Localized Fermions
on CP? Net-Zero Charged Topological Solitons

Shintaro Yamamoto
Collaborators : Yuki Amarif and Nobuyuki Sawado
Tokyo University of Science, Japan

Keio University, Japan®

September 13, 2023
International Seminar-Type Online Workshop on Topological Solitons

1/16



Table of Contents

Motivation : Dirac Fermions and Topology
Din—Zakrzewski solutions and their Moduli space
Numerical method - Spectral-Flow

Summary and Outlook

I'm interested in ...

How localized fermions appear?
Can fermions feel (anti-)solitons inside a
mixture?

2/16



Motivation : Dirac Fermions and
Topology



Zero modes and Topology

Fermion zero modes induced by the appear in various

contexts of theoretical physics.

e Anomalous fermion number violation [a.s.Niemi, et al., Phys.Rept.135(1986)]

e Bulk-edge correspondence [c.LKane, et al., PhysRev.882(2010)]

The numbers of such modes are characterized by the topological
charge of solitons through the Atiyah—Singer index theorem.

ny —n_ =@

ny : the number of fermion zero modes
n_ : the number of anti-fermion zero modes
@ : the topological charge 3/16



Zero modes with || > 1

e In a soliton background, |@Q| > 1, the number of zero modes
equals to the topological charge, i.e., ny = |Q|.

e In such situations, the wave function ¢ is localized around the
background soliton [R.Jackiw, et al., Nucl.Phys.B(1981)].
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[Shun-Qing Shen, Springer(2012)]
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Zero modes with () =0

What happens in the case of () = 07

The index theorem tells us, the numbers of zero modes are related

as below.
Q=ny—n_=0&n=n_.
= Not necessarily nt =0 np=n_=0  ny=n_=1
Possibilities : . . @
case 1. ny =n_ = 0 (trivial case). R £0 _.'._:
case 2. ny # 0 (nontrivial case) —o— —o—
N

5/16



Zero modes with () =0

The index theorem tells us, the numbers of zero modes are related

as below.
RQ=ny—n_=0&np =n_.
= Not necessarily nt =0 np=n_=0  ny=n_=1
Possibilities : . . @
case 1. ny =n_ =0 (trivial case). R g0 _.'._:
case 2. ny # 0 (nontrivial case) —o— ——

Our aim is to explore the solutions of the case 2.
through a numerical calculation and how such fermion

modes emerge from the () = 0 solutions. p/16



Din—Zakrzewski solutions and their
Moduli space




Din—Zakrzewski solutions [a.m.pin, et al., Nucl.Phys.B(1980)]

Advantages of the solution in 2d CP? NLSM

e Circular symmetric analytical solutions

e Two moduli parameters a, b

E:/ d’z2[|D+Z° + |D-Z|*], Q = i/ d*z2[|D+Z|* — |D-Z|*]
R2 277 R2

density of E : &£ density of Q : Q

x1 Dy = 04+ — ZT -84 Z is a covariant derivative and x4+ = z1 + iza.
*2 A nonlinear constraint ZT - Z = 1 is imposed for the field Z € C3\{0}.
The linearly independent solutions of the EOM are

1. Instanton Z; : Q = Q1 > 0,
2. Anti-instanton Z4 : Q = Q4 <0,
3. Mixture Zy; - Q = Q= ‘(2‘\‘ + (—Qr).-
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How to construct the solutions

The definition of Backlund transformation |

.9
gt 849
Pigi=10.9— |g|2+ g, Vg € C3\{0}

One can construct the series of solutions from a holomorphic
ansatz f = f(z4) € C3\{0} as followings.

[ Py Pif Py Pif
Z]:f:>ZM: ZA:
£ [Py £ | P2 f]

& 7 can be obtained analytically!

e 71 and Z4 have the energy E proportional to @, i.e.,
Er=27Q;, E4q = 27T|QA|
e 7y has Eyy = Er+ E4. NOT proportional to Qay = |Qa| — Q1!

& 7,/ is the mixture of Z; and Z 4!
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The Moduli Space M - spatial structure

e We employ a simple ansatz f = (l,a:c+,bxi)t, a,b e R;
e M=RI xRS
e In this case, the charges are {Qr, 01/, Qa} = {2,0,—2}.
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p : radial coordinate in R?, relating to x+ = pexp [£id)
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The Moduli Space M - embedding limit

e Embedding limit... The limitting behaviour of ) in parameter
space. In this situation, Z has the degree of freedom of CPL.
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Qu = |Qal — Qs

|Qal : an “instanton”,
—(@r : an “anti-instanton”
in the mixture.

ea—0,b— 0: vacuum for

the “instanton” |Q 4|
e a — 00, b— 00 : vacuum
for the “anti-instanton” —Qy
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The Moduli Space M - embedding limit

e Embedding limit... The limitting behaviour of ) in parameter

space. In this situation, Z has the degree of freedom of CP!.
Q@ for Mixture Solution |

b Instanton \
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! &\ QM = |Qal — Q1

2 &NQK\I Vacuum

= X) . "
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A W) “ .. "
. —@7r : an “anti-instanton

in the mixture.

e —0,b— 0: vacuum for

§ 0
& % Today’s Topic the “instanton” |Qa|
L | ® o — 00, b— 00 : vacuum
b=0[x ! - .
—5 6 W a for the “anti-instanton” —Qy

N\ Anti-instanton
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Numerical method - Spectral-Flow




2d Dirac Hamiltonian and the Eigenvalue Problem

e We forcus on

mX exp [—ig] (—8,, + “%“’)
. iBy
exp [ig] (ap + 7‘) —-mX
X=1-22Q7Z", Z={Z1,2Zyu,Za}

,H:

Hip = extp < det (H —el) =0

1
H : matrix rep. of H, k € {k+ 5\1{: € Z} : quantum number

The operator H depends on moduli parameters of Z :
‘H = H(a,b). By diagonalizing H for {a,b} € RJZ“ X R; we obtain
a transition of the energy levels (Spectral flow).

Since 1 is a complex spinor, we forcus on x = 5= [ d¢ \QMQ_ 10/16
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Spectral flow : Z; background (Q;
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e Index theorem
ny —n_ = Qg

e g — oo : Vacuum for
the instanton Q7

e Red and Blue levels “respond” to the spatial structure of Qj.

e As Q; becomes “thick”, the two levels cross ¢ = 0 from

negative continuum.
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2
r n4 =0
w 0 n_ =2
M = M- = =2
71 L
5 e Index theorem
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e Magenta and Cyan “respond” to the spatial structure of O 4.
e As Q4 becomes “thick”, the two levels cross ¢ = 0 from

positive continuum. 12/16



The wave functions : Z; and 7, background (Q) = +2, E

The wavefunction of zero modes is localized around

the thick topological charge density of (anti-) instantons.
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Nipe = Nt = Q7 Nioe = N— = |Q 4

The number of localized modes n,,. equals to n4 and ) from
the index theorem. 13/16



ny —n_ =0

e Index theorem
ny —n- =Qum

e a — 0 : Vacuum for the
“instanton” |Q 4|

e a — 0o : Vacuum for the
“anti-instanton” —Q;

Nontrivial zero modes!
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The wave functions : 7); background (QQ =0, F = 8)

e In the intermediate region, both instantons and
anti-instantons are “thick” .
e Instantons and anti-instantons inside the mixture localize

fermions, respectively.
, v Localized Modes

111 /

1 Noe =N +1n_ =4 # Qum
ny =[Qal =2
n-=Qr=2

The number of localized
modes is NOT equal to the
3 Net topological charge.

Localized modes (Fermion-+Anti-Fermion) are induced by the

components of the mixture. 15/16



Summary and Outlook




Summary and Outlook

\
Thruogh the spectral-flow analysis in a moduli space, we can

see how zero modes appear from the vacuum and how
fermions detect the topology of the background field.

We have found four zero modes and localized modes in spite
of @ = 0.

We have given an interpretation to these modes, i.e., two of
them are localized fermion modes, and the other two are
localized anti-fermion modes, induced by components of

the mixture.
Outlook
e back reaction

e non-zero charged mixture
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Thank you for your attention!




	Motivation : Dirac Fermions and Topology
	Din--Zakrzewski solutions and their Moduli space
	Numerical method - Spectral-Flow
	Summary and Outlook
	Thank you for your attention!

