped
Gm-action on (X ,L) and the G-action on (X,L) = (X1,L1).

Notice that we imposed the commutativity with G, on the Gm-action. In particular
G acts on the central fiber X0. The G-equivariance is not too much restrictive, as one
can see [DS16], Theorem 1, in the Kähler-Einstein case. See also Example 3.21 below.

Example 3.11. Consider a G-invariant ideal I ⊂ OX . Let ρ : X → XA1 be the
normalization of the blow-up along the ideal J := I + (τ) and E be the exceptional
divisor. We take ε > 0 and set L := ρ∗LA1 − εE. This typical test configuration
called deformation to the normal cone is intensively studied in [RT07]. Blowing-up
construction will even play an important role in proving Theorem A. Indeed one can
show that L is ample for every sufficiently small ε. If for example the support V of
J is smooth we may write E = P(NV/X ⊕ OX) as the normal cone. The induced
Gm-action is trivial on the normal bundle NV/X and the is the simple multiplication on
OX . Since J is G-invariant, (X ,L) inherits the G-action so that ρ is equivariant. In
this construction we observe that the two actions actually commute to each other.

Let us consider the case G = Aut(X,−KX). For example, P2 does not have any
G-invariant ideal. If X is the one point blow-up of P2 any G-invariant ideal is supported
on the exceptional divisor. We may check that the deformation to the normal cone
prevent X to be D-semistable.

The starting point here is to take the inner product of such a test configuration with
arbitrary one-parameter subgroups, extending the definition of [FM95]. The equipped
λ : Gm → Aut(X ,L) induces the action to H0(X0, kL0) for every k > 1. Since X is
normal and is a family over the curve, it is flat. It follows H0(X0, kL0) ' H0(X, kL)
for any sufficiently large k. In fact we may have a G-equivariant trivialization of the
vector bundle π∗(kL) over A1.

Proposition 3.12. The G-equivariant algebraic vector bundle E = π∗(kL) on the affine
line A1 is G-equivariantly isomorphic to E0 × A1.

Proof. For the case G = {id} we refer [BHJ15] Proposition 1.3. Taking M into the ac-
count the same argument works. Indeed from the commutativity of the first component
Gm with the second G, G-action does not effect. Let MG be the lattice of weights and

H0(A1, E) =
⊕

(λ,χ)∈Z⊕MG

H0(A1, E)(λ,χ) (3.12)

be the decomposition to the irreducible representations. Set V := E1 = H0(X, kL),
Vχ := H0(X, kL)χ and F λVχ as the image of H0(A1, E)(λ,χ) under the restriction map
H0(A1, E) → E1. Definition 3.10 implies F λVχ ⊂ Vχ. Since τ has weight −1 with
respect to the Gm-action on the base C, multiplication by τ induces F λ+1Vχ ⊂ F λVχ.
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Since F λVχ = Vχ for λ � 0 and V = ⊕χVχ, the above map sending
∑
τ−λvλ to

∑
vλ

is surjective. On the other hand, if
∑
τ−λvλ lies in the kernel, wλ := −

∑
λ′>λ vλ′ in

F λV := ⊕χF
λVχ vanishes for λ� 0. Since vλ = wλ+1−wλ, it means that

∑
τ−λvλ is in

(τ − 1)H0(A1, E). Thus we have H0(A1, E)/(τ − 1)H0(A1, E) ' V and the equivariant
isomorphism

E|A1\{0} ' V × A1 \ {0}.
Similarly, by sending

∑
τ−λvλ to vλ modulo F λ+1V we may show

E0 '
⊕
λ∈Z

F λV/F λ+1V.

It follows the equivariant isomorphism

H0(X,E) '
⊕
λ∈Z

τ−λF λV.

By choosing a basis compatible the filtration and F λV = ⊕χF
λVχ, we obtain a required

equivariant trivialization. �

Now consider G = Aut0(X, η). Because the test configuration is assumed to be
G-equivariant, given µ ∈ N we may simultaneously diagonalize the two actions on
H0(X, kL) and H0(X0, kL0) so that each weights λi and µi are assigned for the common
vectors under the equivariant trivialization. In the sequel we may take any such λi and
µi.

Definition 3.13 ([H16b]). Let (X ,L) be a T -equivariant test configuration. For any
one-parameter subgroup µ ∈ N we have the limit

ENA
µ (X ,L) = lim

k→∞

1

k2Nk

Nk∑
i=1

λiµi.

For the identical one-parameter subgroup 1 ∈ N we observe µi = k and hence
Proposition 3.9 shows

ENA
1 (X ,L) = lim

k→∞

1

kNk

Nk∑
i=1

λi = ENA(X ,L).

It is easy to check that the homogeneity naturally extends the definition to µ ∈ NQ.
We may further extend it to µ ∈ NQ by the following description.

Theorem 3.14 ([H16b]). Let (X ,L) be a T -equivariant test configuration and µ ∈ NQ.
For the associated weak geodesic ray ϕt and the Hamilton function hµ we have

ENA
µ (X ,L) = 1

V

∫
X

ϕ̇0hµω
n.

Since Eg is geodesically affine, the right-hand side gives the slope at infinity.

Corollary 3.15. For any geodesic ray ϕt compatible with (X ,L) we have

ENA
µ (X ,L) = lim

t→∞

Eµ(ϕ
t)

t
.
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Now we choose the extremal one-parameter subgroup η ∈ NQ to define the non-
Archimedean counterpart of Eη.

Definition 3.16. The non-Archimedean counterpart of the modified Monge-Ampère
energy Eη is defined to be

ENA
η (X ,L) := 〈(X ,L), 1 + η〉.

We introduce the modifed non-Archimedean energies as DNA
η (X ,L) := LNA(X ,L) −

ENA
η (X ,L) and JNA

η (X ,L) := LNA
0 (X ,L)− ENA

η (X ,L).

Note that JNA
η is not necessarily non-negative, just as Jη was. We shall see that

T ⊂ Aut(X, η) is enough to examine the positivity of JNA
η .

Proposition 3.17. If mX > 0, then JNA
η (X ,L) > 0 and the equality holds iff the

T -equivariant (X ,L) is the trivial test configuration.

Proof. It is immediate from Theorem 3.14 and 3.9 that

JNA
η (X ,L) = sup

X
ϕ̇0 − 1

V

∫
X

ϕ̇0(1 + hη)ω
n. (3.13)

Since we may rescale the Gm-action to have supX ϕ̇
0 = 0, from the formula mX =

infX(1 + hη) > 0 implies JNA
η (X ,L) > 0, otherwise ϕ̇0 is identically zero. By [BHJ15]

Theorem A, ϕ̇0 ≡ 0 implies that (X ,L) is trivial. That is, the product configuration
with the trivial action. �

In terms of the associated concave function, we may write

JNA
η (X ,L) = max

P
G(X ,L) −

1

V

∫
P

G(X ,L)G1+ηDHT . (3.14)

In our definition of stability we assume mX > 0. By Proposition 3.5, this additional
assumption is very much easier to check than the positivity of DNA

η for all test config-
urations.

Let us return to a general µ ∈ N and take a G-equivariant trivialization so that the
weights λi and µi are assigned for the common vectors. We endow a new Gm-action
with the space (X ,L) such that the weights are given by λi + µi. Since T = C(G), it
indeed gives a G-equivariant test configuration which we will denote by (Xµ,Lµ). If Φ
is the weak geodesic ray associated with (X ,L), it is easy to see that

ϕtµ(x) := Φ(λ(e−t)µ(e−t)(x, 1)) (3.15)
gives the geodesic ray associated with (Xµ,Lµ). The homogeneity naturally extends
the definition to arbitrary µ ∈ NQ. From Theorem 3.14, we may further observe that
JNA(Xµ,Lµ) is continuous in µ ∈ NQ.

Lemma 3.18. The functional JNA
η (Xµ,Lµ) is rationally piecewise-linear convex func-

tion in NR. It is moreover strictly convex in NR/R. Especially the infimum
JNA
T (X ,L) := inf

µ∈NR
JNA(Xµ,Lµ) (3.16)

is attained by a rational µ.
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Proof. The result was observed in [H18]. Indeed by Proposition 3.9 we see that

JNA
η (Xµ,Lµ) = max

i

λi + µi
k

− 1

Nk

Nk∑
i=1

(λi + µi)(1 + ηi).

The first term is independent of k, as soon as kL is globally generated. Note that the
condition is independent of µ. The second term is affine in µ. Therefore, as the function
in µ, it is the maximum for finite number of affine functions. The function is obviously
non-negative and proper in NR/R. �

The notation JT and JNA
T are consistent. We indeed have the slope formula.

Theorem 3.19 ([H18], Theorem B). Let (X ,L) be a T -equivariant test configuration
and ϕt be the associated weak geodesic ray. We have

JNA
T (X ,L) = lim

t→∞

JT (ϕ
t)

t
.

Notice that g ∈ T attaining the infimum of JT (ϕt) depends on t. It is at least
technically crucial to fix one torus in obtaining this sort of slope formulas. See [H18],
Remark 1.8. Based on the results, we now arrive at the definition of the desired stability.

Definition 3.20. A Fano manifold X is uniformly relatively D-stable if mX > 0,
G = Aut(X, η) is reductive, and there exists a constant ε > 0 such that

DNA
η (X ,L) > εJNA

T (Xµ,Lµ)

holds for any G-equivariant test configuration. We say that X is relatively D-semistable
if DNA

η (X ,L) > 0 for any G-equivariant test configuration.

Example 3.21. As we have observed, there is no G-invariant ideal when X = P2. It
simply implies that P2 is uniformly relatively D-stable. When X is the one point blow-up
of P2, we have the deformation to the normal cone (X ,L) for the exceptional divisor.
We may check that (X ,L) dominates the product test configuration generated by η. It
means that DNA

η (X ,L) = JNA
T (X ,L) = 0. Indeed X admits a Mabuchi soliton, and

hence it is uniformly relatively D-stable, by the following general result. See [Y17] for
investigation of the general toric Fano manifolds.

Theorem 3.22. If a Fano manifold admits a Mabuchi soliton, then it is uniformly
relatively D-stable.

Proof. By Theorem 2.13 we have the coercivity. As a consequence of Theorem 3.4 and
Theorem 3.19, the coercivity implies the stability. �

4. Variational approach and proof of the main theorem

Standing on the preparation of the last two sections we give a proof of Theorem
A. After we organized the formulation, the argument is now a simple extension of the
variational approach [BBJ18], to the relative and equivariant setting.
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4.1. Convergence of weak geodesics. Existence of the metric implies the stability,
by Theorem 3.22. Let us assume that a Fano manifold is uniformly relatively D-stable,
in the sense of Definition 3.20. Since J and Jη are equivalent, we may use Jη in
replace of J . We shall suppose that the modified D-energy is not coercive and lead the
contradiction.

The first step is to construct a weak geodesic ray in which direction the modified
D-energy is not coercive. If the coercivity of Definition 2.12 fails for a constant ε′ < ε,
we have a sequence ϕj ∈ H(X,−KX)

K (j = 1, 2, . . . ) so that
Dη(ϕj) 6 ε′Jη(σ

∗ϕj)− j (4.1)
for any σ ∈ T . Since both sides are preserved by the constant rescaling ϕ 7→ ϕ + c we
may take

sup
X

(ϕj − ϕ0) = 0. (4.2)

We may moreover assume
Eη(ϕj) → −∞, (4.3)

otherwise the uniform version of Skoda’s integrability and the weak-compactness of the
level set {ϕ ∈ E1(X,−KX)

K : E(ϕ) > −C} imply
Dη(ϕj) > − logC − Eη(ϕj) > − logC ′.

Here we used again the comparison (2.33) of E and Eη. Then (4.1) yields Jη(ϕj) → ∞,
which contradicts to the assumption Eη(ϕj) > −C with (4.2).

For the convergence of the weak geodesics connecting the reference ϕ0 with ϕj we
need the relative entropy and the strong topology.

Theorem 4.1 ([BBEGZ16], Theorem 2.17). The sublevel set{
ϕ ∈ E1(X,−KX)

K : H(MA(ϕ)|µ0) 6 C, sup
X

(ϕ− ϕ0) = 0

}
is compact in the d1-topology.

By the Legendre transform formula (2.41), we have

Dη(ϕ) = − log

∫
X

e−ϕ − Eη(ϕ)

= H(MA(ϕ)|µ0) +
1

V

∫
X

(ϕ− ϕ0)MA(ϕ)− Eη(ϕ)

> H(MA(ϕ)|µ0) + E(ϕ),

which enables us to control the entropy. Let us now take a weak geodesic ϕtj (0 6 t 6
−Eη(ϕj)) which joins ϕ0 to ϕj. Since the modified D-energy is geodesically convex,
(4.1) yields

Dη(ϕ
t
j) 6

t

−Eη(ϕj)
Dη(ϕj) 6

t

−Eη(ϕj)
(ε′Jη(σ

∗ϕj)− j). (4.4)

In particular if σ = id we observe Dη(ϕ
t
j) 6 ε′t. By the geodecity we have Eη(ϕtj) = −t.

The term E(ϕtj) is then estimated by (2.33). Therefore, for each fixed T , ϕtj (0 6 t 6 T )
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is contained in a compact subset with respect to the strong topology. The geodecity as
well implies

d1(ϕ
t
j, ϕ

s
j) = d1(ϕ

1
j , ϕ0) |t− s| 6 C(J(ϕ1

j) + 1) |t− s|
for any t, s > 0. By Ascoli’s theorem, passing through a subsequence if necessary, we
conclude that ϕtj strongly converges to ϕt. It is immediate from Eη(ϕ

t
j) = −t that

Eη(ϕ
t) = −t. Lastly we let µ ∈ N and apply (4.4) to σ = µ(e−sj), sj > 0. The

assumption ϕj 6 ϕ0 implies σ∗ϕj 6 σ∗ϕ0. By the slope formula:

LNA
0 (µ) = lim

j→∞

L0(µ(e
−sj)∗ϕ0)

sj
,

for LNA
0 (µ) 6 0 we have the bound L0(µ(e

−sj)∗ϕj) 6 L0(µ(e
−sj)∗ϕ0) 6 o(sj). Compare

the claim with Lemma 4.3 below. Let us take sj := −Eη(ϕj). The lower-semicontinuity
and (4.4) implies

Dη(ϕ
t)

t
6 lim inf

j→∞

Dη(ϕ
t
j)

t
6 ε′ lim inf

j→∞

Eη(µ(e
−sj)∗ϕj)

Eη(ϕj)
.

Noting Eη(µ(e−sj)∗ϕj) = 〈µ, 1 + η〉sj + Eη(ϕj) we conclude

Dη(ϕ
t)

t
6 ε′ lim

t→∞

−Eη(ϕtµ)
t

. (4.5)

It is obvious that the same inequality is valid for any µ ∈ NQ with LNA
0 (µ) 6 0.

4.2. Demailly type approximation. The second step is to approximate ϕt con-
structed in the above by a sequence of test configurations. It is the non-Archimedean
analogue of Demailly’s approximation theorem for plurisubharmonic functions. Given
ϕt, the relation (3.2) gives the singular K-invariant metric Φ on LA1 , defined over
XA1\{0} = C∗ ×X. Since supX(ϕ

t−ϕ0) = 0, the plurisubharmonicity uniquely extends
Φ to A1. Now for a sufficiently large m ∈ N we take the multiplier ideal sheaf J (mΦ)
and the normalized blow-up ρm : Xm → A1, endowed with the exceptional divisor Em
and the line bundle

Lm := ρ∗mLA1 − 1

m+m0

Em. (4.6)

We may show that Lm is relatively semiample line bundle. See [BBJ18], Lemma 5.6 for
the proof. We may check that the test configuration (Xm,Lm) inherits the equivariant
G-action, since J (mΦ) is G-invariant. Note that the central fiber X0 is the union of
the strict transform E0 of X × {0} and the exceptional divisor Em. The Gm-action of
(Xm,Lm) is trivial on E0 so that it commutes with the G-action.

Theorem 4.2 ([BBJ18], Theorem 5.4 and 6.4 for the T = {id} case). For the above
test configurations constructed from ϕt, we have

ENA
η (Xm,Lm) > lim

t→∞

Eη(ϕ
t)

t
,

lim
m→∞

LNA(Xm,Lm) = lim
t→∞

L(ϕt)

t
.
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We need Eη in the above, however, the proof is the same as [BBJ18]. Indeed, using
Demailly’s approximation theorem locally, we have the estimate

Φm > Φ− Cm,r (4.7)

on the shrunken area B(0, r) × X. The constant Cm,r is necessarily independent of
t. Since the modified Monge-Ampère energy is monotone, we apply Corollary 3.15 to
obtain

ENA
η (Xm,Lm) = lim

t→∞

Eη(ϕ
t
m)

t

> lim
t→∞

Eη(ϕ
t − Cm,r)

t
= lim

t→∞

Eη(ϕ
t)

t
= −1.

The key point in the above is the Ohsawa-Takegoshi L2-extension theorem [OT87] used
in Demailly’s approximation.

Taking µm ∈ NQ we twist the action of (Xm,Lm) to obtain the test configuration
(X ′

m.L′
m) := (Xm,µm ,Lm,µm) which attains

inf
µ∈NR

JNA
η (Xm,Lm) = JNA

η (X ′
m,L′

m).

Since the rescaling µ 7→ µ+c preserves JNA
η , we may assume that LNA

0 (µ): the maximal
weights of µm,i, is just zero. By Proposition 3.9 we know LNA

0 (Xm,Lm) = ordE0 Dm for
Dm := Lm − ρ∗mLA1 . It is zero because Lm does not contain E0 by the construction.

Lemma 4.3. If µ ∈ NQ satisfies LNA
0 (µ) = 0 in the above, we have

LNA
0 (X ′

m,L′
m) = 0.

Proof. Note that the canonical morphism ρm : Xm → XA1 is no longer equivariant for
the twisted action. Let us denote the action by λ : Gm → Aut(Xm,Lm). We already
observed maxi

λi
k
= 0. The assumption LNA

0 (µ) = 0 is equivalent to say maxi
µi
k

= 0.
It implies that there exists sλ ∈ H0(X, kL) such that the rational section (x, τ) 7→
sλ(λ(τ)(x, 1)) has zero order along E0. (See also the proof of Theorem 3.12). For the
twisted action, the associated rational section is (x, τ) 7→ sλ((λ + µ)(τ)(x, 1)). Since
the action of µ preserves E0, we deduce that this rational section as well has zero order
along E0. Therefore maxi

λi+µi
k

= 0.
�

For each m > 1, the uniform relative D-stability implies

LNA(Xm,Lm) = DNA
η (Xm,Lm) + ENA

η (Xm,Lm)
> −εENA

η (X ′
m,L′

m) + ENA
η (Xm,Lm)

= −ε〈µm, 1 + η〉+ (1− ε)ENA
η (Xm,Lm).
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On the other hand, non-coercivity (4.5) yields

lim
m→∞

LNA(Xm,Lm) = lim
t→∞

L(ϕt)

t
= lim

t→∞

Dη(ϕ
t) + Eη(ϕ

t)

t

6 lim
t→∞

−ε′Eη(ϕtµm) + Eη(ϕ
t)

t

= −ε′〈µm, 1 + η〉+ (1− ε′) lim
t→∞

E(ϕt)

t

for each µm. Comparison of the two inequalities leads a contradiction and completes
the proof of Theorem A.
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