Localized Fermions

on $\mathbb{C P}^{2}$ Net-Zero Charged Topological Solitons

Shintaro Yamamoto

Collaborators: Yuki Amari ${ }^{\dagger}$ and Nobuyuki Sawado
Tokyo University of Science, Japan
Keio University, Japan ${ }^{\dagger}$
September 13, 2023
International Seminar-Type Online Workshop on Topological Solitons

Table of Contents

Motivation : Dirac Fermions and Topology
Din-Zakrzewski solutions and their Moduli space
Numerical method - Spectral-Flow

Summary and Outlook

I'm interested in ...
How localized fermions appear?
Can fermions feel (anti-)solitons inside a mixture?

Motivation : Dirac Fermions and

Topology

Zero modes and Topology

Fermion zero modes induced by the topology appear in various contexts of theoretical physics.

- Anomalous fermion number violation [A.J.Niemi, et al., Phys.Rept.135(1986)]
- Bulk-edge correspondence [c.L.Kane, et al., Phys.Rev.B82(2010)]

The numbers of such modes are characterized by the topological charge of solitons through the Atiyah-Singer index theorem.
The Atiyah-Singer Index theorem [M.F.Atiyah, et al., Ann.Math(1968)]

$$
n_{+}-n_{-}=Q
$$

n_{+}: the number of fermion zero modes n_{-}: the number of anti-fermion zero modes
$Q:$ the topological charge

Zero modes with $|Q| \geq 1$

- In a soliton background, $|Q| \geq 1$, the number of zero modes equals to the topological charge, i.e., $n_{ \pm}=|Q|$.
- In such situations, the wave function ψ is localized around the background soliton [R.Jackiv, et al., Nucl.Phys.B(1981)].
$Q=1$
$Q=-1$

[Shun-Qing Shen, Springer(2012)]

Zero modes with $Q=0$

What happens in the case of $Q=0$?

The index theorem tells us, the numbers of zero modes are related as below.

$$
Q=n_{+}-n_{-}=0 \Leftrightarrow n_{+}=n_{-} .
$$

\Rightarrow Not necessarily $n_{ \pm}=0$
Possibilities :
case 1. $n_{+}=n_{-}=0$ (trivial case).
case 2. $n_{ \pm} \neq 0$ (nontrivial case)

Zero modes with $Q=0$

What happens in the case of $Q=0$?

The index theorem tells us, the numbers of zero modes are related as below.

$$
Q=n_{+}-n_{-}=0 \Leftrightarrow n_{+}=n_{-} .
$$

\Rightarrow Not necessarily $n_{ \pm}=0$
Possibilities :
case 1. $n_{+}=n_{-}=0$ (trivial case).
case 2. $n_{ \pm} \neq 0$ (nontrivial case)

Our aim is to explore the solutions of the case 2. through a numerical calculation and how such fermion modes emerge from the $Q=0$ solutions.

Din-Zakrzewski solutions and their
Moduli space

Din-Zakrzewski solutions [A.M.Din, et al., Nucl.Phys.B(I980)]

Advantages of the solution in $2 d \mathbb{C P}^{2}$ NLSM

- Circular symmetric analytical solutions
- Two moduli parameters a, b

$$
E=\int_{\mathbb{R}^{2}} \mathrm{~d}^{2} x \underbrace{2\left[\left|D_{+} Z\right|^{2}+\left|D_{-} Z\right|^{2}\right]}_{\text {density of } E: \mathcal{E}}, Q=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \mathrm{~d}^{2} x \underbrace{2\left[\left|D_{+} Z\right|^{2}-\left|D_{-} Z\right|^{2}\right]}_{\text {density of } Q: \mathcal{Q}}
$$

$* 1 D_{ \pm}=\partial_{ \pm}-Z^{\dagger} \cdot \partial_{ \pm} Z$ is a covariant derivative and $x_{ \pm}=x_{1} \pm i x_{2}$.
$* 2$ A nonlinear constraint $Z^{\dagger} \cdot Z=1$ is imposed for the field $Z \in \mathbb{C}^{3} \backslash\{0\}$.
The linearly independent solutions of the EOM are

1. Instanton $Z_{I}: Q \equiv Q_{I}>0$,
2. Anti-instanton $Z_{A}: Q \equiv Q_{A}<0$,
3. Mixture $Z_{M}: Q \equiv Q_{M}=\left|Q_{A}\right|+\left(-Q_{I}\right)$.

Din-Zakrzewski solutions [A.M.Din, et al., Nucl.Phys.B(I980)]

Advantages of the solution in $2 d \mathbb{C P}^{2}$ NLSM

- Circular symmetric analytical solutions
- Two moduli parameters a, b

$$
E=\int_{\mathbb{R}^{2}} \mathrm{~d}^{2} x \underbrace{2\left[\left|D_{+} Z\right|^{2}+\left|D_{-} Z\right|^{2}\right]}_{\text {density of } E: \mathcal{E}}, Q=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \mathrm{~d}^{2} x \underbrace{2\left[\left|D_{+} Z\right|^{2}-\left|D_{-} Z\right|^{2}\right]}_{\text {density of } Q: \mathcal{Q}}
$$

$* 1 D_{ \pm}=\partial_{ \pm}-Z^{\dagger} \cdot \partial_{ \pm} Z$ is a covariant derivative and $x_{ \pm}$is $x_{1} \pm i x_{2}$.
$* 2$ A nonlinear constraint $Z^{\dagger} \cdot Z=1$ is imposed for the field $Z \in \mathbb{C}^{3} \backslash\{0\}$.
The linearly independent solutions of the EOM are

1. Instanton $Z_{I}: Q \equiv Q_{I}>0$,
2. Anti-instanton $Z_{A}: Q \equiv Q_{A}<0$,
3. Mixture $Z_{M}: Q \equiv Q_{M}=\underbrace{\left|Q_{A}\right|}_{>0}+\left(-Q_{I}\right)$.

Din-Zakrzewski solutions [A.M.Din, et al., Nucl.Phys.B(I980)]

Advantages of the solution in $2 d \mathbb{C P}^{2}$ NLSM

- Circular symmetric analytical solutions
- Two moduli parameters a, b

$$
E=\int_{\mathbb{R}^{2}} \mathrm{~d}^{2} x \underbrace{2\left[\left|D_{+} Z\right|^{2}+\left|D_{-} Z\right|^{2}\right]}_{\text {density of } E: \mathcal{E}}, Q=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \mathrm{~d}^{2} x \underbrace{2\left[\left|D_{+} Z\right|^{2}-\left|D_{-} Z\right|^{2}\right]}_{\text {density of } Q: \mathcal{Q}}
$$

$* 1 D_{ \pm}=\partial_{ \pm}-Z^{\dagger} \cdot \partial_{ \pm} Z$ is a covariant derivative and $x_{ \pm}$is $x_{1} \pm i x_{2}$.
$* 2$ A nonlinear constraint $Z^{\dagger} \cdot Z=1$ is imposed for the field $Z \in \mathbb{C}^{3} \backslash\{0\}$.
The linearly independent solutions of the EOM are

1. Instanton $Z_{I}: Q \equiv Q_{I}>0$,
2. Anti-instanton $Z_{A}: Q \equiv Q_{A}<0$,
3. Mixture $Z_{M}: Q \equiv Q_{M}=\left|Q_{A}\right|+\underbrace{\left(-Q_{I}\right)}_{<0}$.

How to construct the solutions

The definition of Bäcklund transformation

$$
P_{+} g:=\partial_{+} g-\frac{g^{\dagger} \cdot \partial_{+} g}{|g|^{2}} g, \forall g \in \mathbb{C}^{3} \backslash\{0\}
$$

One can construct the series of solutions from a holomorphic ansatz $f=f\left(x_{+}\right) \in \mathbb{C}^{3} \backslash\{0\}$ as followings.

$$
Z_{I}=\frac{f}{|f|} \stackrel{P_{+}}{\Longrightarrow} Z_{M}=\frac{P_{+} f}{\left|P_{+} f\right|} \stackrel{P_{+}}{\Longrightarrow} Z_{A}=\frac{P_{+}^{2} f}{\left|P_{+}^{2} f\right|}
$$

- Z_{M} can be obtained analytically!
- Z_{I} and Z_{A} have the energy E proportional to Q, i.e.,

$$
E_{I}=2 \pi Q_{I}, E_{A}=2 \pi\left|Q_{A}\right|
$$

- Z_{M} has $E_{M}=E_{I}+E_{A}$. NOT proportional to $Q_{M}=\left|Q_{A}\right|-Q_{I}$!
© Z_{M} is the mixture of Z_{I} and Z_{A} !

The Moduli Space \mathcal{M} - spatial structure

- We employ a simple ansatz $f=\left(1, a x_{+}, b x_{+}^{2}\right)^{t}, a, b \in \mathbb{R}_{\geq}^{+}$.
- $\mathcal{M}=\mathbb{R}_{\geq}^{+} \times \mathbb{R}_{\geq}^{+}$
- In this case, the charges are $\left\{Q_{I}, Q_{M}, Q_{A}\right\}=\{2,0,-2\}$.

$\rho:$ radial coordinate in \mathbb{R}^{2}, relating to $x_{ \pm}=\rho \exp [\pm i \phi]$

The Moduli Space \mathcal{M} - embedding limit

- Embedding limit... The limitting behaviour of Q in parameter space. In this situation, Z has the degree of freedom of $\mathbb{C} P^{1}$.

Q for Mixture Solution

$$
\begin{gathered}
Q_{M}=\left|Q_{A}\right|-Q_{I} \\
\left|Q_{A}\right|: \text { an "instanton", } \\
-Q_{I}: \text { an "anti-instanton" } \\
\text { in the mixture. }
\end{gathered}
$$

- $a \rightarrow 0, b \rightarrow 0$: vacuum for the "instanton" $\left|Q_{A}\right|$ - $a \rightarrow \infty, b \rightarrow \infty$: vacuum for the "anti-instanton" $-Q_{I}$

The Moduli Space \mathcal{M} - embedding limit

- Embedding limit... The limitting behaviour of Q in parameter space. In this situation, Z has the degree of freedom of $\mathbb{C} P^{1}$.

Q for Mixture Solution
$Q_{M}=\left|Q_{A}\right|-Q_{I}$
$\left|Q_{A}\right|$: an "instanton",
$-Q_{I}$: an "anti-instanton" in the mixture.
- $a \rightarrow 0, b \rightarrow 0$: vacuum for the "instanton" $\left|Q_{A}\right|$
- $a \rightarrow \infty, b \rightarrow \infty$: vacuum for the "anti-instanton" $-Q_{I}$

Numerical method - Spectral-Flow

$2 d$ Dirac Hamiltonian and the Eigenvalue Problem

- We forcus on the energy spectra on parameter space of background solitons.

$$
\begin{aligned}
& \mathcal{H}=\left(\begin{array}{cc}
m X & \exp [-i \phi]\left(-\partial_{\rho}+\frac{i \partial_{\phi}}{\rho}\right) \\
\exp [i \phi]\left(\partial_{\rho}+\frac{i \partial_{\phi}}{\rho}\right) & -m X
\end{array}\right) \\
& X \equiv I_{3}-2 Z \otimes Z^{\dagger}, Z=\left\{Z_{I}, Z_{M}, Z_{A}\right\}
\end{aligned}
$$

Dirac equation

$$
\mathcal{H} \psi_{\kappa}=\varepsilon_{\kappa} \psi_{\kappa} \Leftrightarrow \operatorname{det}(H-\varepsilon I)=0
$$

$H:$ matrix rep. of $\mathcal{H}, \kappa \in\left\{\left.k+\frac{1}{2} \right\rvert\, k \in \mathbb{Z}\right\}$: quantum number
The operator \mathcal{H} depends on moduli parameters of Z : $\mathcal{H}=\mathcal{H}(a, b)$. By diagonalizing H for $\{a, b\} \in \mathbb{R}_{\geq}^{+} \times \mathbb{R}_{\geq}^{+}$, we obtain a transition of the energy levels (Spectral flow).
Since ψ is a complex spinor, we forcus on $\chi \equiv \frac{1}{2 \pi} \int \mathrm{~d} \phi|\psi|^{2}$.

Spectral flow : Z_{I} background $\left(Q_{I}=2, E_{I}=4 \pi\right)$ case

Indices

$$
\begin{aligned}
& \left\{\begin{array}{l}
n_{+}=2 \\
n_{-}=0
\end{array}\right. \\
& n_{+}-n_{-}=2
\end{aligned}
$$

- Index theorem

$$
n_{+}-n_{-}=Q_{I}
$$

- $a \rightarrow \infty$: Vacuum for the instanton Q_{I}
- Red and Blue levels "respond" to the spatial structure of \mathcal{Q}_{I}.
- As \mathcal{Q}_{I} becomes "thick", the two levels cross $\varepsilon=0$ from negative continuum.

Spectral flow : Z_{A} background $\left(Q_{A}=-2, E_{A}=4 \pi\right)$ case

$$
\begin{aligned}
& \begin{cases}n_{+} & =0 \\
n_{-} & =2\end{cases} \\
& n_{+}-n_{-}=-2
\end{aligned}
$$

- Index theorem

$$
n_{+}-n_{-}=Q_{A}
$$

- $a \rightarrow 0$: Vacuum for the anti-instanton Q_{A}

$$
\text { the antı-Instanton } Q_{A}
$$

- Magenta and Cyan "respond" to the spatial structure of \mathcal{Q}_{A}.
- As \mathcal{Q}_{A} becomes "thick", the two levels cross $\varepsilon=0$ from positive continuum.

The wave functions : Z_{I} and Z_{A} background $(Q= \pm 2, E=4 \pi)$

The wavefunction of zero modes is localized around the thick topological charge density of (anti-) instantons.

$$
n_{l o c}=n_{-}=\left|Q_{A}\right|
$$

The number of localized modes $n_{l o c}$ equals to $n_{ \pm}$and Q from the index theorem.

Spectral flow : Z_{M} background $\left(Q_{M}=0, E_{M}=8 \pi\right)$

Indices

$$
\begin{aligned}
& \left\{\begin{array}{l}
n_{+}=2 \\
n_{-}=2
\end{array}\right. \\
& n_{+}-n_{-}=0
\end{aligned}
$$

- Index theorem

$$
n_{+}-n_{-}=Q_{M}
$$

- $a \rightarrow 0$: Vacuum for the "instanton" $\left|Q_{A}\right|$
- $a \rightarrow \infty$: Vacuum for the "anti-instanton" $-Q_{I}$

Nontrivial zero modes!

The wave functions : Z_{M} background $(Q=0, E=8 \pi)$

- In the intermediate region, both instantons and anti-instantons are "thick".
- Instantons and anti-instantons inside the mixture localize fermions, respectively.

Localized Modes

$$
\begin{aligned}
n_{l o c} & =n_{+}+n_{-}=4 \neq Q_{M} \\
n_{+} & =\left|Q_{A}\right|=2 \\
n_{-} & =Q_{I}=2
\end{aligned}
$$

The number of localized modes is NOT equal to the Net topological charge.

Localized modes (Fermion+Anti-Fermion) are induced by the components of the mixture.

Summary and Outlook

Summary and Outlook

Summary

- Thruogh the spectral-flow analysis in a moduli space, we can see how zero modes appear from the vacuum and how fermions detect the topology of the background field.
- We have found four zero modes and localized modes in spite of $Q=0$.
- We have given an interpretation to these modes, i.e., two of them are localized fermion modes, and the other two are localized anti-fermion modes, induced by components of the mixture.

Outlook

- back reaction
- non-zero charged mixture

Thank you for your attention!

