E-mail:hisamoto@math.nagoya-u.ac.jp

抽象ベクトル空間:解答

解答例を読むだけではなく、もう一度、何も見ずに自力で解答が作成できるかどうか手 を動かして確かめてください。

問題 1.

$$a_{n+2} + b_{n+2} = (5a_{n+1} - 6a_n) + (5b_{n+1} - 6b_n) = 5(a_{n+1} + b_{n+1}) - 6(a_n + b_n)$$

より、 $\{a_n\} + \{b_n\} := \{a_n + b_n\}$ も V に属する。定数倍についても同様である。等比数列 $a_n = r^n$ で V に属するものを考えると、

$$a_{n+2} = 5a_{n+1} - 6a_n \Leftrightarrow r^2 - 5r + 6 = 0$$

だから、 $a_n = 2^n, 3^n$ は V に属することが分かる。こうして得られた 2 つの数列は V において一次独立である。さて、線形写像 $f: V \to \mathbb{R}^2$ を

$$f(\{a_n\}) := \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

によって定める。漸化式の存在から、f は全射である。さらに、 $Ker f = \{0\}$ であることも漸化式から分かる。従って f は 1 対 1 の線形写像 (同型写像) であり、V が 2 次元ベクトル空間であることが導かれる。特に $a_n = 2^n, 3^n$ は V の基底を与える。

※ここでは線形写像の使い方を示すため、敢えて少し洗練された証明を与えている。 $a_n=2^n,3^n$ が基底になることは、直接漸化式を解いても証明できる。詳しくは演習 II のプリントを見よ。上の証明を見ると、線形写像を使うことでいつの間にか漸化 式が解けていることに注目してほしい。

(2) $f, g \in V$ とすると

$$(f+g)(\sqrt{2}) = f(\sqrt{2}) + g(\sqrt{2}) = 0 + 0 = 0$$

より、 $f+q \in V$. 定数倍についても同様である。

さて、高々2次の実係数多項式全体が成すベクトル空間をVとする。これは基底 $1, x, x^2$ を持つので、3次元のベクトル空間である。線形写像 $T: V \to \mathbb{R}$ を

$$T(f) := f(\sqrt{2})$$

によって定める。W の定義より $\operatorname{Ker} f = W$ であることに注意せよ。与えられた実数 a に対し T(a) = a だから、f は明らかに全射である。すると次元定理から W は 2 次元であることが従う。あとは適当に 1 次独立な元を 2 つ取ってくればよい。 $(x-\sqrt{2}), (x-\sqrt{2})^2 \in W$ が最も標準的だろう。

※ $(x-\sqrt{2}), (x-\sqrt{2})^2 \in W$ が基底になることを直接計算で示すことも勿論できるが、次元定理を用いた方が遥かに単純である。その代わり、T のような適切な線形写像を状況に応じて見つける必要がある。

問題 2.

- (1) 紛らわしいので、複素数の全体をひとまず K と置こう。どんな複素数も 1 という元の複素数倍で表せるから、K を \mathbb{C} ベクトル空間とみなすと、1 だけからなる基底が取れることになる。一方、K を \mathbb{R} ベクトル空間とみなすと、1 と虚数単位 i からなる基底が取れる。
- (2) $1,\xi$ が V を張ることは $\xi^2=i=-1+\sqrt{2}\xi$ および $\xi^3=\frac{-1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i=-\sqrt{2}+\xi$ より従う。次に $1,\xi$ の一次独立性を示す。 $a_0,a_1\in\mathbb{R}$ が $a_0+a_1\xi=0$ を満たすとすると、実部と虚部に分けて $a_0+\frac{1}{\sqrt{2}}a_1=0,\frac{1}{\sqrt{2}}a_1=0$,従って $a_0=a_1=0$ が成り立たねばならない。※実は $V=\mathbb{C}$ である。

定義より $1, \xi, \xi^2, \xi^3$ はW を生成する。これらが一次独立であることを示そう。 $a_0, a_1, a_2, a_3 \in \mathbb{Q}$ が $a_0 + a_1 \xi + a_2 \xi^2 + a_3 \xi^3 = 0$ を満たしていると仮定する。 ξ^2, ξ^3 と ξ の関係から

$$0 = a_0 + a_1 \xi + a_2 \xi^2 + a_3 \xi^3 = a_0 + a_1 \xi + a_2 (-1 + \sqrt{2} \xi) + a_3 (-\sqrt{2} + \xi)$$
$$= \left(a_0 + \frac{a_1}{\sqrt{2}} - \sqrt{2} a_3 + \frac{a_3}{\sqrt{2}} \right) + i \left(\frac{a_1}{\sqrt{2}} + a_2 + \frac{a_3}{\sqrt{2}} \right).$$

すると実部と虚部はともにゼロでなければならないので、 $a_0 + \frac{a_1}{\sqrt{2}} - \sqrt{2}a_3 + \frac{a_3}{\sqrt{2}} = \frac{a_1}{\sqrt{2}} + a_2 + \frac{a_3}{\sqrt{2}} = 0$. これは次のように整理できる。

$$\begin{cases} a_0 + \sqrt{2} \left(\frac{a_1}{2} - \frac{a_3}{2} \right) = 0, \\ a_2 + \sqrt{2} \left(\frac{a_1}{2} + \frac{a_3}{2} \right) = 0. \end{cases}$$

 $a_0,a_1,a_2,a_3\in\mathbb{Q}$ なので $a_0=\frac{a_1}{2}-\frac{a_3}{2}=0,\,a_2=\frac{a_1}{2}+\frac{a_3}{2}=0$ が必要。これを解けば $a_0=a_1=a_2=a_3=0$ が結論される。

問題 3. $f,g \in V$ とすると

$$T(f+g) = \int_0^x (f+g)(t)dt = \int_0^x f(t)dt + \int_0^x g(t)dt = T(f) + T(g)$$

定数倍についても同様である。

$$T(1) = x, T(x) = x^2/2, T(x^2) = x^3/3$$
 だから

$$T(1, x, x^{2}) = (1, x, x^{2}, x^{3}) \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$

となる。

問題 4.

(1) 空間ベクトルxに対しその定数倍cxは「0,xを結ぶ線分を原点を固定してc倍に引き伸ばした線分」の端点で与えられる。この線分を回転させると、「0,f(cx)を端点とする線分」になる。線分を引き延ばしてから回転させても、回転させてから引き延ばしても得られるものは変わらないから、f(cx)=cf(x)が成り立つ。

空間ベクトルx,yに対しそれらの和x+yは「0,x,yを頂点とする平行四辺形」の残りの頂点で与えられる。この平行四辺形を回転させると、「f(0),f(x),f(y),f(x+y)を頂点とする平行四辺形」になる。従ってf(x+y)=f(x)+f(y)が成り立つ。

(2) 求める行列は以下のようになる。

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}, \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}, \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(3) x軸に関する α 回転 $\rho_{x,\alpha}$ と y 軸に関する β 回転 $\rho_{y,\beta}$ を順番に合成することによって、回転軸 ℓ を z 軸に重ねることができる。すると写像の合成 $\rho_{y,\beta}\circ\rho_{x,\alpha}\circ f\circ\rho_{x,\alpha}^{-1}\circ\rho_{y,\beta}^{-1}$ は z 軸の点を動かさない線形変換で、しかも長さや角度を保つ。このようなものは、ある $\rho_{z,\gamma}$ に一致する * 。つまり

$$\rho_{y,\beta} \circ \rho_{x,\alpha} \circ f \circ \rho_{x,\alpha}^{-1} \circ \rho_{y,\beta}^{-1} = \rho_{z,\gamma} \iff f = \rho_{x,\alpha}^{-1} \circ \rho_{y,\beta}^{-1} \circ \rho_{z,\gamma} \circ \rho_{y,\beta} \circ \rho_{x,\alpha}$$

となる。

*これは直感的には認められる事実だと思うが、本当は証明が必要である。 \mathbb{R}^3 の線形変換 g が内積を保つ、すなわち

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^3 \ \langle g(\boldsymbol{x}), g(\boldsymbol{y}) \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

を満たすとき、g は直交変換であるという。ベクトルの長さや角度は内積を用いて表されるから、直交変換は特に長さや角度を保つ。逆に長さや角度を保つ線形変換は直交変換である。今の場合 $g=\rho_{y,\beta}\circ\rho_{x,\alpha}\circ f\circ\rho_{x,\alpha}^{-1}\circ\rho_{y,\beta}^{-1}$ は z 軸の点を動かさないので、それと直交するxy 平面上の点は g によって xy 平面上の点に移される。すなわち、g は xy 平面の直交変換を定める。表現行列の成分についてこの条件を書き下せば、このような平面上の変換は回転しかないことが分かる。演習 II 第 7 回の問題 6 も参照せよ。

問題 5.

(1) $v, v' \in \text{Ker } f$ とすると、f の線形性より

$$f(v + v') = f(v) + f(v') = 0 + 0 = 0$$

だから $v+v'\in \operatorname{Ker} f.$ $w,w'\in \operatorname{Im} f$ とすると、ある $v,v'\in V$ を用いて f(v)=w,f(v')=w' と書くことができる。f の線形性より

$$w + w' = f(v) + f(v') = f(v + v')$$

で、 $v+v' \in V$ だから $w+w' \in \text{Im } f$.

(2) f が単射とする。 $\forall v \in \text{Ker } f$ について f(v) = f(0) が成り立つので、単射性より v = 0 すなわち $\text{Ker } f = \{0\}$ となる。

逆に $\operatorname{Ker} f = \{0\}$ とする。f(v) = f(v') となる $v, v' \in V$ を勝手に取ると、f(v-v') = f(v) - f(v') = 0 なので $v - v' \in \operatorname{Ker} f$. よって v - v' = 0 となる。これは f が単射 であることを意味する。

(3) これはIm f の定義より明らか。

問題 6. 行列 A の階数とは、列ベクトル $(A_{ij})_{i=1}^m$ のうち何本までが一次独立かという数であった $(A_{ij}$ は行列 A の成分)。今の場合

$$f(v_1,\ldots,v_n)=(w_1,\ldots,w_m)A$$

となっていて、f の階数は $f(v_j) = \sum_{i=1}^m A_{ij} w_i$ のうち幾つが一次独立かという数である。 $1 \leqslant j \leqslant n$ のうち有限個 $j_1, \ldots j_r$ を取って仮に $\sum_{k=1}^r c_k f(v_{j_k}) = 0$ が成り立っているとすると

$$0 = \sum_{k=1}^{n} c_k f(v_{j_k}) = \sum_{k=1}^{r} c_k \sum_{i=1}^{m} A_{ij_k} w_i = \sum_{i=1}^{m} \left(\sum_{k=1}^{r} c_k A_{ij_k} \right) w_i.$$

 w_i たちは基底だから、勝手な i について $\sum_{k=1}^r c_k A_{ij_k} = 0$ となる。今の議論を逆に追うと、 $\sum_{k=1}^r c_k A_{ij_k} = 0$ が成り立っていれば $\sum_{k=1}^r c_k f(v_{j_k}) = 0$ となることも分かる。これは $f(v_{j_k})$ $(1 \le k \le r)$ の一次独立性と r 本の列ベクトル $(A_{ij_k})_{i=1}^m$ の一次独立性が同値であることを意味する。

問題 7. $\dim V = 3$ は基底 $1, z, z^2$ が取れることから確かめられる。 $\frac{d}{dz} = a_1 + 2a_2z$ だからこれがゼロとなるのは $f(z) = a_0$ に限る。よって $\dim \operatorname{Ker} f = 1$. $\operatorname{rank} f = 2$ については、問題 6 を利用すれば簡単にチェックできる。

※この場合 $\operatorname{rank} f = 2$ を確かめる一番簡単な方法は次元定理を用いるものだろう。

問題 8.

(1) { a_n } ∈ V とすると

数列
$$c\{a_n\}$$
 の $n+N$ 番目の項 = $\{ca_n\}$ の $n+N$ 番目の項 = $\{ca_{n+N}\}$ = $\{ca_n\}$ = 数列 $c\{a_n\}$ の n 番目の項

だから、 $c\{a_n\} \in V$ となる。加法についても同様。

(2) 各 $1 \leq j \leq N$ に対して数列 $\{\delta_{i,n}\}_{n=1}^{\infty}$ を

$$\delta_{j,n} := \begin{cases} 1 & \text{(if } n = j \mod N) \\ 0 & \text{(otherwise)} \end{cases}$$

と定めると、 $\{\delta_{1,n}\}, \{\delta_{2,n}\}, \ldots, \{\delta_{N,n}\}$ はV の基底を与える。特に $\dim V = N$.

(3) ξ が 1 の原始 N 乗根だから

$$a'_{n+N} = \sum_{k=1}^{N} a_k \xi^{(n+N)k} = \sum_{k=1}^{N} a_k \xi^{nk} = a'_n$$

であり、確かに $\{a'_n\} \in V$ となっている。線形写像であることも容易に確かめられる。

(4) 問題の線形写像を (2) で与えた基底 $\{\delta_{1,n}\},\ldots,\{\delta_{N,n}\}$ によって表現した行列は

$$A = (\xi^{ij})_{i,j=1}^{n} = \begin{pmatrix} \xi^{1} & \xi^{2} & \cdots & \xi^{N} \\ \xi^{2} & \xi^{4} & \cdots & \xi^{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \xi^{N} & \xi^{2N} & \cdots & \xi^{N^{2}} \end{pmatrix}$$

で与えられる。問題6より、この行列の階数を計算すればよい。これはVandermonde 行列だから、行列式は差積

$$\det \mathcal{F} = \prod_{i < j} (\xi^j - \xi^i) \neq 0$$

で与えられる。よって階数はNである。

※ \mathcal{F} の逆変換は $\mathcal{F}^{-1}(a_n)=\frac{1}{N}\sum_{k=1}^N a_k \xi^{-nk}$ で与えられることが比較的簡単に分かる。 Tr \mathcal{F} は Gauss(1805) によって初めて求められた。その値は

$$\frac{1}{\sqrt{N}} \operatorname{Tr} \mathcal{F} = \begin{cases} 1 + i & \text{(if } N = 0 \mod 4) \\ 1 & \text{(if } N = 1 \mod 4) \\ 0 & \text{(if } N = 2 \mod 4) \\ i & \text{(if } N = 3 \mod 4) \end{cases}$$

となる。 $\det \mathcal{F}$ はもっと簡単に書けるだろうか? 自分で色々計算してみると面白い と思う。