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Plan of this talk

Partl: /' =4 su(N) SYM theories from (B,, C,) boundary

conditions and branes in AdS;

(i) Gauging center symmetry, (ii) Line operators, (iii) 1-form
symmetry, (iv) SL(2,7Z) duality orbits

Part II: Mixed ’t Hooft anomaly from type IIB SUGRA
(i) CP violating anomaly action by gauging 1-form symmetry

Part I1I: Axionic Janus as interfaces between different @

angles



Motivation

e Recently, nonlocal operators and higher form symmetries (under

which they are charged) gained renewed interests in QFT.

¢ In particular, they provide new insights into the phase structure
of QFT via mixed ’t Hooft anomaly involving higher form

symmetries.

e [ess known, but they can also be used to reveal the intricate

structure of the duality web.



Motivation — cont’d

e Mecanwhile, string theory hosts, naturally, nonlocal operators

(objects) and associated higher form symmetries.

e Thus, via holography (AdS/CFT), one may be able to gain a more
intuitive and somewhat simpler understanding of the recent

developments in higher form symmetries. Hofman-Igbal
Many others in the last slide

e Hopefully, this line of thought provides new perspectives on the

subject.



Part1: /' =4 su(N) SYM theories from (B,, C,) boundary
conditions and branes in AdS;

1. Gauging center symmetry

e The SU(N) group has the Z,, center symmetry. By gauging a subgroup of Z,,
we can construct new theories:

N =4 SUN)/Z, SYM theories with N = kk’

e This 1s not the end of the story and the life is more intricate:

The SU(N)/Z, theory are further classified into sub-theories distinguished

by the line operator spectrum Aharony-Seiberg-Tachikawa



Part 1 — cont’d

2. Line operator spectrum
Aharony-Seiberg-Tachikawa

e The line operators are Wilson, 't Hooft, and dyonic lines.

L s = {2 2,) =| e(k0)|+ m(Z, k') mod N}

\Y4
k Wilson lines £’ 't Hooft lines 4+ 7 Witten effect

e The su(N) theories (center symmetry gauging + line operator spectrum)

N =4 [SUWN)Z], SYM theories

where £ =0,1,---, k— 1 with N = kk’



Part 1 — cont’d

3. 1-form symmetry

e The most basic SU(NN) theory has (electric) Zy; 1-form symmetry.

= gauging magnetic Z, symmetry

W) —> en  W(L)

Z, charge
e The SU(N)/Z, theories has (electric) Z;, I-form symmetry:

= gauging magnetic Z,, symmetry

2rik 2ni

WL X WL = e W

Z, invariant Zy charge

e In fact, the [SU(N)/Z,], theory has Z X Z* 1-form symmetry:

TIWY 2 ST = & T

N——

N —— —

Zkf invariant Z, charge



Part 1 — cont’d

3. 1-form symmetry

e The 1-form symmetry of the [SU(N)/Z,], theory

( gﬁ X Zyyecdte, ) M ieigedii, )

L -

-~

electric dyonic

for the line operator spectrum

Lk,f = {(Ze’ Zm) —

e(k,0|+ m(Z, k') mod N}

\'
represented by k Wilsonlines £’ 't Hooft lines + # Witten effect
r A
/ - 4 N
3 WL, WILYTL)F % with (WD) = (WL T(L)")
L Zy charged  Zy,. ., ) Charged ) 2 ocd(k ;) charged



Part 1 — cont’d

e In the diagonal basis, the 1-form symmetry of the [SU(N)/Z,], theory

ZN/gcd( kK ) X chd( kK £) Gaiotto-Kapustin-Seiberg-Willett

under which the following line operators are charged:

Zjocd ek £) 221

W(L)PFHT(LYF > eMedw ko) (W(LYPFHT(L))

Bergman-SH

27l

__ON _
e ecd(k, k., £) (W( L) ged(k, k, £) T( L) ged(k, k, £) )

Z cd(k.k &)

___ON YN
W(L)egcd. k.0) T(L)egcd. K. ¢) 2

where there always exists p € Z such that gcd(pk + £, k') = ged(k, k', £)

5 k' pk+¢
scd k. 2) | gcdk k. 2)

9



Part 1 — cont’d

*% Gravity dual description

e The line operator spectrum of all [SU(N)/Z,], theories and its center
symmetry are all encoded in the topological theory Witten & Aharony-Witten

N
StOp: J Bz/\dCz/\dC4:2_[ BZ/\dCZ
AdSsxSS 7T J Ads,

where (B,, C,) are a canonical conjugate pair like (x, p) upon quantisation

2mi _
[b,c] = — with bz[Bz, C:JC2
N
S S

¢ The admissible boundary conditions | | o N
equivalent to Dirac quantisation condition

Zb+Z c=0, Zb+Z c=0  with 27 —77 =N

two BCs commute mod N

10



Part 1 — cont’d

By an SL(2,7) rotation, the BCs can be brought into the canonical form

Bergman-SH
/Z, 7/ kL 0
e “m
A — , . kb=0, kic+¢b=0
zZ Z £ k S |
k Fl (Z,k') string
where £ =0,1,---,k—1
“Dirichlet” = line operator “Neumann” = surface operator .
x " =1
/ r n Fl / r / r
gluon
k F1 ‘ n F1 D5 | Kk F1 ‘
x & kb=0
a b C y < k'c+¢b =0
Y gV = z' r=gcdk',?)
yZ / A n# mk N
, | (k F1
r{E/r, k' /r) strings N (f/r. K [r) strings  kr (¢/r, K /r) strings
(4/r. k' [r)555 NS5gs




Part 1 — cont’d

NB: The BCs on (line or point) D5 and NS5-branes wrapping S°
As an illustration, consider the SU(N) = [SU(N)],, theory: cousins of baryon vertex

“Dirichlet”  wrapped D5 point (“gluon”) : A, = [ Cs =0 (Hodge dual of Neumann C, # 0)
on which N F1s ending S3

“Neumann”  wrapped NS5 line: Aj = [ B #0 (Hodge dual of Dirichlet B, = 0)
on which N D1s ending s>

W)V =1

L ML L

5|V F1

b

h=0 Nc=0onc#0 Nb=0
n=01,--N-—1

D1 surface = AdS3 x S D3 with F Gukov-Witten, Drukker-Gomis-Matsuura
12



Part 1 — cont’d

. . . See Aharony-Seiberg-Tachikawa
4. SL(2,Z) duality orbits from gravity dual g e original field theory discussions

e The different [SU(N)/Z,], theories are connected by SL(2,7).

e However, not all the [SU(N)/Z,], theories belong to a single SL(2,Z) orbit.

There are “islands” of SL(2,Z) orbits distinguished by the 1-form symmetry
or the SL(2,7) invariant gcd(k, k', ©):

Ljacdk' £) X Lacd( ' £)

¢ This can be most manifestly understood from the SL(2,Z) transformations
of the boundary conditions (in the diagonal basis of the 1-form symmetry):

. [ pk+¢ Koo)
INiged(k k') - pK+ b\ _ b\_o | 7: B—-B. C-C+B
7 . ON YN — MD _ S : B—-—-C C->B
gcd(k k' £) * , , ’

o \gcd(k,k,f) gcd(k,k,f))

13



Part 1 — cont’d

4. SL(2,7) duality orbits from gravity dual

e The duality orbit can be understood from the following relation:

( pk+7 k' \ ,
M, | scdkk.t)  gedkk.7) | = <8 cd(k, k', 7) 0 >
|8 r 0 Nigedk,K,2)

[SUWN)/Z,, ;. »]o theor
SL(2,Z) duality rotation (N Zyeaw i )lo y

Starting from the [SU(N)/Z, ], theory with k = gcd(K,K") = gcd(k, k', ), all
su(N) theories with the same gcd(k, k', £) can be generated by SL(2,Z) duality
transformations.

14




Part 1 — cont’d

4. SL(2,7) duality orbits Bergman-SH

# of SL(2,7Z) orbits

# of k satistying k = gcd(k, k')

gcd(k, k', ) =1

ged(k, k', 0) = ged(k,_1, k,_) =k _,
ged(k, k', 0) = ged(ky, ky) = k; SUWN)/Zy

suenz,) / SI \T{

T T

7 G >\T4 o Uz, SUNZ | ® o / S \
o’ SUWN) .

[SUNYZi Lt [SUN)/Z; 1y [SUNYZy Tk, -k, [SUN)/Z, 1y,

SUN)IZ, T

| O]

T

I [SUWN)/Z, 1, I I [SUWN)/Z, 1o I

SL(2,7) duality web of /' = 4 su(N) SYM theories
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Part II: Mixed ’t Hooft anomaly from type IIB SUGRA

1. Field the()ry Gaiotto-Kapustin-Kormagodski-Seiberg

e There 1s a mixed ’t Hooft anomaly by gauging the (electric) Z;, subgroup of
the 1-form symmetry in the presence of 8, which breaks CP at 8 = .
For the SU (N ) theory (k/ — N) Gaiotto-Kapustin-Seiberg-Willett
N-1

210+ 2] = Zi6lexo | 22 J@
| = exp | 2z N ), 2

where B € H*(X, Zy) the background 2-form gauge field, Z°( - ) the Pontryagin
square operation; (B)/N =~ fractional instanton number by Z,, gauging.

e The anomaly action (to be reproduced by gravity dual)

N-1 J dd P (B) SUN)/Z, NN-1) J dd P (B)
S5y = 2mi > 2mi ;
2r 2 k? 2 2

where B € H?*(X, Z,) for the latter

16



Part II — cont’d
% Gravity dual description Bergman-SH
e The CS action 1n type IIB SUGRA reproduces the anomaly action:

F,=dC,—CydB,=0
B,AdC,AndC, ——= "~

> —anJ dCy A B, A B,

Stop — J
AdSgxSS AdS;

where B = k'B, € H*(X, Z,) and Cy = 0/2x

e To be more precise, the O(N?) part is missing. However, on spin manifolds X,

J P(B)/2 € Z and the anomaly indeed agrees.
X

17



Part III: Axionic Janus as interfaces between different @
angles

1. Field theory

e In the case of pure SU(N) YM theory, the mixed ’t Hooft anomaly implies
that CP at @ = 7 is spontaneously broken (out of three logical possibilities,
nontrivial gapless theory, gapped TFT, or SSB).

NB: can’t be a gapped trivial theory due to a nontrivial anomaly

e For pure SU(N) YM theory, the IR theory i1s gapped and it is known that CP is
SSB for N — o0o0. Hence a domain wall exists between the @ = *+ & vacua.

e However, since /' =4 SYM i1s a CFT, there cannot be SSB but it can still
“saturate” the anomaly because 1t’s a nontrivial gapless theory.

18



Part III: Axionic Janus as interfaces between different @
angles

1. Field the()ry Gaiotto-Komargodski-Seiberg

e Even though there is no domain wall, a non-dynamical interface, which is
nonetheless similar to the domain wall, can exist between € = £ 7 simply by
varying 6 over the space.

e Since /' =4 SYM is a CFT, without introducing a scale by hand, the
interface must be sharp, VO — .

e The sharp jump of 6 adds to the action the SU(N), CS term at the interface.
So the interface theory 1s plausibly the SU(N ), CS theory, which is level-
rank dual to the U(k)_y CS theory.

19



Part 111 — cont’d

%% Gravity dual description

o Since the D7 charge O, = JdCO , the jump of @ can be described by D7-branes

in AdSs X S°.

k D7 branes wrapping S°> = 2 dimensional wall in R>

D3| X | x| x| X DN = 6 non-SUSY
D7 | X | x| X X | X | X | X | X

20



Part III — cont’d

% Gravity dual description

e The interface has two faces and there exists a geometry that exactly has such
a feature — Janus geometry (the Roman two-faced God) Bak-Gutperle-Hirano

AdS4§ince
AdS, sllce .............. A dS. slice
. 15 .
Janus = deformed AdS;
with two faces

interface

domain wall

K =—H K=t H
half of boundary half of boundary

e The original Janus is purely dilatonic, but 1t has been generalized to include
the axion. The one of our interest 1s the Janus for which the dilaton (dual to
the gauge coupling) 1s constant on the boundary. D’Hoker-Estes-Gutperle

21



Part 111 — cont’d

% Gravity dual description

e The relevant part of type IIB SUGRA is that of gravity g, and axio-dilaton

T = CO + ie —¢
Axio-dilaton
Ty = e_¢
U F 0
Boundary Boundary

K==l H=TH

C0=—0 C0=+9 TIV=C0

The dilaton = YM coupling does not vary in the boundary,
whereas the axion = 6 angle jumps across the interface

22

Axion
7 =G
[ Boundary
CO =+ 0
half AdSs boundary
Excursion [in the bulk H
Boundary
CO = — 0
half AdSs boundary

Another illustration of a sadden jump of the axion
across the interface in the boundary



Part III — cont’d

% Gravity dual description

¢ The interface theory is described by the D7 U(k)_, CS action

R12%S5 R12

e This agrees with the field theory expectation: The sharp jump of 8 adds to
the action the SU(V), CS term at the interface which is level-rank dual to the

U(k)_n CS theory.

23



Discussions

so(N), spin(N), sp(N) theories worked out Bergman-SH
ABIJIM theories Bergman-Tachikawa-Zafrir

Klebanov-Strassler theory Apruzzi-van Beest-Gould-Schaefer-Nameki

Witten-Sakai-Sugimoto model Argurio-Bertolini-Bigazzi-Cotrone-Niro

The SL(2,Z) 1s not a symmetry of type IIB string theory on AdSs X § .

with the boundary conditions properly taken into account. It maps one
theory to another. Nevertheless, given the recent discussions on the
ensemble interpretation of holography, 1t might be interesting to
consider an ensemble of A/ = 4 su(N) SYM theories with a fixed value
of gcd(k, k', ) that are connected by SL(2,7) transformations.

24



Thank you!



Part 111 — cont’d

% Gravity dual description
Ansatz
ds® = h)(dpi® + dsls, ) + A9

7 34 ‘ '
—+ + 1 =0
T 2h Im(7)

V(h)

deformed bulk AdSsboundary

[
>

>

>

particle motion

Solution

)

h? —4h> + 4h* =

| 7'|*/(Im(7))?

l7(u) |* = 1>

cg/h3

(r e R)

h(u)

.

_

M=-—ﬂo

26 half AdSs boundary

[
>

H
H=+Hy

half AdSs boundary



Part 111 — cont’d

% Gravity dual description

O =—kr x<0 X

. 0 20
e The D7 flux: F=dCc, =% F=—du=205x)dx-"—dz
Ho X

e The jump of &: Q, = J dCy = Cyug) — Co—pp) =20 =k => 0Oy, =470 = 2kx
L
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