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Introduction : g-deformation

- Deform algebras by adding parameters [prinfeld 1987]
- In the limit g — 1, the original algebra is recovered
- Hopf algebra structure & a larger symmetry.

g-Virasoro has paremeters g, t, p [shiraishi et al. 1995]

T@) =) Tz ",
e
oy Tl = = f;n(TnJmH it = SEDEED 1y
- There are two invariances
Tn—=T_n, (q,1) = (@71t
- In the limit g = e",h — 0, T(z) becomes
(1

T(z):2+/5(z2L() 45) >h2+(9(h4)
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Introduction : Affine Yangian & g-deformation

- Affine Yangian of gl; [Tsymbaliuk 2014]
- Its g-deformation is quantum toroidal gl [ping-lohara
1997]
- Three representations [reigin et al. 2012]
- Vector representation (1d Young diagrams)
- Fock representation (2d Young diagrams)
- MacMahon representation (3d Young diagrams)
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Introduction : Generalization of quantum toroidal gl;

- Affine Yangian of gl; C Quiver Yangian [Li-vamazaki 2020]
- Quantum Toroidal gl; € QQTA [Noshita-Aw 2108.07104]

- Representations

- 1d Young diagrams —
1d crystals
- 2d Young diagrams —
2d crystals
[Nishinaka-Yamaguchi-Yoshida 2013]
- 3d Young diagrams —
3d crystals [Ooguri-Yamazaki 2008]

- We found the relations between
1d & 2d representations

[Noshita-AW 2109.02045]

[Ooguri-Yamazaki 2008]
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Introduction : g-deformation of corner VOA

X4, T5, T6 NS5 .
T3 [Gaiotto-Rapcak
-2 2017]
N D3 W aleeb corner VOA
> . e -
Virasoro algebra v algebra T
q—deformationl l
LD3 i
M D3 D5 q-Virasoro algebra © q-Wy algebra c |
[Shiraishi et al. [Awata et al. X i
[8)) 1995] 1995] We constructed it!!
[Gaiotto-Rapcak 2017] [2101.03953]
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Today’s talk

1. Introduction < Finished

2. (g-) affine Yangian of gl; & Young diagrams
representations
- Affine Yangian of gl;
- g-deformation
- Representations

3. (g-) quiver Yangian & crystal representations

- Quiver diagrams and quiver Yangian

- g-deformation

- Representations by crystals

- Construction of 2d crystal reps from 1d



(g-) affine Yangian of gl, & Young
diagrams representations



Affine Yangian of g,

- Generators are [Tsymbaliuk 2014]

- Their relations depend on h; symmetrically

hi +ha +hs =0, e(u)e(v)~ @(u—v)e(v)e(u)
(U h)(u+h2)(u+ hs)
PO = =T =)

- Affine Yangian of gl; ~ Wq
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quantum toroidal g,

- g-deformation of affine
Yangian of gl;
- Generators are
E2) = Ez ",

kReZ

F2) =Y Rz,

kReZ

o0
KE(z) = Kl exp (:I: Z Hirzj'[)

r=1

- Their relations depend on g, g2, g3 symmetrically

19293 =1, E2)E(w) ~ @(z, w)E(W)E(Z)
3 1/2 —1/2W)

(G'"z—q
vew) =] ="+
=1 (a7 %2— g%
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Properties of quantum toroidal gl

- In the limit g — 1, it becomes affine Yangian of gl,

- The modes are k > 0 in the degenerate case, while
k € Z in g-deformed case

- Hopf algebra structure(unit, counit, product,
coproduct, antipode)

- Coproduct is important here

AE(Z) =E(2) ® 1+ K (C12) ® E(C12) O O o © o0 O

AF(2) = F(C22) ® KT (C22) + 1 ® F(2) O 0 o 8 o)o

AKT(2) = KT (2) @ KH(C]12) o o0 o o oo
AK=(2) =K (c;*2) @ K (2) 5 oo # D

o o0 o © 0 O

- Triality : exchange of g1, g2, g3 o0 o ® 0 O

- Miki duality : SL(2,7Z) oo elp/e oo



Representations of quantum toroidal gl,

- There are 3 vertical representations

- Vector representation : 1d Young diagrams
- Fock representation : 2d Young diagrams
- MacMahon representation : 3d Young diagrams

- Vector representation
K@) = [ )],

€Dl = 8@ v/, L el -] [
F@)ulj1 = Fo(a; ™ u/2)u)

E(z) adds a box ,and F(z) removes a box.

[E(2), F(w)] = 8(w/2)K* (2) — 6(z/w)K™ (w)

[Ub, h uai
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Tensor product of two vector representations

- Tensor product of two vector reps becomes Fock rep
by a two-row Young diagram.

- Generators are defined by
coproduct as

AE(Z) =E(Z) @1+ K (2) ® E(2),
AF(2) = Fz) ® K*(2) + 1 ® F(2),
AKE(2) = kK (2) @ KE(2) .

= [qzu] k

- E(z) adds a box, and F(2) T ] ‘:[ff]]
removes a box. If the i
condition of Young diagram
breaks, the coefficient
becomes zero.
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Fock representation

- Furthermore, tensor product of infinite vector reps
becomes Fock rep by a general Young diagram.

oo

A = Qa5 Huly

j=1

- Generators are defined by N — 1 coproducts.

- AN=DE(7) adds a box, and AN=YF(z) removes a box.

- If the condition of Young diagram breaks, the
coefficient becomes zero.

E(2) F(2)
= D =
K*(2)

A+1 A-1
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MacMahon representation

- Tensor product of vector rep (1d) — Fock rep (2d)
- Similarly,

tensor product of Fock rep (2d) — MacMahon rep (3d)
AP ) AD : Young diagram

- A is called Plane Partition, satisfying
A>Ay>Ag >

e )

A ) F AD
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MacMahon representation

- Similarly to the 1d or 2d case, K*(z) acts as
eigenvalue, E(z) adds a box to the Plane Partition,
and F(z) removes a box.

- If the condition of Plane Partition breaks, the
coefficient becomes zero.

(a) Ya (b) CC(Ya) (c) CV(Y)
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(g-) quiver Yangian & crystal
representations



- Quiver Yangian is defined by a quiver data and
generalizes affine Yangian of gl [Li-vamazaki 2020]

- Quiver data = Quiver diagram (Qq, Q;) + Loops Qs.
- (b) corresponds to the affine Yangian of ol

Q ={1,2,3}, 1 ={1—-1,1—-2,1—-3,2—1,2—-3, 31, 32},

Q@={1-1-3-11—-2—-3—-2—-1,1-1—-2—-1,1—-3—-2—3—1}

hiy

ILll

h“
21 h(1) h(z) h(2 lh 1)
;,g? <5> h12 hn ,,5211

Ao

( ) One vertex case Tisa (c) The case with [i — j| #
3 li—i
(b) Three vertices and one
self-loop case

16 /33



From toric diagram to quiver diagram

- We focus on symmetric quivers constructed from
toric diagram without compact 4-cycles.

- Draw the red arrows perpendicular to the toric
diagram on the torus.(brane configuration)

- White region < vertex, their connection < arrows

- Loops on brane configuration <+ Q,

M

(a) Toric dlag xxxxx

NN N
SN A N KN

—— [l —[1]—> m
\ \E/ \Z/ /,
AN NN / %

PR Bkl
(c) Periodic quiver diagram

(d) Quiver diagram
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Definition of quiver Yangian

- We define a set of generators e f 1/1 for each vertex a.
% (@) £

e(a)(z> - Z Zenr:rl’ Z Z”-i-l7 Z Zn+1

n=0 n=-—oo
- Bond facters are defined by Q;.
H/e{b%a}(u + h’)
a=b —
= Moy @ =)
e@(2)e® (w) ~ (=1)1UPlpP=2 (7 — w)e® (W)e(@ (2)

2

h1y
}723 .
13 ,<|> hﬁ‘ h<2) hm)
I @ (3) hu h:}l P
T
a) One vertex case (¢) The case with |i — j| #

lsz
(b) Three vertices and one
self-loop case

li =il
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Quiver Quantum Toroidal Algebra (QQTA)

- We proposed the g-deformation of quiver Yangian
called QQTA [Noshita-Aw 2108.07104]

- Similar to the quiver Yangian, we use quiver data
(Qo, Q1, Qg) to define QQTA.

- Parameters are replaced into h; — g, = e

- We define a set of generators E, F, K* for each vertex
I.

oo
E@) =Y Ewz F@=> Fp " K@) =K exp (i > H,v,irzW) .

REZ REZ r=1
- Bond factors are defined by Q;
Miegon @2 = a7 *w)
Mie gy (@ /%2 = a;%w)

¢ (z,w) =
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- In the limit e — 0, it reduces to quiver Yangian.

1/2 —1/2
Hle{J—w}(ql/ z—q; %) iegsnx—y+h)

H/E{/*}j} (q = Z— 01/2W) HIE{/’%}} (X —-y- h/)’

- Hopf superalgebra structure, especially coproduct

AEj(z) = Ei(2) ® 1 + K (G12) ® Ei(G12),
AFi(2) = ( Goz) @ KF (Coz) + 1 ® Fi(2),
AKF(2) = KF(2) ® KH(CT2),
AK=(2) = K- (G '2) ® K- (2)

I

- Coproduct is important in the relation of different
representations.
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3d crystal

- 3d crystals are defined by the quiver data
[Ooguri-Yamazaki 2008]

@={1-1-3-11-2—-3—-2—-1,1-1—-2—-1,1-3—+2—-3—1}

- vertex in quiver diagram — atom of the crystal
arrow between vertices — bond between atoms

- Q, identifies some path on crystal.

hll

ﬂ \\ —
h12 hat —
hos

}LJ o
(b) Three vertices and one
sclf-loop case

[Ooguri-Yamazaki2008]
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3d crystal

- quantum toroidal gl, acts to Plane Partitions.
- QQTA acts to general 3d crystals.
- Such crystals are defined by the quiver data

[Ooguri-Yamazaki 2008] o )
- First, we obtain periodic quiver from (Qo, Q1, Q).

®={1-1-3-11-52-3-2-11-1-2-11-3—-2—->3—1}

hi1

NSNS NS

/n\ /!\ /!\

/ {\ +Q2 r@ 'm >

— s x X ¥ X ¥

hhfl /Ei /E\ /!\
l\/ 3]
h3o ¥ XN ¥ X

(b) Three vertices and one
self-loop case
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3d crystal

- a path in periodic quiver ~ an atom on 3d crystal

- However, it is not always one-to-one
correspondence. Several paths may be identified to
an atom (F-term relation)

- The depth of atom from the surface is the number of
loops in the periodic quiver.

NSNS NS
N N N NN N origin i e N
v \ SN N AN N (D surface T
> — 1 f—yg —> 3 l N ~ %

\3 . j‘h,/ _\./ @ ﬁz
f5] N N

AT / N @ / L

(a) Depth of some atoms
FaANZRN / AN / AN ith three I
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3d crystal

- By the identification of path and atom, we obtain 3d
crystal.

@
QOL\O
JJ
(2)
Q)Q

D

[Ooguri-Yamazaki 2008]
- This is different from the Plane Partition of affine
Yangian of gl;.
- If we start with the quiver diagram of gl;, we obtain

the Plane Partition.
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The action of QQTA to 3d crystal

- quantum toroidal gl; acts to Plane Partitions.

- QQTA acts to general 3d crystals.

Ei(z) adds an atom of vertex i, and F;(z) removes an
atom of vertex I.

KE(2) |A) = [Tz, u)]« |A),

E@IA = S EDA = Aa+[i) ( >A+
eAdd(A) u

F@ A= > F9A-A- i) ( )ll\
eRem(A)
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Reduction to subcrystals

- Quantum toroidal gl, has not only Plane Partition
rep, but also vector rep and Young diagram rep.

- QQTA also has representations by subcrystals.

- The surface of 3d crystal is 2d crystal, and the edge
of 2d crystal is 1d crystal.

o /O Ol Ol o o o o o o
. '3 .

o el NN N\ NN
AN AN NNV N
. .< L] L] . . L] . L] .

o o o [e] o o o o o o
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Reduction to 2d crystals

- A quiver diagrams of 3d crystal is constructed from a

toric diagram.  » Ok
[SEEPI IS ;,/'.‘i\m
A Sy o/oo

b2 l (‘1113

- A quiver diagrams of 2d crystal is constructed from a
toric diagram with a corner divisor
[Nishinaka-Yamaguchi-Yoshida2013].

- Different corner divisor creates different 2d crystals.
Left figure is the case pl, and right is p2.

A

2
e
as 7 @ SN\
) o q
1 i
q P
P [ Py ]
\_/{ 1 ~
3

"1
(A
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Reduction to 1d crystals

- Furthermore, removing all arrows of two neighboring
corner divisors gives 1d crystal.

- The below figure is the case [;, and arrows
correponding to p; and p4 are removed.

ElRg Kb lbEIS

Pa 0
U5 ~— /
Ps P1

Uy <— — s

P2 l hp3

- 1d crystals and 2d crystals are called subcrystals.
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- Subcrystals are the representations of "shifted”
QQTA.

- QQTA has 4 types generators E, F, KT, K~, and we
slightly "shift” K+ as K (z) — z'iK" (2).

- (r,--+,rq) Is parameters determined by the shape

of crystal. Of course, different subcrystals give
different r;.

- This shift is essential to keep generated states on
surface.
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2d crystal from 1d crystal

- Quantum toroidal gl, has vector rep (1d) and Fock
rep (2d). [Feigin et al. 2011]
- Fock rep is constructed from the tensor product of
vector rep.
- The action of quantum toroidal algebra to Fock rep is
the coproduct of that of vector rep.
- Also in the QQTA, the representations of 2d crystals
are constructed from that of 1d crystals. [Noshita-aw

2109.02045]

- For example 2d crystal correponding to p; is
constructed from the tensor product of 1d crystal [;.
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2d crystal from 1d crystal

- 1d crystals stacked vertically become a 2d crystal.

TS Bl Flb | ETRE
L
s -".&w I
LAY .
v ol ‘. 0
““—"-}:‘
1d crystal [;

2d crystal py

- Vacuum state of 2d crystal is defined by the tensor
product of vacuum of 1d crystals [u]_;.

10) = ®21[(q193) ~'u] -1

- The generators acting to 2d crystal is defined by the
coproduct of these to 1d crystal. Ej(z) adds an atom,

and Fj(z) removes an atom.
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2d crystal from another 1d crystal

- In the previous slide, we construct 2d crystal from 1d
crystal along with (5.

- We can construct the same 2d crystal from 1d crystal
along with [,

- This is the difference of slicing direction.

: Ila\tr

1 iy {
pull bl ]
q3 13
/‘ “ _ L%
1d crystal [, 2d crystal py

32/33



quantum toroidal gl;

vector rep (1d) = Fock rep (2d) = MacMahon rep (3d)

l

(shifted) QQT A Noshita-Aw 2108.07104]

1d crystal rep — 2d crystal rep 3d crystal rep

tensor product
[Noshita-AW 2109.02045]
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Construction of 2d quiver

- 2d quiver is obtained from 3d quiver by remobing
some arrows.

- Physically, it consists of D0-D2-D4 brane system.
+» 3d quiver comes from D0-D2-D6 brane system.

- We need to determine the boundary in the brane
configuration by finding a perfect matching in dimer
model.

(a) Brane configuration (b) Dimer model (c) Perfect matching



Related works

- Feigin-Jimbo-Miwa-Mukhin 1204.5378
"Representations of Quantum Toroidal gl,”

- Galakhov-Li-Yamazaki 210810286
"Toroidal and Elliptic Quiver BPS Algebras and
Beyond”



Parameters of quiver Yangian

- Parameter h, exsits for each arrow [ € Q.

- Not all of these are independent, and the degree of
freedom is 2 due to two kinds of constraints.
- Vertex constraints

th
> signg(hh; =0

1€Qy (a)

- Loop constraints ﬂll X\

Zh,:o

leL has

(b) Three vertices and one
self-loop case

L is an arbitrary loop in Q,

Q@={1-1-53-11-2—-3—-2-11-1-2—-1,1-3—-2—-3—1}



