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Motivation : Dirac Fermions and

Topology



Zero modes and Topology

Fermion zero modes induced by the topology appear in various

contexts of theoretical physics.

• Anomalous fermion number violation [A.J.Niemi, et al., Phys.Rept.135(1986)]

• Bulk-edge correspondence [C.L.Kane, et al., Phys.Rev.B82(2010)]

•
...

The numbers of such modes are characterized by the topological

charge of solitons through the Atiyah–Singer index theorem.

The Atiyah-Singer Index theorem [M.F.Atiyah, et al., Ann.Math(1968)]

n+ − n− = Q

n+ : the number of fermion zero modes

n− : the number of anti-fermion zero modes

Q : the topological charge 3/16



Zero modes with |Q| ≥ 1

• In a soliton background, |Q| ≥ 1, the number of zero modes

equals to the topological charge, i.e., n± = |Q|.
• In such situations, the wave function ψ is localized around the

background soliton [R.Jackiw, et al., Nucl.Phys.B(1981)].
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[Shun-Qing Shen, Springer(2012)]
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Zero modes with Q = 0

What happens in the case of Q = 0?

The index theorem tells us, the numbers of zero modes are related

as below.

Q = n+ − n− = 0 ⇔ n+ = n−.

⇒ Not necessarily n± = 0

Possibilities :

case 1. n+ = n− = 0 (trivial case).

case 2. n± ̸= 0 (nontrivial case)
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n+ = n− = 0
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n+ = n− = 1

Our aim is to explore the solutions of the case 2.

through a numerical calculation and how such fermion

modes emerge from the Q = 0 solutions.
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Din–Zakrzewski solutions and their

Moduli space



Din–Zakrzewski solutions [A.M.Din, et al., Nucl.Phys.B(1980)]

Advantages of the solution in 2d CP2 NLSM

• Circular symmetric analytical solutions

• Two moduli parameters a, b

E =

∫
R2

d2x 2
[
|D+Z|2 + |D−Z|2

]︸ ︷︷ ︸
density of E : E

, Q =
1

2π

∫
R2

d2x 2
[
|D+Z|2 − |D−Z|2

]︸ ︷︷ ︸
density of Q : Q

∗1 D± = ∂± − Z† · ∂±Z is a covariant derivative and x± = x1 ± ix2.

∗2 A nonlinear constraint Z† · Z = 1 is imposed for the field Z ∈ C3\{0}.

The linearly independent solutions of the EOM are

1. Instanton ZI : Q ≡ QI > 0,

2. Anti-instanton ZA : Q ≡ QA < 0,

3. Mixture ZM : Q ≡ QM = |QA|+ (−QI).
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How to construct the solutions

The definition of Bäcklund transformation

P+g := ∂+g −
g† · ∂+g
|g|2

g, ∀g ∈ C3\{0}

One can construct the series of solutions from a holomorphic

ansatz f = f(x+) ∈ C3\{0} as followings.

ZI =
f

|f |
P+
==⇒ ZM =

P+f

|P+f |
P+
==⇒ ZA =

P 2
+f∣∣P 2
+f

∣∣
♠ ZM can be obtained analytically!

• ZI and ZA have the energy E proportional to Q, i.e.,

EI = 2πQI , EA = 2π|QA|
• ZM has EM = EI +EA. NOT proportional to QM = |QA| −QI !

♠ ZM is the mixture of ZI and ZA!
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The Moduli Space M - spatial structure

• We employ a simple ansatz f =
(
1, ax+, bx

2
+

)t
, a, b ∈ R+

≥.

• M = R+
≥ × R+

≥
• In this case, the charges are {QI , QM , QA} = {2, 0,−2}.
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ρ : radial coordinate in R2, relating to x± = ρ exp [±iϕ]
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The Moduli Space M - embedding limit

• Embedding limit... The limitting behaviour of Q in parameter

space. In this situation, Z has the degree of freedom of CP1.
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Q for Mixture Solution

QM = |QA| −QI

|QA| : an “instanton”,

−QI : an “anti-instanton”

in the mixture.

• a→ 0, b→ 0 : vacuum for

the “instanton” |QA|
• a→ ∞, b→ ∞ : vacuum

for the “anti-instanton” −QI
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Numerical method - Spectral-Flow



2d Dirac Hamiltonian and the Eigenvalue Problem

• We forcus on the energy spectra on parameter space of

background solitons.

H =

 mX exp [−iϕ]
(
−∂ρ +

i∂ϕ
ρ

)
exp [iϕ]

(
∂ρ +

i∂ϕ
ρ

)
−mX


X ≡ I3 − 2Z ⊗ Z†, Z = {ZI , ZM , ZA}

Dirac equation

Hψκ = εκψκ ⇔ det (H − εI) = 0

H : matrix rep. of H, κ ∈
{
k +

1

2
|k ∈ Z

}
: quantum number

The operator H depends on moduli parameters of Z :

H = H(a, b). By diagonalizing H for {a, b} ∈ R+
≥ × R+

≥, we obtain

a transition of the energy levels (Spectral flow).

Since ψ is a complex spinor, we forcus on χ ≡ 1
2π

∫
dϕ |ψ|2. 10/16



Spectral flow : ZI background (QI = 2, EI = 4π) case
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Spectral flow : ZA background (QA = −2, EA = 4π) case

0 1 2� �

� �

0

0 1 2� � �

� � �

0

0 1 2� � � � �

� � � � �

0

0 . 0 1 0 . 1 1 1 0
� �

� �

0

1

2

I I I I I I

I I I I I I

ε

a

••
κ = − 1

2

κ = 1
2

QA

Indicesn+ = 0

n− = 2

n+ − n− = −2

• Index theorem

n+ − n− = QA

• a→ 0 : Vacuum for

the anti-instanton QA

• Magenta and Cyan “respond” to the spatial structure of QA.

• As QA becomes “thick”, the two levels cross ε = 0 from

positive continuum. 12/16



The wave functions : ZI and ZA background (Q = ±2, E = 4π)

The wavefunction of zero modes is localized around

the thick topological charge density of (anti-) instantons.
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The number of localized modes nloc equals to n± and Q from

the index theorem. 13/16



Spectral flow : ZM background (QM = 0, EM = 8π)
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The wave functions : ZM background (Q = 0, E = 8π)

• In the intermediate region, both instantons and

anti-instantons are “thick”.

• Instantons and anti-instantons inside the mixture localize

fermions, respectively.
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The number of localized

modes is NOT equal to the

Net topological charge.

Localized modes (Fermion+Anti-Fermion) are induced by the

components of the mixture. 15/16



Summary and Outlook



Summary and Outlook

Summary

• Thruogh the spectral-flow analysis in a moduli space, we can

see how zero modes appear from the vacuum and how

fermions detect the topology of the background field.

• We have found four zero modes and localized modes in spite

of Q = 0.

• We have given an interpretation to these modes, i.e., two of

them are localized fermion modes, and the other two are

localized anti-fermion modes, induced by components of

the mixture.

Outlook

• back reaction

• non-zero charged mixture
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Thank you for your attention!
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