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1. Introduction

By a simplicial complex ∆ on the vertex set V = [n] = {1, 2, . . . , n}, we mean
that ∆ is a family of subsets of V which satisfies the following conditions:

(i) {i} ∈ ∆ for every i ∈ V (ii) F ∈ ∆, G ⊆ F imply G ∈ ∆.

An element of ∆ is called a face of ∆. The dimension of ∆, denoted by
dim ∆, is the maximum of the dimension dim F = �(F ) − 1, where F runs
through all faces of ∆ and �(F ) denotes the cardinality of a set F . A simplicial
complex ∆ is called pure if all facets (maximal faces with respect to inclusion)
of ∆ have the same dimension.

For a face F of ∆,

link∆(F ) = {G ∈ ∆ : F ∪ G ∈ ∆, F ∩ G = ∅}
is called the link of F . For a subset W of V ,

∆W = {F ∈ ∆ : F ⊆ W}
is called the restriction to W of ∆.

Throughout this talk, let K be a field, and let S = K[X1, . . . , Xn] be a
polynomial ring over K, unless otherwise specified. The ring S can be viewed as
a standard graded K-algebra (i.e., S =

⊕
n∈N

is an N-graded ring with S0 = K,
S = K[S1]) with the unique homogeneous maximal ideal m = (X1, . . . , Xn).
For a simplicial complex ∆, the Stanley–Reisner ideal I∆ and the Stanley–
Reisner ring K[∆] are defined by

I∆ = (Xi1 · · ·Xip : 1 ≤ i1 < · · · < ip ≤ n, {i1, . . . , ip} /∈ ∆)S,

K[∆] = S/I∆.

Note that any squarefree monomial ideal I ⊆ S with indeg I ≥ 2 can be
written as I = I∆ for some simplicial complex ∆, and that K[∆] is a graded
reduced K-algebra with dim K[∆] = dim ∆ + 1. See [BH, St] about simplicial
complexes and Stanley–Reisner rings.

Let R = S/I be an arbitrary standard graded K-algebra. The ring R is
said to be Buchsbaum (resp. to have (FLC )) if Exti

S(S/m, R) → H i
m(R)) is
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surjective (resp. H i
m(R) has finite length) for every i < dim R. In particular,

any Buchsbaum ring has (FLC).
The Stanley–Reisner ring K[∆] has (FLC) if and only if ∆ is pure and

K[link∆{i}] is Cohen–Macaulay for every i ∈ V . When this is the case, K[∆]
is Buchsbaum; see e.g., [St].

Let ∆ be a simplicial complex, and let G(I∆) = {m1, . . . , mµ} denote the
minimal set of monomial generators of I∆. Then one can easily check the
following fact.

Fact 1.1. Let I∆ = (m1, . . . , mµ) be as above. Then I∆ is a complete intersec-
tion (i.e., I∆ is generated by a regular sequence) if and only if gcd(mi, mj) = 1
for every i, j with i 	= j.

In general, if I ⊆ S is generated by a regular sequence, then S/I� is Cohen–
Macaulay for every integer � ≥ 1. When I is generically a complete intersection
(i.e., IP is a complete intersection for all minimal prime ideal P over I), the
converse is also true; see [CN]. Hence, for example, I∆ is a complete intersec-
tion if and only if S/I�

∆ is Cohen–Macaulay for every � ≥ 1.
In [GT], Goto and Takayama introduced the notion of generalized complete

intersection complexes and characterized those complexes: a simplicial com-
plex ∆ is said to be a generalized complete intersection complex if ∆ is pure
and K[link∆{i}] is a complete intersection for any vertex i ∈ V . The following
theorem gives a motivation of our study.

Theorem 1.2 (Goto–Takayama (see also [GT])). Let ∆ be a simplicial complex
on V = [n]. Then the following conditions are equivalent:

(1) K[∆] is a generalized complete intersection in the sense of [GT].
(2) S/I�

∆ has (FLC) for every � ≥ 1.

Clearly, a complete intersection is a generalized complete intersection. In
[GT], they gave examples which are not complete intersections but generalized
complete intersection complexes. However, their complexes ∆ are disconnected
or dim ∆ = 1. So it is natural to ask the following question:

Question 1.3. Assume that a simplicial complex ∆ is connected and dim ∆ ≥
2. If ∆ is a generalized complete intersection complex, then is it a complete
intersection?

The main aim of this talk is to give a complete answer to this question.
Before stating our result, let us define the following notion:

Definition 1.4. A simplicial complex K[∆] (or ∆) is called a locally com-
plete intersection (resp. Gorenstein, Cohen–Macaulay) if K[∆]P is a complete
intersection (resp. Gorenstein, Cohen–Macaulay) for every P ∈ Proj K[∆].

Note that K[∆] is a locally complete intersection if and only if K[∆]Xi

is a complete intersection for every 1 ≤ i ≤ n. Moreover, since k[∆]Xi
∼=

K[link∆{i}][Xi, X
−1
i ] we have:



Lemma 1.5. Let ∆ be a simplicial complex on V = [n]. Then the following
conditions are equivalent:

(1) K[∆] is a locally complete intersection.
(2) K[∆]Xi

is a complete intersection for every i ∈ V .
(3) K[link∆{i}] is a complete intersection for every i ∈ V .

In particular, ∆ is a generalized complete intersection if and only if ∆ is pure
and a locally complete intersection.

Corollary 1.6. Let ∆ be a simplicial complex on V . If K[∆] is a complete
intersection (resp. Gorenstein, Cohen–Macaulay), then so is K[link∆(F )] for
any face F of ∆.

Proof. It immediately follows from the fact linklink∆{i}(F \ {i}) = link∆(F ) for
i ∈ F . �
Example 1.7. Let ∆ be a simplicial complex corresponding to 5-gon. That
is, K[∆] = K[X1, X2, X3, X4, X5]/(X1X3, X1X4, X2X4, X2X5, X3X5). Then
K[∆] is a locally complete intersection but not a complete intersection.

Indeed, K[link∆{1}] ∼= K[X2, X5]/(X2X5) is a complete intersection. Simi-
larly, K[link∆{i}] is also a complete intersection for other i ∈ [5].

The following theorem is a main result in this talk; see also Section 2.

Theorem 1.8. Let ∆ be a simplicial complex on V = [n] with dim ∆ ≥ 2.
Assume that ∆ is a locally complete intersection. Then it is a disjoint union
of finitely many simplicial complexes whose Stanley–Reisner rings are complete
intersections.

In the case dim ∆ = 1, we can also characterize locally complete intersection
complexes. See Section 3.

2. Proof of the main theorem

In this section, we will prove the main theorem. First of all, we remark the
following lemma.

Lemma 2.1. Assume that V = V1 ∪ V2 such that V1 ∩ V2 = ∅. Let ∆i be a
locally complete intersection complex on Vi for i = 1, 2. Then a disjoint union
∆1 ∪ ∆2 is also a locally complete intersection complex on V .

Proof. Put V1 = [m] and V2 = [n]. If we write

K[∆1] = K[X1, . . . , Xm]/I∆1 and K[∆2] = K[Y1, . . . , Yn]/I∆2 ,

then

K[∆] ∼= K[X1, . . . , Xm, Y1, . . . , Yn]/(I∆1, I∆2, {XiYj}1≤i≤m, 1≤j≤n).

Hence
K[∆]Xi

∼= K[∆]Xi
and K[∆]Yj

∼= K[∆2]Yj
.

are complete intersection rings. Thus ∆ is also a locally complete intersection.
�



Remark 2.2. In the above lemma, we suppose that both ∆1 and ∆2 are general-
ized complete intersections. Then ∆1∪∆2 is a generalized complete intersection
if and only if dim ∆1 = dim ∆2.

Example 2.3. Let ∆ be the disjoint union of the standard (m − 1)-simplex
and the standard (n − 1)-simplex. Then ∆ is a locally complete intersection
complex by Lemma 2.1. Moreover, K[∆] is isomorphic to

K[X1, . . . , Xm, Y1, . . . , Yn]/(XiYj : 1 ≤ i ≤ m, 1 ≤ j ≤ n)

and it is a generalized complete intersection if and only if m = n.

By virtue of Lemma 2.1, it suffices to show the following theorem.

Theorem 2.4. Let ∆ be a simplicial complex on V = [n]. Assume that ∆ is
connected and dim ∆ ≥ 2. Then the following conditions are equivalent:

(1) K[∆] is a complete intersection.
(2) K[∆] is a locally complete intersection.
(2)’ K[∆] is a generalized complete intersection.

From now on, assume that ∆ is a locally complete intersection, connected
complex which is not a complete intersection. Suppose that dim ∆ ≥ 1. Note
that ∆ is pure since ∆ is connected and locally complete intersection and
hence ∆ satisfies Serre condition (S2). Let G(I∆) = {m1, . . . , mµ} denote the
minimal set of monomial generators of I∆. Then µ ≥ 2 and deg mi ≥ 2 for
every i = 1, 2, . . . , µ, and that there exists i, j (1 ≤ i < j ≤ n) such that
gcd(mi, mj) 	= 1.

In order to prove Theorem 2.4, it is enough to show that dim ∆ = 1. In
what follows, Xi, Yj , . . . denote corresponding variables to vertices xi, yj, . . ..

Lemma 2.5. We may assume that deg mi = deg mj = 2.

Proof. Take mj , mk (j 	= k) such that gcd(mj , mk) 	= 1. If deg mj =
deg mk = 2, then there is nothing to prove.

Now suppose that deg mk ≥ 3. By [GT, Lemmas 3.4, 3.5], we may assume
that deg mj = 2 and gcd(mj , mk) = Xp. Write mk = XpXi1 · · ·Xir and
mj = XpXq. Then [GT, Lemma 3.6] implies that Xi1Xq ∈ G(I∆). Set mi =
Xi1Xq ∈ I∆. Then deg mi = deg mj = 2 and gcd(mi, mj) = Xq 	= 1, as
required. �

The following lemma is simple but important.

Lemma 2.6. Let x1, x2, y be distinct vertices such that X1Y , X2Y ∈ I∆. For
any z ∈ V \ {x1, x2, y}, at lease one of monomials X1Z, X2Z and Y Z belongs
to I∆.

Proof. It immediately follows from the fact that K[link∆{z}] is a complete
intersection. �
Lemma 2.7. There exist some integers k, � ≥ 2 such that

(1) V = {x1, . . . , xk, y1, . . . , y�}.
(2) X1Y1, . . . , XkY1 ∈ I∆.



(3) �{i : 1 ≤ i ≤ k, XiYj /∈ I∆} ≤ 1 holds for each j = 2, . . . , �.

Proof. By Lemma 2.5, there exists vertices x1, x2, y1 ∈ V such that X1Y1,
X2Y1 ∈ I∆. Thus one can write V = {x1, . . . , xk, y1, . . . , y�} such that

X1Y1, X2Y1, . . . , XkY1 ∈ I∆,
Y1Y2, Y1Y3, . . . , Y1Y� /∈ I∆.

If � = 1, then ∆ = ∆{y1} ∪ ∆{x1,...,xk} is a disjoint union since {y1, xi} /∈ ∆ for
all i. This contradicts the connectedness of ∆. Hence � ≥ 2. Thus it is enough
to show (3) in this notation.

Now suppose that there exists an integer j with 2 ≤ j ≤ � such that

�{i : 1 ≤ i ≤ k, XiYj /∈ I∆} ≥ 2.

When k = 2, we have X1Yj, X2Yj /∈ I∆. On the other hand, as X1Y1, X2Y1 ∈
I∆ and Yj 	= X1, X2, Y1, we obtain that at least one of X1Yj, X2Yj, Y1Yj belongs
to I∆. It is impossible. So we may assume that k ≥ 3 and Xk−1Yj, XkYj /∈ I∆.
Then {xk−1}, {xk} and {y1} belong to link∆{yj}, and Xk−1Y1, XkY1 form part
of a minimal system of generators of Ilink∆{yj}. This contradicts the assumption
that K[link∆{yj}] is a complete intersection. �

In what follows, we fix the notation as in Lemma 2.7. First, we suppose
that there exists i0 with 1 ≤ i0 ≤ k such that

�{j : 1 ≤ j ≤ �, Xi0Yj /∈ I∆} = 1.

In this case, we may assume that X1Y2 /∈ I∆ and X1Yj ∈ I∆ for all 3 ≤ j ≤ �
without loss of generality. Note that X2Y2, . . . , XkY2 ∈ I∆ by Lemma 2.7. We
claim that {x1, y2} is a facet of ∆. As XiY2 ∈ I∆ for each i = 2, . . . , k, we have
that {x1, y2, xi} /∈ ∆. Similarly, {x1, y2, yj} /∈ ∆ since X1Yj ∈ I∆ for j = 1 or
3 ≤ j ≤ �. Hence {x1, y2} is a facet of ∆, and dim ∆ = 1 because ∆ is pure.

By the observation as above, we may assume that for every i with 1 ≤ i ≤ k,

�{j : 1 ≤ j ≤ �, XiYj /∈ I∆} ≥ 2

or XiYj ∈ I∆ holds for all j = 1, . . . , �.
Now suppose that there exists j1, j2 with 1 ≤ j1 < j2 ≤ � such that XiYj1,

XiYj2 /∈ I∆. Then XrYj1, XrYj2 ∈ I∆ for all r 	= i by Lemma 2.7. It follows
that XrXi ∈ I∆ from Lemma 2.6. Then we can relabel xi (say y�+1). Repeating
this procedure, we can get one of the following cases:

Case 1: V = {x1, . . . , xr, y1, . . . , ys} such that XiYj ∈ I∆ for all i, j with
1 ≤ i ≤ r, 1 ≤ j ≤ s.

Case 2: V = {x1, x2, y1, . . . , ym, z1, . . . , zp, w1, . . . , wq} such that



X1Yj ∈ I∆, X2Yj ∈ I∆ (j = 1, . . . , m)
X1Zj /∈ I∆, X2Zj ∈ I∆ (j = 1, . . . , p)
X1Wj ∈ I∆, X2Wj /∈ I∆ (j = 1, . . . , q)

holds for some m ≥ 1, p, q ≥ 2.



If Case 1 occurs, then ∆ = ∆{x1,...,xr} ∪ ∆{y1,...,ys} is a disjoint union. This
contradicts the assumption. Thus Case 2 must occur. If {x1, x2} ∈ ∆, then
it is a facet and so dim ∆ = 1. Hence we may assume that {x1, x2} /∈ ∆.
However, since ∆ is connected, there exists a path between x1 and x2.

Cases (2-a): the case where {z1, wk} ∈ ∆ for some k with 1 ≤ k ≤ q.

We may assume that {z1, w1} ∈ ∆. Now suppose that dim ∆ ≥ 2. Then
since {z1, w1} is not a facet, there exists u ∈ V \{x1, x2} such that {z1, w1, u} ∈
∆. If u = zj (2 ≤ j ≤ p) (resp. u = yi (1 ≤ i ≤ m)), then G(Ilink∆{w1}) contains
X2Z1 and X2Zj (resp. X2Yi); see figure below. It is impossible since link∆{w1}
is a complete intersection. When u = wk, we can obtain a contradiction by a
similar argument as above. Therefore dim ∆ = 1.
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Figure: the case {z1, zj, w1} ∈ ∆ in Case (2-a)

Cases (2-b): the case where {zj , wk} /∈ ∆ for all j, k.

Then we may assume that (i) {z1, y1} ∈ ∆ and (ii) {y1, y2} ∈ ∆ or {y1, w1} ∈
∆. Now suppose that dim ∆ ≥ 2. Then since {z1, y1} is not a facet, we have

{z1, y1, yi} ∈ ∆, {z1, y1, wk} ∈ ∆ or {z1, y1, zj} ∈ ∆.

When {z1, y1, yi} ∈ ∆, we obtain that {X1Y1, X1Yi} ∈ G(Ilink∆{z1}). This is
a contradiction. When {z1, y1, wk} ∈ ∆, we can obtain a contradiction by
a similar argument as in Case (2-a). Thus it is enough to consider the case
{z1, y1, zj} ∈ ∆.

First we suppose that {y1, y2} ∈ ∆.
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Figure: the case {z1, y1, zj}, {y1, y2} ∈ ∆ in Case (2-b)

Then link∆{y1} contains an egde {z1, zj} and {y2}. Since link∆{y1} is also
connected, we can find vertices zα, yβ such that {zα, yβ} ∈ link∆{y1}. In
particular, {zα, yβ, y1} ∈ ∆. This yields a contradiction because X1Y1, X1Yβ is
contained in G(Ilink∆{zα}).

Next suppose that {y1, w1} ∈ ∆.
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Figure: the case {z1, y1, zj}, {y1, w1} ∈ ∆ in Case (2-b)

Then link∆{y1} contains an egde {z1, zj} and {w1}. Since link∆{y1} is also
connected, we can also find vertices zα, yβ such that {zα, yβ} ∈ link∆{y1}
(notice that {zj, wk} /∈ ∆). Hence we have dim ∆ = 1. We complete the proof
of Theorem 2.4.

Let ∆ be a simplicial complex with dim ∆ ≥ 2. The Stanley–Reisner ring
K[∆] satisfies the Serre condition (S2), that is, depth K[∆]P ≥ min{2, heightP},
if and only if ∆ is pure and link∆(F ) is connected for every face F with
dim link∆(F ) ≥ 1.

Corollary 2.8. Let ∆ be a simplicial complex with dim ∆ ≥ 2. Assume that
K[∆] satisfies (S2). Then the following conditions are equivalent:

(1) K[∆] is a complete intersection.
(2) For any face F with dim link∆ F = 1, link∆ F is a complete intersec-

tion.
(3) There exists W ⊆ V such that dim ∆V \W ≤ dim ∆ − 3 which satisfies

the following condition:

“ link∆{x} is a complete intersection for all x ∈ W .”

Proof. Note that ∆ is pure. Put d = dim ∆ + 1.

(1) =⇒ (3) : It is enough to put W = V .

(3) =⇒ (2) : Let W be a subset of V satisfying the condition (3). Let F be
a face with dim link∆(F ) = 1. Since ∆ is pure, �(F ) = d− 1− dim link∆(F ) =
d − 2. As dim ∆V \W ≤ d − 4, F is not contained in V \ W . Thus there exists
i ∈ F such that i ∈ W . Then since link∆{i} is a complete intersection by the
assumption, link∆(F ) is also a complete intersection, as required.

(2) =⇒ (1) : We use an induction on d ≥ 3. First suppose that d = 3. Then
for each i ∈ V , we have that dim link∆{i} = 1. Hence link∆{i} is a complete
intersection by the assumption (3). Hence by Theorem 2.4, K[∆] is a complete
intersection.

Next suppose that d ≥ 4. Let i ∈ V . Since K[∆] satisfies (S2), we have that
Γ = link∆{i} is connected and dim Γ = (d− 1)− 1 = d− 2 ≥ 2. Moreover, for
any face G in Γ with dim linkΓ(G) = 1, linkΓ(G) = link∆(G∪{i}) is a complete
intersection by assumption. Hence, by the induction hypothesis, K[link∆{i}] is
a complete intersection. Therefore K[∆] is a complete intersection by Theorem
2.4 again. �

Combining Theorem 2.4 with Cowsik–Nori’s theorem and Goto–Takayama’s
theorem, we get:



Corollary 2.9. Let ∆ be a simplicial complex with dim ∆ ≥ 2. Assume that
∆ is pure and connected. Then the following conditions are equivalent:

(1) S/I�
∆ is Cohen–Macaulay for every � ≥ 1.

(2) S/I�
∆ is Buchsbaum for every � ≥ 1.

(3) S/I�
∆ has (FLC) for every � ≥ 1.

If S/I�
∆ is (FLC) (resp. Cohen–Macaulay) for some positive integer �, then

S/I∆ is Buchsbaum (resp. Cohen–Macaulay). In particular, ∆ is pure. See
[HTT, Theorem 2.6].

If ∆ is not connected, then (2) and (3) are not necessarily equivalent. See
below.

Example 2.10. Let n ≥ 2 be a positive integer. Let

I = I∆ = (x1, . . . , xn)(y1 . . . , yn) ⊆ S = K[x1, . . . , xn, y1, . . . , yn].

Then ∆ is the disjoint union of the standard (n−1)-simplices. Moreover, S/I�

has (FLC) for every � ≥ 1 by Theorem 1.2. And one can see that S/I� is not
Buchsbaum for every � ≥ 2.

3. The case dim ∆ = 1

Proposition 3.1. Let ∆ be a connected simplicial complex of dim ∆ = 1.
Then the following conditions are equivalent:

(1) K[∆] is a locally complete intersection.
(2) K[∆] is a locally Gorenstein.
(3) ∆ is either one of the following complexes:

(a) n-gon for some n ≥ 3;
(b) n-pointed path for some n ≥ 2.

Proof. Suppose that dim link∆{i} = 0. Then link∆{i} consists of finite points.
Hence if it is Gorenstein, then it is either one point or two points. Such a link
is also a complete intersection. �

In the case dim ∆ = 1, (1) and (3) in Corollary 2.9 is not equivalent in
general. But we get the following result.

Proposition 3.2. Let ∆ be a simplicial complex with dim ∆ = 1. Assume
that ∆ is pure and connected. Then the following conditions are equivalent:

(1) S/I�
∆ is Cohen–Macaulay for every � ≥ 1.

(2) S/I�
∆ is Buchsbaum for every � ≥ 1.
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