Quiver Quantum Toroidal Algebra \& Crystal Representations

Akimi Watanabe 2021/12/10 @Nagoya
based on 2108.07104 \& 2109.02045 (with Noshita)
See also 2101.03953 (with Harada, Matsuo, Noshita)

Introduction : q-deformation

- Deform algebras by adding parameters [Drinfeld 1987]
- In the limit $q \rightarrow 1$, the original algebra is recovered
- Hopf algebra structure \& a larger symmetry. q-Virasoro has paremeters q, t, p [shiraishi et al. 1995]

$$
\begin{aligned}
& T(z)=\sum_{n \in \mathbb{Z}} T_{n} z^{-n}, \\
& {\left[T_{n}, T_{m}\right]=-\sum_{l=1}^{\infty} f_{l}\left(T_{n-l} T_{m+l}-T_{m-l} T_{n+l}\right)-\frac{(1-q)\left(1-t^{-1}\right)}{1-p}\left(p^{n}-p^{-n}\right) \delta_{m+n, 0}}
\end{aligned}
$$

- There are two invariances

$$
T_{n} \rightarrow T_{-n}, \quad(q, t) \rightarrow\left(q^{-1}, t^{-1}\right)
$$

- In the limit $q=e^{h}, h \rightarrow 0, T(z)$ becomes

$$
T(z)=2+\beta\left(z^{2} L(z)+\frac{(1-\beta)^{2}}{4 \beta}\right) h^{2}+\mathcal{O}\left(h^{4}\right)
$$

Introduction : Affine Yangian \& q-deformation

- Affine Yangian of $\mathfrak{g l}_{1}$ [Tsymbaliuk 2014]
- Its q-deformation is quantum toroidal $\mathfrak{g l}_{1}$ [Ding-lohara 1997]
- Three representations [Feigin et al. 2012]
- Vector representation (1d Young diagrams)
- Fock representation (2d Young diagrams)
- MacMahon representation (3d Young diagrams)

Introduction : Generalization of quantum toroidal $\mathfrak{g l}_{1}$

- Affine Yangian of $\mathfrak{g l}_{1} \subset$ Quiver Yangian [li-Yamazaki 2020]
- Quantum Toroidal $\mathfrak{g l}_{1} \subset$ QQTA [Noshita-AW 2108.07104]
- Representations
- 1d Young diagrams \rightarrow 1d crystals
- 2d Young diagrams \rightarrow 2d crystals
[Nishinaka-Yamaguchi-Yoshida 2013]
- 3d Young diagrams \rightarrow 3d crystals [Ooguri-Yamazaki 2008]
- We found the relations between 1d \& 2d representations

[Ooguri-Yamazaki 2008]
[Noshita-AW 2109.02045]

Introduction : q-deformation of corner VOA

Today's talk

1. Introduction \leftarrow Finished
2. (q-) affine Yangian of $\mathfrak{g l}_{1}$ \& Young diagrams representations

- Affine Yangian of $\mathfrak{g l}_{1}$
- q-deformation
- Representations

3. (q-) quiver Yangian \& crystal representations

- Quiver diagrams and quiver Yangian
- q-deformation
- Representations by crystals
- Construction of 2d crystal reps from 1d
(q-) affine Yangian of $\mathfrak{g l}_{1}$ \& Young diagrams representations

Affine Yangian of $\mathfrak{g l} l_{1}$

- Generators are [Tsymbaliuk 2014]

$$
\begin{aligned}
& e(u)=\sum_{j=0}^{\infty} \frac{e_{j}}{u^{j+1}}, \\
& f(u)=\sum_{j=0}^{\infty} \frac{f_{j}}{u^{j+1}}, \\
& \psi(u)=1+\sigma \sum_{j=0}^{\infty} \frac{\psi_{j}}{u^{j+1}}
\end{aligned}
$$

- Their relations depend on h_{i} symmetrically

$$
\begin{aligned}
& h_{1}+h_{2}+h_{3}=0, \quad e(u) e(v) \sim \varphi(u-v) e(v) e(u) \\
& \varphi(u)=\frac{\left(u+h_{1}\right)\left(u+h_{2}\right)\left(u+h_{3}\right)}{\left(u-h_{1}\right)\left(u-h_{2}\right)\left(u-h_{3}\right)}
\end{aligned}
$$

- Affine Yangian of $\mathfrak{g l}_{1} \simeq W_{1+\infty}$

quantum toroidal $\mathfrak{g l}_{1}$

- q-deformation of affine

Yangian of $\mathfrak{g l}_{1}$

- Generators are

$$
\begin{aligned}
E(z) & =\sum_{k \in \mathbb{Z}} E_{k} z^{-k} \\
F(z) & =\sum_{k \in \mathbb{Z}} F_{k} z^{-k} \\
K^{ \pm}(z) & =K^{ \pm 1} \exp \left(\pm \sum_{r=1}^{\infty} H_{ \pm r} Z^{\mp}\right)
\end{aligned}
$$

- Their relations depend on q_{1}, q_{2}, q_{3} symmetrically

$$
\begin{aligned}
& q_{1} q_{2} q_{3}=1, \quad E(z) E(w) \sim \varphi(z, w) E(w) E(z) \\
& \varphi(z, w)=\prod_{i=1}^{3} \frac{\left(q_{i}^{1 / 2} z-q_{i}^{-1 / 2} w\right)}{\left(q_{1}^{-1 / 2} z-q_{i}^{1 / 2}\right)}
\end{aligned}
$$

Properties of quantum toroidal $\mathfrak{g l}_{1}$

- In the limit $q \rightarrow 1$, it becomes affine Yangian of $\mathfrak{g l}_{1}$
- The modes are $k>0$ in the degenerate case, while $k \in \mathbb{Z}$ in q-deformed case
- Hopf algebra structure(unit, counit, product, coproduct, antipode)
- Coproduct is important here

$$
\begin{aligned}
\Delta E(z) & =E(z) \otimes 1+K^{-}\left(C_{1} z\right) \otimes E\left(C_{1} z\right) \\
\Delta F(z) & =F\left(C_{2} z\right) \otimes K^{+}\left(C_{2} z\right)+1 \otimes F(z) \\
\Delta K^{+}(z) & =K^{+}(z) \otimes K^{+}\left(C_{1}^{-1} z\right) \\
\Delta K^{-}(z) & =K^{-}\left(C_{2}^{-1} z\right) \otimes K^{-}(z)
\end{aligned}
$$

- Triality: exchange of q_{1}, q_{2}, q_{3}
- Miki duality : SL(2, $\mathbb{Z})$

Representations of quantum toroidal $\mathfrak{g l}_{1}$

- There are 3 vertical representations
- Vector representation : 1d Young diagrams
- Fock representation : 2d Young diagrams
- MacMahon representation: 3d Young diagrams
- Vector representation

$$
\begin{aligned}
K^{ \pm}(z)[u]_{j} & =\left[\Psi_{[u]_{j}}(z)\right]_{ \pm}[u]_{j}, \\
E(z)[u]_{j} & =\mathcal{E} \delta\left(q_{1}^{j+1} u / z\right)[u]_{j+1}, \\
F(z)[u]_{j+1} & =\mathcal{F} \delta\left(q_{1}^{j+1} u / z\right)[u]_{j}
\end{aligned}
$$

- $E(z)$ adds a box, and $F(z)$ removes a box.

$$
[E(z), F(w)]=\delta(w / z) K^{+}(z)-\delta(z / w) K^{-}(w)
$$

Tensor product of two vector representations

- Tensor product of two vector reps becomes Fock rep by a two-row Young diagram.
- Generators are defined by coproduct as

$$
\begin{aligned}
& \Delta E(z)=E(z) \otimes 1+K^{-}(z) \otimes E(z), \\
& \Delta F(z)=F(z) \otimes K^{+}(z)+1 \otimes F(z), \\
& \Delta K^{ \pm}(z)=K^{ \pm}(z) \otimes K^{ \pm}(z)
\end{aligned}
$$

- $E(z)$ adds a box, and $F(z)$ removes a box. If the
 condition of Young diagram breaks, the coefficient becomes zero.

Fock representation

- Furthermore, tensor product of infinite vector reps becomes Fock rep by a general Young diagram.

$$
|\lambda\rangle=\bigotimes_{j=1}^{\infty}\left[q_{2}^{j-1} u\right]_{\lambda_{j}-1}
$$

- Generators are defined by $N-1$ coproducts.
- $\Delta^{(N-1)} E(z)$ adds a box, and $\Delta^{(N-1)} F(z)$ removes a box.
- If the condition of Young diagram breaks, the coefficient becomes zero.

MacMahon representation

- Tensor product of vector rep (1d) \rightarrow Fock rep (2d)
- Similarly, tensor product of Fock rep (2d) \rightarrow MacMahon rep (3d)

$$
\Lambda=\left(\Lambda^{(1)}, \Lambda^{(2)}, \Lambda^{(3)}, \cdots\right) \quad \Lambda^{(i)}: \text { Young diagram }
$$

- Λ is called Plane Partition, satisfying $\Lambda_{1} \geq \Lambda_{2} \geq \Lambda_{3} \geq \cdots$

MacMahon representation

- Similarly to the $1 d$ or $2 d$ case, $K^{ \pm}(z)$ acts as eigenvalue, $E(z)$ adds a box to the Plane Partition, and $F(z)$ removes a box.
- If the condition of Plane Partition breaks, the coefficient becomes zero.

(a) Y_{Λ}

(b) $C C\left(Y_{\Lambda}\right)$

(c) $C V\left(Y_{\Lambda}\right)$
(q-) quiver Yangian \& crystal representations

Quiver data

- Quiver Yangian is defined by a quiver data and generalizes affine Yangian of $\mathfrak{g l}_{1}$ [Li--ramazaki 2020]
- Quiver data = Quiver diagram $\left(Q_{0}, Q_{1}\right)+$ Loops Q_{2}.
- (b) corresponds to the affine Yangian of $\mathfrak{g l}_{2 \mid 1}$

$$
\begin{aligned}
& Q_{0}=\{1,2,3\}, Q_{1}=\{1 \rightarrow 1,1 \rightarrow 2,1 \rightarrow 3,2 \rightarrow 1,2 \rightarrow 3,3 \rightarrow 1,3 \rightarrow 2\} \\
& Q_{2}=\{1 \rightarrow 1 \rightarrow 3 \rightarrow 1,1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1,1 \rightarrow 1 \rightarrow 2 \rightarrow 1,1 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1\}
\end{aligned}
$$

From toric diagram to quiver diagram

- We focus on symmetric quivers constructed from toric diagram without compact 4-cycles.
- Draw the red arrows perpendicular to the toric diagram on the torus.(brane configuration)
- White region \leftrightarrow vertex, their connection \leftrightarrow arrows
- Loops on brane configuration $\leftrightarrow Q_{2}$

(a) Toric diagram

(b) Brane configuration

(d) Quiver diagram

Definition of quiver Yangian

- We define a set of generators e,f, ψ for each vertex a.

$$
e^{(a)}(z)=\sum_{n=0}^{\infty} \frac{e_{n}^{(a)}}{z^{n+1}}, \quad \psi^{(a)}(z)=\sum_{n=-\infty}^{\infty} \frac{\psi_{n}^{(a)}}{z^{n+1}}, \quad f^{(a)}(z)=\sum_{n=0}^{\infty} \frac{f_{n}^{(a)}}{z^{n+1}},
$$

- Bond facters are defined by Q_{1}.

$$
\begin{aligned}
& \varphi^{a \Rightarrow b}(u) \equiv \frac{\prod_{\mid \in\{b \rightarrow a\}}\left(u+h_{l}\right)}{\prod_{\mid \in\{a \rightarrow b\}}\left(u-h_{1}\right)} \\
& e^{(a)}(z) e^{(b)}(w) \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(z-w) e^{(b)}(w) e^{(a)}(z)
\end{aligned}
$$

Quiver Quantum Toroidal Algebra (QQTA)

- We proposed the q-deformation of quiver Yangian called QQTA [Noshita-Aw 2108.07104]
- Similar to the quiver Yangian, we use quiver data $\left(Q_{0}, Q_{1}, Q_{2}\right)$ to define QQTA.
- Parameters are replaced into $h_{1} \rightarrow q_{l}=e^{\epsilon h_{1}}$
- We define a set of generators $E, F, K^{ \pm}$for each vertex i.

$$
E_{i}(z)=\sum_{k \in \mathbb{Z}} E_{i, k^{2}} z^{-k}, \quad F_{i}(z)=\sum_{k \in \mathbb{Z}} F_{i, k^{2}} z^{-k}, \quad K_{i}^{ \pm}(z)=K_{i}^{ \pm 1} \exp \left(\pm \sum_{r=1}^{\infty} H_{i, \pm r^{\mp r}}\right) .
$$

- Bond factors are defined by Q_{1}

$$
\varphi^{i \Rightarrow j}(z, w)=\frac{\prod_{l \in\{j \rightarrow i\}}\left(q_{l}^{1 / 2} z-q_{l}^{-1 / 2} w\right)}{\prod_{l \in\{i \rightarrow j\}}\left(q_{l}^{-1 / 2} z-q_{l}^{1 / 2} w\right)}
$$

Properties

- In the limit $\epsilon \rightarrow 0$, it reduces to quiver Yangian.

$$
\frac{\prod_{\in\{j \rightarrow i\}}\left(q_{1}^{1 / 2} z-q_{1}^{-1 / 2} w\right)}{\prod_{\in\{i \rightarrow i j\}}\left(q_{1}^{-1 / 2} z-q_{1}^{1 / 2} w\right)} \rightarrow \frac{\prod_{\in\{j ; i\}}\left(x-y+h_{1}\right)}{\prod_{\in \in\{i \rightarrow j\}}}\left(x-y-h_{1}\right),
$$

- Hopf superalgebra structure, especially coproduct

$$
\begin{aligned}
& \Delta E_{i}(z)=E_{i}(z) \otimes 1+K_{i}^{-}\left(C_{1} z\right) \otimes E_{i}\left(C_{1} z\right), \\
& \Delta F_{i}(z)=F_{i}\left(C_{2} z\right) \otimes K_{i}^{+}\left(C_{2} z\right)+1 \otimes F_{i}(z), \\
& \Delta K_{i}^{+}(z)=K_{i}^{+}(z) \otimes K_{i}^{+}\left(C_{1}^{-1} z\right), \\
& \Delta K_{i}^{-}(z)=K_{i}^{-}\left(C_{2}^{-1} z\right) \otimes K_{i}^{-}(z)
\end{aligned}
$$

- Coproduct is important in the relation of different representations.

3d crystal

- 3d crystals are defined by the quiver data [Ooguri-Yamazaki 2008]

$$
Q_{2}=\{1 \rightarrow 1 \rightarrow 3 \rightarrow 1,1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1,1 \rightarrow 1 \rightarrow 2 \rightarrow 1,1 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1\}
$$

- vertex in quiver diagram \rightarrow atom of the crystal arrow between vertices \rightarrow bond between atoms
- Q_{2} identifies some path on crystal.

3d crystal

- quantum toroidal $\mathfrak{g l}_{1}$ acts to Plane Partitions.
- QQTA acts to general 3d crystals.
- Such crystals are defined by the quiver data
[Ooguri-Yamazaki 2008]
- First, we obtain periodic quiver from $\left(Q_{0}, Q_{1}, Q_{2}\right)$.

$$
Q_{2}=\{1 \rightarrow 1 \rightarrow 3 \rightarrow 1,1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1,1 \rightarrow 1 \rightarrow 2 \rightarrow 1,1 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1\}
$$

(b) Three vertices and one self-loop case

3d crystal

- a path in periodic quiver \simeq an atom on 3 d crystal
- However, it is not always one-to-one correspondence. Several paths may be identified to an atom (F-term relation)
- The depth of atom from the surface is the number of loops in the periodic quiver.

(a) Depth of some atoms

(b) A path with three loops

3d crystal

- By the identification of path and atom, we obtain 3d crystal.

[Ooguri-Yamazaki 2008]
- This is different from the Plane Partition of affine Yangian of $\mathfrak{g l}_{1}$.
- If we start with the quiver diagram of $\mathfrak{g l}_{1}$, we obtain the Plane Partition.

The action of QQTA to 3d crystal

- quantum toroidal $\mathfrak{g l}_{1}$ acts to Plane Partitions.
- QQTA acts to general 3d crystals.
- $E_{i}(z)$ adds an atom of vertex i, and $F_{i}(z)$ removes an atom of vertex i.

$$
\begin{aligned}
& K_{i}^{ \pm}(z)|\Lambda\rangle=\left[\Psi_{\Lambda}^{(i)}(z, u)\right]_{ \pm}|\Lambda\rangle, \\
& E_{i}(z)|\Lambda\rangle=\sum_{\left.i\right|_{\operatorname{Add}(\Lambda)}} E^{(i)}(\Lambda \rightarrow \Lambda+\boxed{i}) \delta\left(\frac{z}{u q(\sqrt{i})}\right)|\Lambda+\boxed{i}\rangle, \\
& F_{i}(z)|\Lambda\rangle=\sum_{i \in \operatorname{Rem}(\Lambda)} F^{(i)}(\Lambda \rightarrow \Lambda-i) \delta\left(\frac{z}{u q(i)}\right)|\Lambda-i\rangle
\end{aligned}
$$

Reduction to subcrystals

- Quantum toroidal $\mathfrak{g l}_{1}$ has not only Plane Partition rep, but also vector rep and Young diagram rep.
- QQTA also has representations by subcrystals.
- The surface of 3d crystal is 2d crystal, and the edge of 2d crystal is 1d crystal.

Reduction to 2d crystals

- A quiver diagrams of 3d crystal is constructed from a toric diagram.

- A quiver diagrams of 2d crystal is constructed from a toric diagram with a corner divisor
[Nishinaka-Yamaguchi-Yoshida2013].
- Different corner divisor creates different 2d crystals. Left figure is the case p1, and right is p2.

Reduction to 1d crystals

- Furthermore, removing all arrows of two neighboring corner divisors gives 1d crystal.
- The below figure is the case l_{1}, and arrows correponding to p_{1} and p_{4} are removed.

$$
3 \overrightarrow{q_{1}} 1 \overrightarrow{q_{1}} \overrightarrow{q_{1}} \overrightarrow{q_{3}} \overrightarrow{3} \cdots
$$

- 1d crystals and 2d crystals are called subcrystals.

1d crystal

- Subcrystals are the representations of "shifted" QQTA.
- QQTA has 4 types generators E, F, K^{+}, K^{-}, and we slightly "shift" K^{+}as $K_{i}^{+}(z) \rightarrow z^{r_{i}} K_{i}^{+}(z)$.
- $\left(r_{1}, \cdots, r_{Q_{0}}\right)$ is parameters determined by the shape of crystal. Of course, different subcrystals give different r_{i}.
- This shift is essential to keep generated states on surface.

2d crystal from 1d crystal

- Quantum toroidal $\mathfrak{g l}_{1}$ has vector rep (1d) and Fock rep (2d). [Feigin et al. 2011]
- Fock rep is constructed from the tensor product of vector rep.
- The action of quantum toroidal algebra to Fock rep is the coproduct of that of vector rep.
- Also in the QQTA, the representations of 2d crystals are constructed from that of 1d crystals. [Noshita-Aw 2109.02045]
- For example 2d crystal correponding to p_{1} is constructed from the tensor product of 1d crystal l_{1}.

2d crystal from 1d crystal

- 1d crystals stacked vertically become a 2d crystal.

1d crystal l_{1}
2d crystal p_{1}

- Vacuum state of $2 d$ crystal is defined by the tensor product of vacuum of $1 d$ crystals $[u]_{-1}$.

$$
|\emptyset\rangle=\otimes_{i=1}^{\infty}\left[\left(q_{1} q_{3}\right)^{i-1} u\right]_{-1}
$$

- The generators acting to 2d crystal is defined by the coproduct of these to 1d crystal. $E_{i}(z)$ adds an atom, and $F_{i}(z)$ removes an atom.

2d crystal from another 1d crystal

- In the previous slide, we construct 2d crystal from 1d crystal along with l_{1}.
- We can construct the same 2d crystal from 1d crystal along with l_{2}.
- This is the difference of slicing direction.

1d crystal l_{2}

2d crystal p_{1}

Summary

quantum toroidal gl $_{1}$
vector rep (1d) \longrightarrow Fock rep (2d) \longrightarrow MacMahon rep (3d)

(shifted) QQTA [Noshita-AW 2108.07104]
1d crystal rep \longrightarrow 2d crystal rep 3d crystal rep
tensor product
[Noshita-AW 2109.02045]

Construction of 2d quiver

- 2d quiver is obtained from 3d quiver by remobing some arrows.
- Physically, it consists of D0-D2-D4 brane system.
$\leftrightarrow 3$ d quiver comes from D0-D2-D6 brane system.
- We need to determine the boundary in the brane configuration by finding a perfect matching in dimer model.

(a) Brane configuration

(b) Dimer model

(c) Perfect matching

Related works

- Feigin-Jimbo-Miwa-Mukhin 1204.5378 "Representations of Quantum Toroidal $\mathfrak{g l}_{n}$ "

- Galakhov-Li-Yamazaki 2108.10286 "Toroidal and Elliptic Quiver BPS Algebras and Beyond"

Parameters of quiver Yangian

- Parameter h_{l} exsits for each arrow $I \in Q_{1}$.
- Not all of these are independent, and the degree of freedom is 2 due to two kinds of constraints.
- Vertex constraints

$$
\sum_{I \in Q_{1}(a)} \operatorname{sign}_{a}(I) h_{I}=0
$$

- Loop constraints

$$
\sum_{l \in L} h_{l}=0
$$

L is an arbitrary loop in Q_{2}

(b) Three vertices and one self-loop case

$$
Q_{2}=\{1 \rightarrow 1 \rightarrow 3 \rightarrow 1,1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1,1 \rightarrow 1 \rightarrow 2 \rightarrow 1,1 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1\}
$$

