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“Origin of PSS” in a nutshell

Berkovits’ Pure Spinor Formalism

↑Canonical (Dirac) quantization

Derived from a classical action (essentially GS)

with reparam, kappa, plus a hidden sym.
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Motivation

• Modern string theory rounds about D-branes; But
strings in (D-brane sourced) Ramond-Ramond BG’s: Poorly understood
➜ Super-Poincaré covariant formulation should help:

• Standard RNS & GS:
Either SUSY or Lorentz is opaque

− RNS:
- Worldsheet SUSY → powerful scheme of super CFT,

but with spin structures, GSO, supermoduli, bosonization, picture etc.
- No built-in spacetime spinor → Conceptually hard to handle RR fields

− GS:
- Fully covariant classically
- Less understood worldsheet sym (kappa)
- → Hard to quantize except in (semi-)LC gauge

• PS formalism Berkovits (2000–)
− A new covariant worldsheet formalism with some promising results
− Like GS, has built-in spacetime SUSY ➜ no conceptual difficulty with RR
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With PS formalism, one hopes to understand:

• Strings in various BG’s

− esp. AdS+RR

• String side of the AdS/CFT conjecture

− String spectrum in AdS5×S5

− Quantum integrability of string side

• Higher genus computation

• Supermembrane / M(atrix) theory
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Plan:

1. Introduction

− Motivation
√

− Review of GS; treatment of kappa & its difficulty

− Siegel’s approach to GS

2. Review of PS

− Basics, Achievments & Challenges

3. Origin of PS

− Classical action for PS

− Derivation of PS via canonical quantization

4. Summary and Outlook
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Classical GS action

• type IIB: (xm, θAα) = (xm, θα, θ̂α) i = 0,1; m = 0 ∼ 9; α = 1 ∼ 16; A = 1,2

LGS = LK + LWZ{
LK = −1

2

√−ggijΠm
i Πjm

LWZ = εijΠm
i (Wjm − Ŵjm)− εijWm

i Ŵjm

where

Πm
i = ∂ixm −Wm

i − Ŵm
i ,

Wm
i = iθγm∂iθ, Ŵm

i = iθ̂γm∂iθ̂,
Γm =

(
0 γmαβ

γmαβ 0

)
SO(9,1)
32× 32

• Wess-Zumino term:
− Topological (no dep on gij)
− Gives rise to κ-sym (local fermionic sym; halves on-shell DOF’s of θAα)

• Due to kappa,
− (Semi-)LC quant: easy
− Covariant quant: hard

➜ Shall demonstrate for superparticle
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Difficulty of Covariant Quant of GS

• N = 1 Brink-Schwarz Superparticle (generalisation to N = 2 is trivial)

LBS =
1

2e
Π2, Πm = ẋm − iθγmθ̇

− Zero-mode part of string
− ∃Kappa without WZ

• Symmetries:
− Super-Poincaré

− Reparam: τ → τ ′

− Kappa: for a fermionic param κα(τ)

δθα = ipm(γmκ)α, δxm = iθγmδθ, δe = 4eθ̇κ
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Canonical Treatment of BS I

• Fix reparam to “conformal gauge” e = 1

Gauge orbits

Gauge slice
(1st cls)

Constraint surface (2nd cls)
• Canonical momenta & Poisson bracket:

pm =
∂L

∂ẋm
= Πm, pα =

∂L

∂θ̇α
= ipm(γmθ)α

{xm, pn}P = δmn, {θα, pβ}P = −δαβ
• Phase space constraints:

Dα= pα − ipm(γmθ)α ≈ 0

T =
1

2
pmpm ≈ 0 (Virasoro)

• Constraint algebra:

{T, T}P = {T, Dα}P = 0, {Dα, Dβ}P = 2ipmγ
m
αβ ← rank 8 (p2 = 0)

➜ 1 + 8 first class (gauge syms)
8 second class (rels between pα and θα) → constraint surface

For (Dirac) quantization, must separate explicitly; hard to maintain covariance
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Canonical treatment of BS II

• Explicit 8 + 8 splitting of Dα (assume p+ 6= 0):

Dȧ = pȧ − ip−θȧ − ipiγiȧbθb → Kȧ = Dȧ −
1

p+
piγiȧbDb : 1st cls (kappa)

Da = pa − ip+θa − ipiγiaḃθḃ : 2nd cls

Indeed from {Dα, Dβ}P = 2ipmγmαβ, easy to see φI = (T,Kȧ,Da)

{Da, Db}P = 2ip+δab, {Da, Kḃ}P = 0

{Kȧ, Kḃ}P = 2i
p+p

2δȧḃ ≈ 0 (∝ Virasoro)
⇒ {φI, φJ}P ≈

(
0 0
0 2p+δȧḃ

)

• A way to see relation between kappa and conformal syms:
(kappa)2 = (Virasoro)

—
Vectors: V ± = V 0 ± V 9, γ± = γ0 ± γ9

Spinors: θα = (θa, θȧ)

γ0 =

(
18 0
0 18

)
, γi =

(
0 γi

aḃ
γiȧb 0

)
, γ9 =

(
18 0
0 −18

)
⇒ γ± : SO(8) chirality projector
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Canonical treatment of BS III

• Quantization is most easily done by fixing kappa

Semi lightcone gauge: γ+θ = 0⇔ θȧ = 0

⇒ (Kȧ, θȧ) : 2nd class

• Dirac bracket on φI ≡ (Da,Kȧ, θȧ) = 0 (Symplectic structure on φI = 0)

{A, B}D∗ = {A, B}P − {A, φI}P{φI, φJ}−1
P {φJ , B}P

= {A, B}P −
1

2ip+
{A, Da}P{Da, B}P

+ {A, Kȧ}P{θȧ, B}P + {A, θȧ}P{Kȧ, B}P

• Indep variables (xm, pn;Sa =
√

2p+θa) has canonical brackets:
(Da = pa − ip+θa = 0 → (θa, pa) become self-conjugate)

{xm, pn}D∗ = ηmn, {Sa, Sb}D∗ = iδab

with single 1st cls constraint T = 1
2
p2 = 0
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Canonical quantization of BS

• Quantization is now easy:
− Replace {∗, ∗}D∗ by quantum commutators:

{xm, pn}D∗ = ηmn → [xm, pn] = iηmn

{Sa, Sb}D∗ = iδab → {Sa, Sb} = δab

− On quantum states, impose T = 1
2
p2 = 0 (or invoke BRST)

• Remarks:
− Usually, we further fix T imposing x+ = τ etc. (full LC gauge)
− (xm, pn;Sa) with canonical brackets are sometimes called “free”

• To sum up,
(1) In a non-covariant gauge (θȧ = 0) BS can be systematically quantized:

LBS → free fields + constraint T
(2) Covariant quantization is bound to be difficult:

Dα = 0 contains 8 + 8 first and second cls constraint
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Siegel’s approach to GS (1986)

• Gave up classical action. Instead, asked

“Can one find a set of 1st cls constraints (‘BRST’)
s.t. Free fields + ‘BRST’ = superstring?”

L = −1

2
∂x · ∂̄x− pα∂θα − p̂α∂̄θ̂α

= −1

2
Π · Π̄− dα∂θα − d̂α∂̄θ̂α (SUSY inv)

At the time
1. Appropriate ‘BRST’ was not found.
2. Also, ctot 6= 0

• Using pure spinor λα, one can. — Berkovits (2000)
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❤ Review of PS Superstring
Berkovits (2000-)

Pure Spinor (PS)

Cartan (1913)

• Bosonic chiral spinor λα with non-linear PS constraint:

λαγmαβλ
β = 0

• Not all 10 conditions are indep because of a Fierz

(λγmλ)(λγmλ) = 0

• In fact, only 5 constraints are indep.
➜ PS: 16− 5 = 11 indep components.

Under U(5) ⊂ SO(9,1): 16 = 1 + 10 + 5̄

PS cond⇔ λI =
1

8
λ−1

+ εIJKLMλJKλLM
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PS formalism for superstring

(Shall concentrate on the holomorphic sector)

• Worldsheet “free” CFT with vanishing center
− GS sector: xm, (pα, θα)
− PS sector: (ωα, λα) ← weight (1,0)

T(z) = −1

2
∂xm∂xm|(c=10)−pα∂θα|(−32) − ωα∂λα|(22)

− “Free”: not genuinely;
But physical quantities can be computed with covariant rules

• “BRST” op: bosonic “ghost” against

dα = pα + i(γmθ)αpm +
1

2
(γmθ)α(θγm∂θ), dα(z)dβ(w) = 2γmΠm/(z − w)

QB =

∫
λαdα ⇒ Q2

B = 2

∫
λγmλΠm = 0

Cohomology of QB = Spacetime spectrum

Passed various checks, and more!
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Achievements of PS: Basics

• Explicit forms of QB-inv massless vertex ops:

U(z) = λαAα(x, θ) (unintegrated)

• Superfield form. of Super-Maxwell:
− QBU = 0 → Correct constraint:

γαβm1m2...m5
DαAβ = 0, (Dα = ∂α − i(γmθ)∂m)

− δU = QBΩ → Gauge transf.
− Aα(x, θ) 3 am(x), ψα(x): photon, photino wave func; for plane waves:

UB
m ∼ (λγmθ)e

ik·x, UF
α ∼ (λγmθ)(γ

mθ)αe
ik·x

k2 = 0 (weight = 0)

Also, integrated vertex ops are available

• Similar for 1st-massive modes (alas, much much more complicated)
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• Super-Poincaré covariant ‘rule’ to compute N-pt tree amplitudes

A = 〈U1(z1)U2(z2)U3(z3)

∫
[dz4]V4(z4) · · ·

∫
[dzN]VN(zN)〉

− 〈. . .〉: CFT correlation func. of vertex ops.
− Zero-mode prescription for θ and λ: Read off the coeff. of

(λγmθ)(λγnθ)(λγrθ)(θγmnrθ)

➜ Coincides with RNS results.

• Similar for loops ➜ finiteness proof (2004)

• Construction of boundary states
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Achievements of PS: Applications

• PS analogue of Metsaev-Tseytlin GS action for AdS5×S5

− One-loop conformal invariant
− Construction of infinite non-local conserved charges

• Supermembrane (difficult)

Extended formulations with PS cond removed

Genuine free (ωα, λα) with ghosts which effectively impose PS cond

• SB: covariant
• Komaba: minimal extension
− Add BRST quartet (ωI, λI, bI, cI) (SO(9,1)→ U(5))
− Quantum operator mapping to RNS / GS: QPS ∼ QRNS ∼ QGS

• Relation to doubly supersymmetric formulation (aka superembedding)
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Challenges of PS

• All rules postulated by hand

− What is QB the BRST of?

− Is λα a BRST ghost?; Origin of λγmλ = 0?

− Where is Virasoro? (Q = cT vs λd?)

Nature of worldsheet symmetry is obscure

(Drawback of the powerful free field postulate)

➜ Desirable to have the underlying classical action for PS

− Geometrical understanding of Berkovits’ measure

− Application to 11D supermembranes

Can we find one? ...Yes!
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❤ Origin of PS Superstring

[hep-th/0502208] (with Y. Kazama)

Classical PS Action I

• Recall the classical GS action:

LGS = LK + LWZ{
LK = −1

2

√−ggijΠm
i Πjm

LWZ = −εijΠm
i (Wjm − Ŵjm)− εijWm

i Ŵjm

Πm
i = ∂ix

m −Wm
i − Ŵm

i , Wm
i = iθ̃γm∂iθ̃

• Classical PS can be obtained simply by
(1) gauging the origin of θ̃A:

θ̃A → ΘA = θ̃A − θA

(2) shifting (← to have SUSY in (xm, θAα) sector)

xm → ym = xm − i(θγmθ̃)− i(θ̂γmˆ̃θ)
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Classical PS Action II

• Then, GS action turns to

LPS = LK + LWZ{
LK = −1

2

√−ggijΠm
i Πjm

LWZ = εijΠm
i (Wjm − Ŵjm)− εijWm

i Ŵjm

Πm
i = ∂iy

m −Wm
i − Ŵm

i , Wm
i = iΘγm∂iΘ

Θ = θ̃ − θ, ym = xm − i(θγmθ̃)− i(θ̂γmˆ̃θ)

• By construction, has ‘hidden local symmetry’ × 2:

δθ̃ = δθ = χ, δxm = iχγmΘ, (δΘ = δym = 0)

− can be used to kill θ (equivalence to GS is manifest)
− or, kept along quantization

➜ Berkovits’ ‘BRST’ sym: QB = λαdα
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Symmetries of Classical PS

• Common with GS:
− Reparam. + Weyl
− Kappa among (ym,Θα, gij)
− Super-Poincaré

δθ̃ = 0, δθ = −ε, δxm = −iεγmθ, (δΘ = ε, δym = iεγmΘ)

• New to PS:
− Hidden local symmetry

We now canonically quantize LPS

− θ̃Aα (GS): fix to semi-LC
− Physical sector (xm, θAα): can maintain covariance
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Canonical Quantization of PS

• Canonical mom.

km =
∂L
∂ẋm

, k̃α =
∂L
∂ ˙̃θα

, kα =
∂L
∂θ̇α

• Poisson bracket:

{xm(σ), kn(σ′)}P = ηmnδ(σ − σ′), {θ̃α(σ), p̃β(σ′)}P = −δαβδ(σ − σ′)
{θα(σ), pβ(σ′)}P = −δαβδ(σ − σ′), (rest) = 0

• Constraints (left/right(hatted): particle ×2):

T =
1

4
ΠmΠm + ∂1Θ

αD̃α = (Virasoro) ≈ 0, T̂ = · · ·
(Πm ≡ km + ∂1y

m − 2Wm
1 ∼ Πm

0 + Πm
1 ) (Π̂m ∼ Π̂m

0 − Π̂m
1 )

D̃α = k̃α − i(γmθ)αkm − i(γmΘ)α(km + Πm
1 −W1m) ≈ 0, ˆ̃Dα = · · ·

Dα = kα + i(γmθ̃)αkm + i(γmΘ)α(km + Πm
1 −W1m) ≈ 0, D̂α = · · ·

Expect (1st cls: 1+8+16, 2nd cls: 8)×2 constraints.

21



• Constraint algebra (omit δ-funcs):

{T, ∗}P ≈ 0, {D̃α, D̃β}P = 2iγmαβΠm

{Dα, Dβ}P = −{D̃α, Dβ}P = 2iγmαβΠm
⇒ {∆α, ∗}P = 0

− T (Virasoro): just measures weight → 1st cls
− D̃α: just as GS → 8×1st cls (κ) and 8×2nd cls

− ∆α = Dα + D̃α = pα + p̃α − ipm(Θγm):
generates the ‘hidden sym’ → 16×1st cls

• Below,
(1) we fix κ by imposing semi-LC gauge: γ+θ̃ = 0 ⇔ θ̃ȧ = 0
(2) Reduce the phase space to

Σ∗ : θ̃ȧ = D̃α = 0 ⇔ (xm, pn, Sa; pα, θ
α)

(3) On Σ∗, we will be left with 1 + 16 1st cls constraints (T,Dα)
➜ Can invoke BRST: introduce ghosts (b, c) and (ωα, λα) to define

Q = λα∆α + cT + · · · , Q2 = 0

((b, c) and Sa kill a part of λα ➜ PS constraint)
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A digression on left/right splitting

• Similar for (T̂ , ˆ̃∆α, D̂α); but at this stage,

Holomorphicity 6= Spinor species (A = 1,2)

− Constraint alg splits into holomorphic/anti-hol part:

{Dα, D̂β}P = 0, etc.

− But unlike GS, “left/right” variables are still entangling:

Πm = km + ∂1x
m − i∂1(θγ

mθ̃+ θ̂γmˆ̃θ)︸ ︷︷ ︸
∂1ym

−2Wm
1

• More on this later
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Explicit separation of κ

• Assuming Π+ 6= 0, able to separate 1st and 2nd cls. in D̃α:

D̃α →
{
D̃a → {D̃a, D̃b}P = 2iδabΠ

+

K̃ȧ = D̃ȧ − 1
Π+Π

iγiȧbD̃b → 1st cls. = Kappa sym.

Indeed

{K̃ȧ, K̃ḃ}P = −8iδȧḃT + fαD̃α ≈ 0, T ≡ T/Π+

• T = T/Π+ is a good combination:

{T , T }P = 0 (← Π+ weight 1)

− T ≈ 0 ⇔ T ≈ 0 (Π+ 6= 0) ➜ Can use T instead of T
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1st cls constraints on reduced phase space

• On the constrained surface Σ∗: φI ≡ (Da, θ̃ȧ, K̃ȧ) ≈ 0
with Dirac bracket

{A, B}D∗ = {A, B}P − {A, φI}P{φI, φJ}−1
P {φJ , B}P

T and Dα = (Da,Dȧ) yield (1 + 16) 1st cls constraints
with simple algebra:

{Dȧ(σ), Dḃ(σ
′)}D∗ = −8iδȧḃT δ(σ − σ′)

{T (σ), ∗(σ′)}D∗ = {Da(σ), ∗(σ′)}D∗ = 0

− Now Dȧ carries the info of Kappa K̃ȧ:

(Kappa)2 = Virasoro

So far, so good.
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Non-Canonical Dirac Brackets

• However, the phase space variables are no more canonical
wrt the induced Symplectic structure (Dirac bracket) on

Σ∗ : D̃a = K̃ȧ = θ̃ȧ = 0

eg.

{xm(σ), kn(σ′)}D∗ = ηmnδ(σ − σ′) + (i/2Π+)(γmθ̃)c(γ
nΘ)c∂σδ(σ − σ′)

{km(σ), kn(σ′)}D∗ = −(i/2)∂σ[(1/Π
+)(γmΘ)c(γ

nΘ)c∂σδ(σ − σ′)]

• Is not surprising; but problematic for quantization.

Can one find a canonical basis?

Yes, and with local combination of original fields.
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Canonical Basis

{xm(σ), pn(σ′)}D∗ = ηmnδ(σ − σ′), {θα(σ), pβ(σ′)}D∗ = −δαβδ(σ − σ′)
{Sa(σ), Sb(σ′)}D∗ = iδabδ(σ − σ′), (rest) = 0

for

pm = km + i∂1(θγ
mθ̃)− i∂1(θ̂γ

mˆ̃θ)

pa = ka − i(∂1x
+ − iθγ+∂1θ)θ̃a + [2(γi∂1θ)aθ̃γ

iθ+ (γiθ)a∂1(θ̃γ
iθ)]

pȧ = kȧ + i(γmθ)ȧ
[
−2iθ̃γm∂1θ+ iθ̃γm∂1θ̃ − i∂1(θ̃γmθ)

]

− i(γiθ̃)ȧ
[
∂1x

i − 3iθγi∂1θ+ 2iθγi∂1θ̃+ i∂1(ˆ̃θγ
iθ̂)

]

Sa =
√

2Π+θ̃a

& similar for Ŝa, p̂a and p̂ȧ

• Also, complete left/right separation takes place:

eg. Πm = km + ∂1x
m + i∂1(θγ

mθ̃+ θ̂γmˆ̃θ)− 2Wm
1

⇒ Πm = pm + ∂1x
m + 2i∂1(θγ

mθ̃)− 2Wm
1
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Quantization

• Quantization is trivial: just replace {A, B}D∗ → −i[A,B}:
[pm, xn] = −iηmn, {pα, θβ}= −iδβα, {Sa, Sb} = −δab

• Spectrum dictated by (1 + 16)× 2 1st cls constraints:

T , (Da,Dȧ) ≈ 0

{Dȧ(σ), Dḃ(σ
′)}D∗ = −8iδȧḃT (w)δ(σ − σ′)

{T (σ), ∗(σ′)}D∗ = {Da(σ), ∗(σ′)}D∗ = 0
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Obtained system as a free CFT

• Or in CFT language, we get conformal fields with free field OPE’s:

xm(z)xn(w) = −ηmn log(z − w), Sa(z)Sb(w) = δab/(z − w)

pα(z)θ
β(w) = δα

β/(z − w)

• Constraints are

T =
1

4

Π ·Π
Π+

, Da = da + i
√

2Π+Sa

Dȧ = dȧ + i

√
2

Π+
Πi(γiS)ȧ +

2

Π+
(γiS)ȧ(Sγ

i∂θ)

where

Πm = πm − 1

2π+
(Sγm∂S)− i

√
2

π+
(Sγ∂θ), (Π+ = π+)

πm = i∂xm + θγm∂θ

dα = pα + i(γmθ)α∂x
m +

1

2
(γmθ)α(θγm∂θ)
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• Separating Sa from (xm, pα, θα), we get

T =
1

2

πmπm

π+
− 1

2π+
Sc∂Sc + i

√
2

π+
Sc∂θc + i

√
2

(π+)3
πi(Sγi∂θ)

− 1

(π+)2
(Sγi∂θ)2+

4∂2θċ∂θċ

(π+)2
− ∂2 logπ+

2π+

Da = da + i
√

2π+Sa

Dȧ = dȧ + i

√
2

π+
πi(γiS)ȧ −

1

π+
(γiS)ȧ(Sγ

i∂θ)+
4∂2θȧ

π+
− 2∂π+∂θȧ

(π+)2

• ∃ some ordering ambiguities;
Can fix it demanding the constraint alg close quantum mechanically:

Dȧ(z)Dḃ(w) =
−4δȧḃT (w)

z − w , (rest) = 0

• Those were already engineered by Berkovits-Marchioro [hep-th/0412198]

as a 1st cls algebra ‘containing’ dα.
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Derivation of PS

• Now, we can BRST quantize the system in a standard way:
Introduce fermionic (b, c), bosonic (ω̃α, λ̃α) ghosts and define

Q̃ =

∫
(λ̃αDα + T c− λ̃ȧλ̃ȧb)

➜ Q̃2 = 0; Cohom of Q̃ = spectrum

This completes the quantization.
Q̃ must have correct cohom; a tricky way to quantize GS

• Furthermore, can show the equivalence with PS:

cohom of Q̃ = cohom of QB (QB =

∫
λαdα)

where λα is constrained λγmλ = 0 (PS)

• Basic idea of the proof:
(1) Split λ̃ to PS direction and the rest: λ̃ = (λ, λ⊥) = 11 + 5
(2) (λ⊥, ω⊥; c, b, Sa) forms 5 KO quartet and decouples cohomologically

31



Derivation of QB via Similarity Transf Berkovits-Marchioro

• Bring a constant spinor rȧ satisfying

rȧλ̃ȧ = 1, rȧrȧ = 0

➜ Able to define a projector to PS space:

Pȧḃ = λ̃ȧrḃ −
1

2
rȧλ̃ḃ, P⊥

ȧḃ
= δȧḃ − Pȧḃ

Pab =
1

2
γi
aḃ
Pḃċλ̃ċ(γir)b, P⊥ab = δab − Pab

⇒ λα ≡ (Pλ̃)α, λγmλ = 0, λ⊥α ≡ (P⊥λ̃)α
• Then, one can show

eZeY eXQ̃e−Xe−Y e−Z = δb + δ⊥+QB

X = c(rċDċ), Y = −1

2
(P⊥S)c(PS)c, Z = −dc(PS)c√

2i
+

4(∂θȧλȧ)(∂θḃrḃ)

π+

where

δb = 2b(λ̃γ+λ̃), δ⊥ =
√

2iλ⊥c (PS)c, QB = λαdα

{δb, δ⊥}= {δb, QB} = {δ⊥, QB} = 0
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❤ Summary

• Derived Berkovits’ QB from first principles

• Origin of PS

− Classical GS action with a hidden local sym.

(completely covariant)

− Hidden sym → QB = λαdα (λα: BRST ghost)

− Reparam (b, c)-ghost + GS Sa → 5 PS constraint λγmλ = 0

33



❤ Outlooks

• Should be able to derive Berkovits’ measure (Tree & Loop)

− Improve the last step; more clever gauge fixing?

• Supermembrane (or super p-branes)

− Just like Siegel/Berkovits, ask

“Can one find a clever set of 1st cls constraint

s.t. Free fields + ‘BRST’ = Supermembrane”

− Appropriate constraints are not known;

classical PS action might provide some hints.

• Application to strings in various BG’s

− Derivation of PS in curved BG. esp. AdS5×S5
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