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Introduction : q-deformation

• Deform algebras by adding parameters [Drinfeld 1987]

• In the limit q→ 1, the original algebra is recovered
• Hopf algebra structure & a larger symmetry.

q-Virasoro has paremeters q, t,p [Shiraishi et al. 1995]

T(z) =
∑
n∈Z

Tnz−n,

[Tn, Tm] = −
∞∑
l=1

fl(Tn−lTm+l − Tm−lTn+l)−
(1− q)(1− t−1)

1− p
(pn − p−n)δm+n,0

• There are two invariances
Tn → T−n, (q, t)→ (q−1, t−1)

• In the limit q = eh,h→ 0, T(z) becomes

T(z) = 2 + β

(
z2L(z) + (1− β)2

4β

)
h2 +O(h4)
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Introduction : Affine Yangian & q-deformation

• Affine Yangian of gl1 [Tsymbaliuk 2014]

• Its q-deformation is quantum toroidal gl1 [Ding-Iohara

1997]

• Three representations [Feigin et al. 2012]

• Vector representation (1d Young diagrams)
• Fock representation (2d Young diagrams)
• MacMahon representation (3d Young diagrams)
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Introduction : Generalization of quantum toroidal gl1

• Affine Yangian of gl1 ⊂ Quiver Yangian [Li-Yamazaki 2020]

• Quantum Toroidal gl1 ⊂ QQTA [Noshita-AW 2108.07104]

• Representations
• 1d Young diagrams→
1d crystals

• 2d Young diagrams→
2d crystals
[Nishinaka-Yamaguchi-Yoshida 2013]

• 3d Young diagrams→
3d crystals [Ooguri-Yamazaki 2008]

• We found the relations between
1d & 2d representations
[Noshita-AW 2109.02045]

[Ooguri-Yamazaki 2008]

3 / 33



Introduction : q-deformation of corner VOA

[Gaiotto-Rapcak 2017]

Virasoro algebra 𝑊! algebra

𝑞-𝑊! algebra𝑞-Virasoro algebra

corner VOA
𝑌",$,!⊂ ⊂

⊂ ⊂ 𝑞-corner VOA
𝑞-𝑌",$,!

We constructed it!!
[2101.03953]

[Shiraishi et al.
1995]

[Awata et al.
1995]

[Gaiotto-Rapcak
2017]

𝑞-deformation
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Today’s talk

1. Introduction← Finished

2. (q-) affine Yangian of gl1 & Young diagrams
representations

• Affine Yangian of gl1
• q-deformation
• Representations

3. (q-) quiver Yangian & crystal representations
• Quiver diagrams and quiver Yangian
• q-deformation
• Representations by crystals
• Construction of 2d crystal reps from 1d



(q-) affine Yangian of gl1 & Young
diagrams representations



Affine Yangian of gl1

• Generators are [Tsymbaliuk 2014]

e(u) =
∞∑
j=0

ej
uj+1

,

f(u) =
∞∑
j=0

fj
uj+1

,

ψ(u) = 1 + σ
∞∑
j=0

ψj

uj+1

𝑒!

𝑒"

𝑒#

𝜓$ 𝑒$

𝑓"

𝑓#

𝑓!

𝑓$

𝜓!

𝜓"
𝜓#

• Their relations depend on hi symmetrically

h1 + h2 + h3 = 0, e(u)e(v) ∼ φ(u− v)e(v)e(u)

φ(u) = (u+ h1)(u+ h2)(u+ h3)
(u− h1)(u− h2)(u− h3)

• Affine Yangian of gl1 ≃ W1+∞
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quantum toroidal gl1

• q-deformation of affine
Yangian of gl1

• Generators are

E(z) =
∑
k∈Z

Ekz−k,

F(z) =
∑
k∈Z

Fkz−k,

K±(z) = K±1 exp
(
±

∞∑
r=1

H±rz∓
)

𝐸!
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𝐻!

𝐻$"

𝐻$#

𝐻"
𝐻#

𝐻$!

• Their relations depend on q1,q2,q3 symmetrically

q1q2q3 = 1, E(z)E(w) ∼ φ(z,w)E(w)E(z)

φ(z,w) =
3∏
i=1

(q1/2i z− q−1/2
i w)

(q−1/2
1 z− q1/2i )
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Properties of quantum toroidal gl1

• In the limit q→ 1, it becomes affine Yangian of gl1
• The modes are k > 0 in the degenerate case, while
k ∈ Z in q-deformed case

• Hopf algebra structure(unit, counit, product,
coproduct, antipode)

• Coproduct is important here

∆E(z) = E(z)⊗ 1 + K−(C1z)⊗ E(C1z)
∆F(z) = F(C2z)⊗ K+(C2z) + 1⊗ F(z)

∆K+(z) = K+(z)⊗ K+(C−1
1 z)

∆K−(z) = K−(c−1
2 z)⊗ K−(z)

• Triality : exchange of q1,q2,q3
• Miki duality : SL(2,Z)
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Representations of quantum toroidal gl1

• There are 3 vertical representations
• Vector representation : 1d Young diagrams
• Fock representation : 2d Young diagrams
• MacMahon representation : 3d Young diagrams

• Vector representation

K±(z)[u]j =
[
Ψ[u]j(z)

]
±
[u]j,

E(z)[u]j = Eδ(qj+1
1 u/z)[u]j+1,

F(z)[u]j+1 = Fδ(qj+1
1 u/z)[u]j

• E(z) adds a box ,and F(z) removes a box.

[E(z), F(w)] = δ(w/z)K+(z)− δ(z/w)K−(w)
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Tensor product of two vector representations

• Tensor product of two vector reps becomes Fock rep
by a two-row Young diagram.

• Generators are defined by
coproduct as
∆E(z) = E(z)⊗ 1 + K−(z)⊗ E(z),
∆F(z) = F(z)⊗ K+(z) + 1⊗ F(z),
∆K±(z) = K±(z)⊗ K±(z)

• E(z) adds a box, and F(z)
removes a box. If the
condition of Young diagram
breaks, the coefficient
becomes zero.
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Fock representation

• Furthermore, tensor product of infinite vector reps
becomes Fock rep by a general Young diagram.

|λ⟩ =
∞⊗
j=1

[qj−1
2 u]λj−1

• Generators are defined by N− 1 coproducts.
• ∆(N−1)E(z) adds a box, and ∆(N−1)F(z) removes a box.
• If the condition of Young diagram breaks, the
coefficient becomes zero.

𝜆 + 1

𝐹(𝑧)𝜆𝐸(𝑧)

𝐾±(𝑧)
𝜆 − 1
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MacMahon representation

• Tensor product of vector rep (1d)→ Fock rep (2d)
• Similarly,
tensor product of Fock rep (2d)→ MacMahon rep (3d)

Λ = (Λ(1),Λ(2),Λ(3), · · · ) Λ(i) : Young diagram

• Λ is called Plane Partition, satisfying
Λ1 ≥ Λ2 ≥ Λ3 ≥ · · ·
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MacMahon representation

• Similarly to the 1d or 2d case, K±(z) acts as
eigenvalue、E(z) adds a box to the Plane Partition,
and F(z) removes a box.

• If the condition of Plane Partition breaks, the
coefficient becomes zero.
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(q-) quiver Yangian & crystal
representations



Quiver data

• Quiver Yangian is defined by a quiver data and
generalizes affine Yangian of gl1 [Li-Yamazaki 2020]

• Quiver data = Quiver diagram (Q0,Q1) + Loops Q2.
• (b) corresponds to the affine Yangian of gl2|1
Q0 = {1, 2, 3}, Q1 = {1 → 1, 1 → 2, 1 → 3, 2 → 1, 2 → 3, 3 → 1, 3 → 2},

Q2 = {1 → 1 → 3 → 1, 1 → 2 → 3 → 2 → 1, 1 → 1 → 2 → 1, 1 → 3 → 2 → 3 → 1}
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From toric diagram to quiver diagram

• We focus on symmetric quivers constructed from
toric diagram without compact 4-cycles.

• Draw the red arrows perpendicular to the toric
diagram on the torus.(brane configuration)

• White region↔ vertex, their connection↔ arrows
• Loops on brane configuration↔ Q2
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Definition of quiver Yangian

• We define a set of generators e, f, ψ for each vertex a.

e(a)(z) =
∞∑
n=0

e(a)n
zn+1

, ψ(a)(z) =
∞∑

n=−∞

ψ
(a)
n

zn+1
, f(a)(z) =

∞∑
n=0

f(a)n
zn+1

,

• Bond facters are defined by Q1.

φa⇒b(u) ≡
∏

I∈{b→a}(u+ hI)∏
I∈{a→b}(u− hI)

e(a)(z)e(b)(w) ∼ (−1)|a||b|φb⇒a(z− w)e(b)(w)e(a)(z)
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Quiver Quantum Toroidal Algebra (QQTA)

• We proposed the q-deformation of quiver Yangian
called QQTA [Noshita-AW 2108.07104]

• Similar to the quiver Yangian, we use quiver data
(Q0,Q1,Q2) to define QQTA.

• Parameters are replaced into hI → qI = eϵhI
• We define a set of generators E, F, K± for each vertex
i.

Ei(z) =
∑
k∈Z

Ei,kz−k, Fi(z) =
∑
k∈Z

Fi,kz−k, K±i (z) = K±1
i exp

(
±

∞∑
r=1

Hi,±rz∓r
)
.

• Bond factors are defined by Q1

φi⇒j(z,w) =
∏

I∈{j→i}(q
1/2
I z− q−1/2

I w)∏
I∈{i→j}(q

−1/2
I z− q1/2I w)
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Properties

• In the limit ϵ→ 0, it reduces to quiver Yangian.∏
I∈{j→i}(q

1/2
I z− q−1/2

I w)∏
I∈{i→j}(q

−1/2
I z− q1/2I w)

→
∏

I∈{j→i}(x− y+ hI)∏
I∈{i→j}(x− y− hI)

,

• Hopf superalgebra structure, especially coproduct

∆Ei(z) = Ei(z)⊗ 1 + K−i (C1z)⊗ Ei(C1z),
∆Fi(z) = Fi(C2z)⊗ K+i (C2z) + 1⊗ Fi(z),
∆K+i (z) = K+i (z)⊗ K

+
i (C

−1
1 z),

∆K−i (z) = K−i (C
−1
2 z)⊗ K−i (z)

• Coproduct is important in the relation of different
representations.
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3d crystal

• 3d crystals are defined by the quiver data
[Ooguri-Yamazaki 2008]

Q2 = {1 → 1 → 3 → 1, 1 → 2 → 3 → 2 → 1, 1 → 1 → 2 → 1, 1 → 3 → 2 → 3 → 1}

• vertex in quiver diagram→ atom of the crystal
arrow between vertices→ bond between atoms

• Q2 identifies some path on crystal.

+𝑄!

[Ooguri-Yamazaki 2008]
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3d crystal

• quantum toroidal gl1 acts to Plane Partitions.
• QQTA acts to general 3d crystals.
• Such crystals are defined by the quiver data
[Ooguri-Yamazaki 2008]

• First, we obtain periodic quiver from (Q0,Q1,Q2).
Q2 = {1 → 1 → 3 → 1, 1 → 2 → 3 → 2 → 1, 1 → 1 → 2 → 1, 1 → 3 → 2 → 3 → 1}

+𝑄!
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3d crystal

• a path in periodic quiver ≃ an atom on 3d crystal
• However, it is not always one-to-one
correspondence. Several paths may be identified to
an atom (F-term relation)

• The depth of atom from the surface is the number of
loops in the periodic quiver.
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3d crystal

• By the identification of path and atom, we obtain 3d
crystal.

[Ooguri-Yamazaki 2008]

• This is different from the Plane Partition of affine
Yangian of gl1.

• If we start with the quiver diagram of gl1, we obtain
the Plane Partition.
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The action of QQTA to 3d crystal

• quantum toroidal gl1 acts to Plane Partitions.
• QQTA acts to general 3d crystals.
• Ei(z) adds an atom of vertex i, and Fi(z) removes an
atom of vertex i.

K±i (z) |Λ⟩ = [Ψ
(i)
Λ (z,u)]± |Λ⟩ ,

Ei(z) |Λ⟩ =
∑

i ∈Add(Λ)

E(i)(Λ→ Λ + i )δ
(

z
uq( i )

)
|Λ + i ⟩ ,

Fi(z) |Λ⟩ =
∑

i ∈Rem(Λ)

F(i)(Λ→ Λ− i )δ
(

z
uq( i )

)
|Λ− i ⟩

25 / 33



Reduction to subcrystals

• Quantum toroidal gl1 has not only Plane Partition
rep, but also vector rep and Young diagram rep.

• QQTA also has representations by subcrystals.
• The surface of 3d crystal is 2d crystal, and the edge
of 2d crystal is 1d crystal.
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Reduction to 2d crystals

• A quiver diagrams of 3d crystal is constructed from a
toric diagram.

• A quiver diagrams of 2d crystal is constructed from a
toric diagram with a corner divisor
[Nishinaka-Yamaguchi-Yoshida2013].

• Different corner divisor creates different 2d crystals.
Left figure is the case p1, and right is p2.
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Reduction to 1d crystals

• Furthermore, removing all arrows of two neighboring
corner divisors gives 1d crystal.

• The below figure is the case l1, and arrows
correponding to p1 and p4 are removed.

• 1d crystals and 2d crystals are called subcrystals.
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1d crystal

• Subcrystals are the representations of ”shifted”
QQTA.

• QQTA has 4 types generators E, F, K+, K−, and we
slightly ”shift” K+ as K+i (z)→ zriK+i (z).

• (r1, · · · , rQ0) is parameters determined by the shape
of crystal. Of course, different subcrystals give
different ri.

• This shift is essential to keep generated states on
surface.
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2d crystal from 1d crystal

• Quantum toroidal gl1 has vector rep (1d) and Fock
rep (2d). [Feigin et al. 2011]

• Fock rep is constructed from the tensor product of
vector rep.

• The action of quantum toroidal algebra to Fock rep is
the coproduct of that of vector rep.

• Also in the QQTA, the representations of 2d crystals
are constructed from that of 1d crystals. [Noshita-AW
2109.02045]

• For example 2d crystal correponding to p1 is
constructed from the tensor product of 1d crystal l1.
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2d crystal from 1d crystal

• 1d crystals stacked vertically become a 2d crystal.

1d crystal l1
2d crystal p1

• Vacuum state of 2d crystal is defined by the tensor
product of vacuum of 1d crystals [u]−1.

|∅⟩ = ⊗∞
i=1[(q1q3)i−1u]−1

• The generators acting to 2d crystal is defined by the
coproduct of these to 1d crystal. Ei(z) adds an atom,
and Fi(z) removes an atom.
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2d crystal from another 1d crystal

• In the previous slide, we construct 2d crystal from 1d
crystal along with l1.

• We can construct the same 2d crystal from 1d crystal
along with l2.

• This is the difference of slicing direction.

1d crystal l2 2d crystal p1
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Summary

quantum toroidal 𝔤𝔩!

vector rep (1d)

2d crystal rep1d crystal rep
tensor product

MacMahon rep (3d)Fock rep (2d)

(shifted) QQTA

3d crystal rep

[Noshita-AW 2108.07104]

[Noshita-AW 2109.02045]
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Construction of 2d quiver

• 2d quiver is obtained from 3d quiver by remobing
some arrows.

• Physically, it consists of D0-D2-D4 brane system.
↔ 3d quiver comes from D0-D2-D6 brane system.

• We need to determine the boundary in the brane
configuration by finding a perfect matching in dimer
model.



Related works

• Feigin-Jimbo-Miwa-Mukhin 1204.5378
”Representations of Quantum Toroidal gln”

• Galakhov-Li-Yamazaki 2108.10286
”Toroidal and Elliptic Quiver BPS Algebras and
Beyond”



Parameters of quiver Yangian

• Parameter hI exsits for each arrow I ∈ Q1.
• Not all of these are independent, and the degree of
freedom is 2 due to two kinds of constraints.

• Vertex constraints∑
I∈Q1(a)

signa(I)hI = 0

• Loop constraints∑
I∈L

hI = 0

L is an arbitrary loop in Q2

Q2 = {1 → 1 → 3 → 1, 1 → 2 → 3 → 2 → 1, 1 → 1 → 2 → 1, 1 → 3 → 2 → 3 → 1}


