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Part I:   SYM theories from  boundary 
conditions and branes in  
 
(i) Gauging center symmetry, (ii) Line operators,  (iii) 1-form 
symmetry, (iv)  duality orbits


Part II: Mixed ’t Hooft anomaly from type IIB SUGRA


(i) CP violating anomaly action by gauging 1-form symmetry 


Part III:  Axionic Janus as interfaces between different  
angles 

𝒩 = 4 su(N) (B2, C2)
AdS5

SL(2,Z)

θ
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Plan of this talk



• Recently, nonlocal operators and higher form symmetries (under 
which they are charged) gained renewed interests in QFT.


• In particular, they provide new insights into the phase structure 
of QFT via mixed ’t Hooft anomaly involving higher form 
symmetries.   


• Less known, but they can also be used to reveal the intricate 
structure of the duality web.  
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Motivation
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Motivation — cont’d

• Meanwhile, string theory hosts, naturally, nonlocal operators 
(objects) and associated higher form symmetries. 


• Thus, via holography (AdS/CFT), one may be able to gain a more 
intuitive and somewhat simpler understanding of the recent  
developments in higher form symmetries.


• Hopefully, this line of thought provides new perspectives on the 
subject.

 Hofman-Iqbal
Many others in the last slide
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Part I:   SYM theories from  boundary 
             conditions and branes in 

𝒩 = 4 su(N) (B2, C2)
AdS5

1. Gauging center symmetry

• The  group has the  center symmetry. By gauging a subgroup of , 
we can construct new theories: 

SU(N) ZN ZN

𝒩 = 4 SU(N)/Zk SYM theories with   N = kk′￼

• This is not the end of the story and the life is more intricate:  
 
The  theory are further classified into sub-theories distinguished 
by the line operator spectrum           

SU(N)/Zk

 Aharony-Seiberg-Tachikawa
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Part I — cont’d

2. Line operator spectrum

• The line operators are Wilson, ’t Hooft, and dyonic lines. 

where                                    with  ℓ = 0,1,⋯, k − 1 N = kk′￼

Lk,ℓ := {(ze, zm) = e(k,0) + m(ℓ, k′￼) mod N}

k Wilson lines k′￼ ′￼t Hooft lines + ℓ Witten effect

• The  theories (center symmetry gauging + line operator spectrum)su(N)

𝒩 = 4 [SU(N)/Zk]ℓ SYM theories

 Aharony-Seiberg-Tachikawa
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Part I — cont’d

3. 1-form symmetry

W(L) ZN e
2πi
N⏟

ZN charge

W(L)

W(L)k

Zk invariant

Zk′￼ e
2πik

N W(L)k = e
2πi
k′￼⏟

Zk′￼charge

W(L)k

• In fact, the  theory has  1-form symmetry: [SU(N)/Zk]0 Ze
k′￼

× Zm
k

T(L′￼)k′￼

Zk′￼invariant

Zk e
2πik′￼

N T(L′￼)k′￼ = e
2πi
k⏟

Zk charge

T(L′￼)k′￼

• The most basic  theory has (electric)  1-form symmetry.SU(N) ZN
= gauging magnetic  symmetryZN

• The  theories has (electric)  1-form symmetry: SU(N)/Zk Zk′￼
= gauging magnetic  symmetryZk′￼
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Part I — cont’d

3. 1-form symmetry

• The 1-form symmetry of the  theory[SU(N)/Zk]ℓ

( Zk′￼⏟
electric

× ZN/gcd(k′￼,ℓ)

dyonic

)/Zk′￼/gcd(k′￼,ℓ)

Lk,ℓ := {(ze, zm) = e(k,0) + m(ℓ, k′￼) mod N}

k Wilson lines k′￼ ′￼t Hooft lines + ℓ Witten effect

for the line operator spectrum

represented by

W(L)k

Zk′￼charged

, W(L)ℓT(L)k′￼

ZN/gcd(k′￼,ℓ) charged

with (W(L)k)ℓ = (W(L)ℓT(L)k′￼)k

Zk′￼/gcd(k′￼,ℓ) charged



9

Part I — cont’d

• In the diagonal basis, the 1-form symmetry of the  theory [SU(N)/Zk]ℓ

ZN/gcd(k,k′￼,ℓ) × Zgcd(k,k′￼,ℓ)  Gaiotto-Kapustin-Seiberg-Willett

under which the following line operators are charged:

W(L)pk+ℓT(L)k′￼
ZN/gcd(k,k′￼,ℓ) e

2πi
N/gcd(k, k′￼, ℓ) (W(L)pk+ℓT(L)k′￼)

W(L)
δN

gcd(k, k′￼, ℓ)T(L)
γN

gcd(k, k′￼, ℓ)
Zgcd(k,k′￼,ℓ) e

2πi
gcd(k, k′￼, ℓ) (W(L)

δN
gcd(k, k′￼, ℓ)T(L)

γN
gcd(k, k′￼, ℓ) )

where there always exists  such that  ∃p ∈ Z gcd(pk + ℓ, k′￼) = gcd(k, k′￼, ℓ)

δ
k′￼

gcd(k, k′￼, ℓ)
− γ

pk + ℓ
gcd(k, k′￼, ℓ)

= 1

 Bergman-SH



10

Part I — cont’d

Gravity dual description

• The line operator spectrum of all  theories and its center 
symmetry are all encoded in the topological theory  

[SU(N)/Zk]ℓ
Witten & Aharony-Witten

Stop = ∫AdS5×S5

B2 ∧ dC2 ∧ dC4 =
N
2π ∫AdS5

B2 ∧ dC2

where  are a canonical conjugate pair like  upon quantisation(B2, C2) (x, p)

[b, c] =
2πi
N

with b = ∫S
B2 , c = ∫S

C2

• The admissible boundary conditions

Ze b + Zm c = 0 , Z′￼e b + Z′￼m c = 0 with ZeZ′￼m − Z′￼eZm = N

two BCs commute mod N

equivalent to Dirac quantisation condition
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Part I — cont’d

By an  rotation, the BCs can be brought into the canonical formSL(2,Z)

(Ze Zm

Z′￼e Z′￼m) ⟶ (k 0
ℓ k′￼) : kb = 0

k F1

, k′￼c + ℓb = 0
(ℓ,k′￼) string

where                                  ℓ = 0,1,⋯, k − 1

r

a

x

k F1

r

b

n F1

n F1 r

xk0

gluon

D5S5

c

k0k F1

= 1

a

r (`/r, k0/r)

y

strings

b

yN/r

N (`/r, k0/r)

(`/r, k0/r)5S5

strings

c

kr (`/r, k0/r)

yk

x`

`k F1

strings

NS5S5

= 1

x ↔ kb = 0
y ↔ k′￼c + ℓb = 0
r = gcd(k′￼, ℓ)
n ≠ mk , N

 Bergman-SH

“Dirichlet” = line operator                              “Neumann” = surface operator                              
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Part I — cont’d

D1 surface = AdS3 × S1 D3 with F Gukov-Witten, Drukker-Gomis-Matsuura

r

WN

F1

a

r

D1

D1

TN

c

r

N F1

(WN)N

gluon

D5S5

b

b = 0 Nb = 0Nc = 0 ↔ nc ≠ 0
n = 0,1,⋯, N − 1

= 1

wrapped D5 point (′￼′￼gluon′￼′￼) : A1 = ∫S5

C6 = 0 (Hodge dual of Neumann C2 ≠ 0)

wrapped NS5 line : A′￼1 = ∫S5

B6 ≠ 0 (Hodge dual of Dirichlet B2 = 0)

“Dirichlet”                               

“Neumann”                               
on which  D1s endingN

on which  F1s endingN

NB: The BCs on (line or point) D5 and NS5-branes wrapping  
As an illustration, consider the  theory:

S5

SU(N) = [SU(N)]0 cousins of baryon vertex
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Part I — cont’d

4.  duality orbits from gravity dualSL(2,Z)

• The different  theories are connected by .  [SU(N)/Zk]ℓ SL(2,Z)

See Aharony-Seiberg-Tachikawa 
for the original field theory discussions

• However, not all the  theories belong to a single  orbit. 
There are “islands” of  orbits distinguished by the 1-form symmetry 
or the  invariant :

[SU(N)/Zk]ℓ SL(2,Z)
SL(2,Z)

SL(2,Z) gcd(k, k′￼, ℓ)

ZN/gcd(k,k′￼,ℓ) × Zgcd(k,k′￼,ℓ)

• This can be most manifestly understood from the  transformations 
of the boundary conditions (in the diagonal basis of the 1-form symmetry):

SL(2,Z)

T : B → B , C → C + B
S : B → − C , C → B

pk + ℓ k′￼

δN
gcd(k, k′￼, ℓ)

γN
gcd(k, k′￼, ℓ)

(b
c) ≡ MD (b

c) = 0
ZN/gcd(k,k′￼,ℓ) :

Zgcd(k,k′￼,ℓ) :
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Part I — cont’d

4.  duality orbits from gravity dualSL(2,Z)

• The duality orbit can be understood from the following relation:  

MD

pk + ℓ
gcd(k, k′￼, ℓ)

k′￼
gcd(k, k′￼, ℓ)

δ γ

SL(2,Z) duality rotation

= (gcd(k, k′￼, ℓ) 0
0 N/gcd(k, k′￼, ℓ))
[SU(N)/Zgcd(k,k′￼,ℓ)]0 theory

Starting from the  theory with , all 
 theories with the same  can be generated by  duality 

transformations.

[SU(N)/Zk]0 k = gcd(k, k′￼) = gcd(k, k′￼, ℓ)
su(N) gcd(k, k′￼, ℓ) SL(2,Z)
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Part I — cont’d

4.  duality orbitsSL(2,Z)  Bergman-SH

 duality web of  SYM theories SL(2,Z) 𝒩 = 4 su(N)

# of SL(2,Z) orbits = # of k satisfying k = gcd(k, k′￼)

gcd(k, k′￼, ℓ) = 1

gcd(k, k′￼, ℓ) = gcd(k1, k′￼1) = k′￼1

gcd(k, k′￼, ℓ) = gcd(kn−1, k′￼n−1) = k′￼n−1

[SU(N )/Zk1
]0

[SU(N )/Zk′￼1]0

S
T

[SU(N )/Zk1
]k′￼1

T

[SU(N )/Zk1
]mk1−k′￼1

SU(N )/ZN

SU(N )

S
T

[SU(N )/ZN]N−1

T

[SU(N )/ZN]1

T

SU(N )/Zkn−1
]0

[SU(N )/Zk′￼n−1
]0

S
T

[SU(N )/Zkn−1
]k′￼n−1

T

[SU(N )/Zkn−1
]mkn−1−k′￼n−1



16

Part II:  Mixed ’t Hooft anomaly from type IIB SUGRA 

1. Field theory

• There is a mixed ’t Hooft anomaly by gauging the (electric)  subgroup of 
the 1-form symmetry in the presence of , which breaks CP at .  
For the  theory ( )

Zk′￼

θ θ = π
SU(N) k′￼= N

Z[θ + 2π] = Z[θ]exp [2πi
N − 1

N ∫X

𝒫(𝖡)
2 ]

where  the background 2-form gauge field,  the Pontryagin 
square operation;   fractional instanton number by  gauging.

𝖡 ∈ H2(X, ZN) 𝒫( ⋅ )
𝒫(𝖡)/N ≃ ZN

 Gaiotto-Kapustin-Seiberg-Willett

• The anomaly action (to be reproduced by gravity dual) 

S5d = 2πi
N − 1

N ∫
dθ
2π

𝒫(𝖡)
2

SU(N)/Zk 2πi
N(N − 1)

k′￼2 ∫
dθ
2π

𝒫(𝖡)
2

where  for the latter𝖡 ∈ H2(X, Zk′￼)

 Gaiotto-Kapustin-Kormagodski-Seiberg
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Part II — cont’d 

Gravity dual description

• To be more precise, the  part is missing. However, on spin manifolds , 

 and the anomaly indeed agrees. 

𝒪(N2) X

∫X
𝒫(𝖡)/2 ∈ ℤ

• The CS action in type IIB SUGRA reproduces the anomaly action: 

Stop = ∫AdS5×S5

B2 ∧ dC2 ∧ dC4
F̃3=dC2−C0dB2=0 − 2πN∫AdS5

dC0 ∧ B2 ∧ B2

where  and 𝖡 = k′￼B2 ∈ H2(X, Zk′￼) C0 = θ/2π

 Bergman-SH
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Part III:  Axionic Janus as interfaces between different  
                angles 

θ

1. Field theory

• In the case of pure  YM theory, the mixed ’t Hooft anomaly implies 
that CP at  is spontaneously broken (out of three logical possibilities, 
nontrivial gapless theory, gapped TFT, or SSB). 

SU(N)
θ = π

• For pure  YM theory, the IR theory is gapped and it is known that CP is 
SSB for . Hence a domain wall exists between the  vacua. 

SU(N)
N → ∞ θ = ± π

• However, since  SYM is a CFT, there cannot be SSB but it can still 
“saturate” the anomaly because it’s a nontrivial gapless theory.

𝒩 = 4

NB: can’t be a gapped trivial theory due to a nontrivial anomaly
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Part III:  Axionic Janus as interfaces between different  
                angles 

θ

1. Field theory

• Even though there is no domain wall, a non-dynamical interface, which is 
nonetheless similar to the domain wall, can exist between  simply by 
varying  over the space.

θ = ± π
θ

• Since  SYM is a CFT, without introducing a scale by hand, the 
interface must be sharp, . 

𝒩 = 4
∇θ → ∞

• The sharp jump of  adds to the action the  CS term at the interface. 
So the interface theory is plausibly the  CS theory, which is level-
rank dual to the  CS theory.

θ SU(N)k
SU(N)k

U(k)−N

 Gaiotto-Komargodski-Seiberg
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Part III — cont’d

Gravity dual description

ℝ3

θ = − kπ θ = + kπ

k D7 branes wrapping S5 = 2 dimensional wall in ℝ3

3.5 The interface as a two-face

The holographic dual of an interface should involve a D7-brane, which sources the

Type IIB axion C0 dual to the ✓ parameter of the SYM theory. In the original brane

configuration in flat space we have:

0 1 2 3 4 5 6 7 8 9

D3 ⇥ ⇥ ⇥ ⇥

D7 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

This is an ND = 6 brane system and therefore non-supersymmetric. At non-zero

separation along x4, the D3-branes and D7-branes repel each other. Replacing the N

D3-branes with their AdS5 ⇥ S5 near-horizon background, these D7-branes wrap the

S5 and are transverse to the x3 and radial coordinates of AdS5. The D7-branes are

pushed towards the AdS5 horizon.

A related configuration was studied in [11]. There the x3 coordinate was com-

pactified such that x3 ⇠ x3 + L, leading to background in which the x3 circle shrinks

at a non-zero radial position r0 = ⇡R2

L (the AdS5 soliton). The (x3, r) space is then

topologically a disk with the D7-branes located at its center. Taking k D7-branes, and

ignoring their backreaction on the metric and dilaton, the axion field takes the form

C0(x3) =
k

L
x3 . (3.12)

From the point of view of the boundary theory, namely the low-energy 3d worldvolume

theory of the N compactified D3-branes, this gives a level k SU(N) CS term. On the

other hand, from the point of the D7-branes, the 5-form flux on S5 gives a level N U(k)

CS term. Thus this construction gives a holographic realization of level-rank duality.

In our case x3 is not compact, and the dependence of the axion on x3 and r is

more complicated. But in principle this should provide a realization of an interface

that interpolates between ✓(x3 ! �1) = 0 and ✓(x3 ! +1) = 2⇡k. Remarkably,

there exists a fully backreacted solution with precisely this property. This is the axionic

Janus (the Roman two-faced god) solution, which we now describe.

The Janus geometry is given by a specific SO(2, 3) preserving deformation of

AdS5 ⇥ S5 most easily expressed using the AdS4 slicing of AdS5 [12, 13],

ds2 = h(µ)
�
dµ2 + ds2AdS4

�
+ d⌦2

5 (3.13)

F5 = 2h(µ)5/2dµ ^ !AdS4 + 2!S5 . (3.14)

For AdS5, the coordinate µ is related to the usual AdS5 coordinates as

cos2 µ =
z2

z2 + x2
3

, (3.15)

– 11 –

• Since the D7 charge  , the jump of  can be described by D7-branes 

in .

QD7 = ∫ dC0 θ

AdS5 × S5

DN = 6 non-SUSY
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Part III — cont’d

Gravity dual description

• The interface has two faces and there exists a geometry that exactly has such 
a feature — Janus geometry (the Roman two-faced God)   Bak-Gutperle-Hirano

• The original Janus is purely dilatonic, but it has been generalized to include 
the axion. The one of our interest is the Janus for which the dilaton (dual to 
the gauge coupling) is constant on the boundary.  D’Hoker-Estes-Gutperle

Janus = deformed  
with two faces

AdS5



22

Part III — cont’d

Gravity dual description

• The relevant part of type IIB SUGRA is that of gravity  and axio-dilaton gμν

τ = C0 + ie−ϕ

The dilaton = YM coupling does not vary in the boundary, 
whereas the axion =  angle jumps across the interfaceθ

Another illustration of a sadden jump of the axion 
across the interface in the boundary

Axio-dilaton Axion

Boundary

Boundary

Excursion in the bulk

Boundary Boundary
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Part III — cont’d

Gravity dual description

• The interface theory is described by the D7  CS action U(k)−N

SD7 = ∫R1,2×S5

C4 ∧ TrU(k)(F ∧ F) = − N∫R1,2

TrU(k)(A ∧ F)

• This agrees with the field theory expectation: The sharp jump of  adds to 
the action the  CS term at the interface which is level-rank dual to the 

 CS theory.

θ
SU(N)k

U(k)−N
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Discussions

• ABJM theories   Bergman-Tachikawa-Zafrir

• Klebanov-Strassler theory   Apruzzi-van Beest-Gould-Schaefer-Nameki

• Witten-Sakai-Sugimoto model    Argurio-Bertolini-Bigazzi-Cotrone-Niro

•  theories worked outso(N), spin(N), sp(N)  Bergman-SH

• The  is not a symmetry of type IIB string theory on  
with the boundary conditions properly taken into account. It maps one 
theory to another. Nevertheless, given the recent discussions on the 
ensemble interpretation of holography, it might be interesting to 
consider an ensemble of  SYM theories with a fixed value 
of  that are connected by  transformations.      

SL(2,Z) AdS5 × S5

𝒩 = 4 su(N)
gcd(k, k′￼, ℓ) SL(2,Z)



Thank you!
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Part III — cont’d

Gravity dual description

ds2 = h(μ)(dμ2 + ds2
AdS4) + dΩ2

5

F5 = 2h(μ)5/2dμ ∧ ωAdS4
+ 2ωS5

τ′￼′￼

τ′￼
+

3h′￼

2h
+ i

τ′￼

Im(τ)
= 0

Ansatz

h′￼2 − 4h3 + 4h2 =
c2

0

6h
|τ′￼|2 /(Im(τ))2 = c2

0 /h3

|τ(μ) |2 = r2 (r ∈ ℝ)

Solution
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Part III — cont’d

Gravity dual description

L

θ = − kπ θ = + kπ

Q7 = ∫L
dC0 = C0(μ0) − C0(−μ0) = 2θ = k ⟹ θYM = 4πθ = 2kπ

F = dC0
z→0 F =

θ
μ0

dμ = 2θδ(x)dx −
2θ
πx

dz

• The jump of :θ

• The D7 flux:

μ z→0 2μ0 (Θ(x) −
1
2 )


