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Abstract: A novel soliton equation system (a set of simultaneous algebraic
vector equations) gives rise to the Maxwell equations in vacuum. It has become
evident that one must distinguish between the electromotive forces and the
electrostatic forces as separate phenomena. This, together with the equation
system, provides the mathematical framework in which to define a Constructive
Electromagnetic Quantum Theory in C3. This new theory provides an explana-
tion of all quantum phenomena, defines particles as electromagnetic solitons
and identifies—most significantly—that mass and all forces are manifestations
of the electromagnetic phenomenon. As an application, the theory enabled
the elucidation to identify the laws that govern the atomic mass relation of the
elements and their isotopes using an onion shell nucleon model. This onion
shell model allows me to predict energy production by cold isotope transmu-
tation within the element’s crystal structure; using zinc such a transmutation
produces one eighth of the energy released by the hydrogen to helium fusion
reaction. Furthermore, it also provides the fundamental understanding required
to calculate the “mass gap" as ∆0 ≈ 3.683×10−66 joules.

Keywords: Constructive Electromagnetic Quantum Theory, Electromagnetic
Solitons, Quantised Electromagnetism, Origin of Mass, Atomic Onion Shell
Model, Nucleon Packing, Isotope Transmutation, Unification of the Forces,
Mass Gap

“In classical electrodynamics, the vector and scalar potentials were first introduced
as a convenient mathematical aid for calculating the fields. It is true that in order to
obtain a classical canonical formalism, the potentials are needed. Nevertheless, the
fundamental equations of motion can always be expressed directly in terms of the
fields alone.

In the quantum mechanics, however, the canonical formalism is necessary, and as
a result, the potentials cannot be eliminated from the basic equations. Nevertheless,
these equations, as well as the physical quantities, are all gauge invariant; so that
it may seem that even in quantum mechanics, the potentials themselves have no
independent significance.”

These opening paragraphs are excerpted from Aharonov and Bohm’s 1959 work
[1]. Their work goes on to argue that these initial conclusions are not entirely
accurate and that a deeper interpretation of the potentials is necessary within the
framework of quantum mechanics.

The central thesis developed in this paper asserts that electrostatic fields and
electromotive potentials are distinct yet interconnected phenomena of electromag-
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Figure 1: Illustrating the vectors u, a, r and p juxtaposed to a travelling plane wave.

netic phenomenon. To provide a comprehensive description of the electromagnetic
phenomenon, it is imperative to integrate the equations governing electrostatic
fields with those governing electromotive potentials. This approach not only offers a
classical interpretation for the quantum mechanical phenomena but also suggests
that elementary particles can be conceptualised as electromagnetic solitons. The
fundamental framework presented herein constructs a classical electromagnetic
quantum theory.

Theorem 1: The soliton equation system. In a space C3 the system of simultaneous
equations

(u,a,r) defines−−−−→
{

u = 1

a ·a∗ a× r, a = 1

u ·u∗ r×u, r = u×a
}

(1)

defines the motion of a soliton characterised by a velocity vector u(t ) and two co-
orthogonal vectors a(t ) and r(t ) that describe the disturbance in a homogenous and
isotropic medium (see Figure 1).

Here the vector quantities u, a and r are complex vectors, for example

a = x̂axeiαx + ŷayeiαy + ẑazeiαz

a∗ = x̂axe−iαx + ŷaye−iαy + ẑaze−iαz

therefore a ·a∗ = a2
x +a2

y +a2
z = a2 = ∥a∥2

P R O O F . Performing a ‘left and right side’ curl operation on the second and third
equations of the equation-set (1) gives

∇×a = 1

u ·u∗∇× (r×u) and ∇× r =∇× (u×a) (2)

and to evaluate the vector triple products we use general vector analytic methods to
give

∇× (r×u) = r(∇·u)−u(∇· r)+ (u ·∇)r− (r ·∇)u

∇× (u×a) = u(∇·a)−a(∇·u)+ (a ·∇)u− (u ·∇)a.

(1882 - 2)
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Because the vectors a and r are position independent, we have

∇·a = 0 and ∇· r = 0. (3)

Evaluating the terms containing u = x̂ ∂x
/
∂t + ŷ ∂y

/
∂t + ẑ ∂z

/
∂t we obtain

u ·∇ =∇·u = ∂x

∂t

∂

∂x
+ ∂y

∂t

∂

∂y
+ ∂z

∂t

∂

∂z
= ∂

∂t

Because a(u ·∇) = a ∂1
/
∂t = 0, we are left with

∇× (u×a) =−∂a

∂t
and ∇× (r×u) = ∂r

∂t
.

Therefore, the ‘left and right side’ curl operations (2) generate the new relations:

∇×a = 1

u2

∂r

∂t
and ∇× r =−∂a

∂t
(4)

A further ‘left and right side’ curl operation on (4) gives

∇×∇× r =−∂(∇×a)

∂t
and ∇×∇×a = 1

u2

∂(∇× r)

∂t

and because ∇×∇× r =∇(∇· r)−∇2r we recover the d’Alembert wave equations

∇2r− 1

u2

∂2 r

∂t 2
= 0 and ∇2a− 1

u2

∂2 a

∂t 2
= 0. (5)

This concludes the proof that the three vector algebraic equations (1) give rise to
the d’Alembert wave equations (5). Therefore, the equation set  is a generic
bimodal-transverse soliton equation system. □

The preceding approach was purely abstract and mathematical, focusing on
the derivation of the generic Maxwell equations for any pair of conceivable fields,
denoted as a and r. A discerning reader will have undoubtedly noticed that by
associating a 7→ B and r 7→ E, equations (3) and (4) transform into the well-known
Maxwell equations in vacuum. Nonetheless, to affirm this equivalence, it is impera-
tive to show that the vector algebraic equations for  yield c−2 = ϵ0µ0. Rather than
focusing on EM-fields, we extend  to operate on elementary emflux quantities. In
doing so, we transition fluxes from being mere mathematical visualisation tools to
being fundamental phenomena that underlie electromagnetic behaviour.

1 (u,ϕo,Υo) is fundamental to electromagnetism

The discovery of  enables the long-awaited quantification of electromagnetic
phenomenon. To initiate this, we introduce ϕo and Υo as elementary magnetic and
electric vector fluxes responsible for the electromotive phenomenon. A single pair
of these elementary fluxes gives rise to an elementary solitary wave, or soliton.

Note that I specifically employ the term "elementary" rather than "quantum"
so as to avoid confusion with existing definitions that utilise the words "quanta" or
"quantum." This paper adopts an extended nomenclature for the express purpose of
avoiding conflicts with established notational conventions, detailed in Appendix D.

Remark 1: Electrostatic versus Electromotive. I intentionally distinguish between
the electromotive charge e (represented by e in script font) and the elementary

(1882 - 3)
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electrostatic charge e (represented by e in italic serif font). In the conventional
interpretation of electromagnetic theory these charges are not separated, thus both
charges are considered equal in magnitude. The rationale for this differentiation is
clarified in Appendix A, where evidence is presented to show that electrons are not
the charge carriers in an electric current.

Remark 2: Defining the emflux. The magnetic flux quantum is defined as φ0 =
h/(2e). Because I have purposefully separated the electromotive charge e from the
electrostatic charge e, a similar separation must be made for φ, a static quantity.
Consequently, I introduce the definition of elementary magnetic momentum ϕo,
which will henceforth be referred to as magnetic emflux (magnetic electromotive
flux).

Theorem 2: Elementary Electromagnetic Soliton. There exists an elementary length
denoted as lo and an elementary time denoted as to defining the speed of light c
such that lo = cto. Additionally, an elementary magnetic emflux ϕo represents a
quantum of magnetic momentum. Furthermore, an elementary EM-soliton, defined
by (u,ϕo,Υo), carries an elementary electromotive charge denoted as e and has
action h, whilst propagating at the speed of light.

P R O O F . The proof is structured by demonstrating that the set of simultaneous
equations

(u,ϕo,Υo) defines−−−−→
{

u = 1∥∥ϕo

∥∥2ϕo ×Υo, ϕo =
1

∥u∥2Υo ×u, Υo = u×ϕo

}
(6)

together with the theorem’s assertions demands the presence of ϵ0 and µ0 in their
known forms.

Assuming that ϕo ×Υo represents wave action, we multiply the equation u =
(ϕo ×Υo)

∥∥ϕo

∥∥−2 by h and evaluate its norm, yielding

∥hu∥ =
∥∥∥∥∥ h∥∥ϕ2

o

∥∥ϕo ×Υo

∥∥∥∥∥ to give

h =
[

h

cϕ2
o

](∥∥ϕo

∥∥∥Υo∥
)

(7)

where the square brackets indicate the development of a constant. The objective
now is to eliminate ϕo in the above equation. Let’s define the elementary EM-action
as he = ϱh, where ϱ= 1 C/kg, a correction factor for dimensional consistency when
working with electromagnetic quantities. Action is the product of momentum and
distance. Using a mechanical analogy, EM-momentum is proportional to the product
of electric charge times velocity, with units of coulomb meters per second. Because
the soliton transports an elementary electromotive charge e, as asserted in Theorem
2, at a velocity c, the EM-wave action is EM-momentum times distance. Here we
consider the elementary distance lo = cto. Therefore, the EM-wave action is also

he = ϱh = κeloc (8)

where κ is a dimensionless proportionality constant of unknown value, scaling eclo

to the EM-action he .

(1882 - 4)
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Theorem 2 states that an elementary magnetic emflux ϕo represents a quantum
of magnetic momentum. Consequently, we can postulate that the EM-action is
proportional to the product of

∥∥ϕo

∥∥ and the distance travelled:

ϱh =χlo
∥∥ϕo

∥∥ (9)

where χ is a constant with units and scaling to be determined. Combining the above
with (8) gives

∥∥ϕo

∥∥ = κecχ−1. Also, Υo = u×ϕo gives ∥Υo∥ = cϕo. Both of these
results are introduced into (7) to get

h =
[

h

cϕ2
o

][
1

χ

]
κec2ϕo

We are now in a position to define, purely mathematically, the expression for

ϕo = h

κe
(10)

but only if

1 =
[

h

cϕ2
o

][
1

χ

]
c2 and replacing ϕo using (10) gives

1 =
[
κ2e2

ch

][
1

χ

]
c2 which requires

1

χ
= h

κ2e2c
, hence

1 =
[
κ2e2

ch

][
h

κ2e2c

]
c2 (11)

Now, with a bit of hindsight, all that remains is to set κ−2 = 2α, where α is the
fine structure constant. Equation (11) now gives the sought-after result

ϵ0 = κ2e2

ch
= e2

2αhc
and µ0 = h

κ2e2c
= 2αh

e2c
requiring that the elementary charge e and elementary electromotive charge e are
equal in magnitude and dimensioned in coulombs.

We note that ϵ0
∣∣ϕo ×Υo

∣∣= h thereby having satisfied all demands of the theorem.
This concludes the proof that the equation set (u,ϕo,Υo) describes EM-solitons.□

Recalling ϱh = κeloc , i. e. (8); we are now in the position to calculate the numeric
values for the elementary length and time, using κ−2 = 2α, ϱ= 1 C/kg, and the 2018
CODATA values:

κ= 8.277 559 999 29(62) which I name the Heaviside constant

lo = 1.666 566 299 11(12)×10−24 elementary length in metres

to = 5.559 066 796 49(42)×10−33 elementary time in seconds

∆0 = 3.683 476 656 21(18)×10−66 mass gap in joules

where ∆0 = hto is the least energy gap from a vacuum to the next lowest energy state.
Historic note: In the late 19th century Oliver Heaviside developed vector calculus,

and rewrote the Maxwell works into the form commonly used today. The Heavi-
side constant κ is a coupling constant relating the electric charge momentum to
mechanical momentum.

(1882 - 5)
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Question 1: What defines the speed of light?. The preceding analysis also poses a
profound question reminiscent of the classic ’Who came first, the chicken or the
egg?’ scenario regarding the speed of light. The constants of permittivity ϵ0 and
permeability µ0 were deduced based on the previously defined velocity c in Equation
(6), or more precisely, as u = cû(t). This leads us to ponder: Does the expression
c = 1/

p
ϵ0µ0 provide a fundamental foundation for defining the speed of light, or is

there another underlying explanation for the velocity c?
For instance, in the context of sound waves propagating through a material, the

speed of sound is contingent upon the material’s properties. In fluids, it is expressed
as c2 = Ks/ρ, where Ks represents the coefficient of stiffness, and ρ denotes the fluid’s
density. Alternatively, it can also be formulated as c2 = ∂P/∂ρ, where P represents
pressure. Notably, none of these parameters—Ks , ρ, or P—are defined in terms of
the speed of sound within the medium.

The proof establishing the derived values of ϵ0 and µ0 in Theorem 2 suggests that
space possesses additional characteristics that lead to the concept of ’transportivity’
denoted as  = ?A/?B = c2. Analogous to fluids, the transportivity could be regarded
as a ratio of two properties that are independent of the speed of light. What precisely
are these two properties denoted as ?A and ?B, and how does one ascertain or define
them?

2 Describing solitons as solutions of 

Any solution to the three simultaneous equations in the set (u,ϕo,Υo) represents
an EM-soliton. To express these solutions efficiently, we introduce a new mathemati-
cal syntax, utilising a row-by-row matrix product operator ⋄, defined as follows:Pa1,1 Pa1,2

Qa2,1 Qa2,2

=
P

Q

⋄
a1,1 a1,2

a2,1 a2,2


A wave or soliton ξ that is a solution of  is precisely defined by the three vectors
u, ϕo, and Υo, expressed in matrix form as

ξ def−−→by


u
ϕo
Υo

=


c
ϕo

cϕo

⋄


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



x̂
ŷ
ẑ


This expression can be further simplified by considering only the parameters of
interest:

ξ par−−→by


c
ϕo

Υo

⋄


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



(1882 - 6)
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Electromagnetic solitons of interest are described generically:

ξ1
par−−→by


c
ϕo

Υo

⋄


cosθ sinθ 0
−sinθsinϑ cosθsinϑ cosϑ
sinθcosϑ −cosθcosϑ sinϑ


or

ξ2
par−−→by


c
ϕo

Υo

⋄


sinθcosϑ −cosθcosϑ sinϑ
cosθ sinθ 0

−sinθsinϑ cosθsinϑ cosϑ


or

ξ3
par−−→by


c
ϕo

Υo

⋄

−sinθsinϑ cosθsinϑ cosϑ
sinθcosϑ −cosθcosϑ sinϑ

cosθ sinθ 0





where



θ= snωot

ϑ= rzmωot

sa∈ {1/2,1,3/2, . . .}

ra∈ {−1,0,1}

s = sara
rz∈ {−1,0,1}

n ∈Q≥ 0

m ∈Q≥ 0

(12)

In this context, the angles θ and ϑ may or may not be time-dependent. Rotations
are characterised by two orientations: ra, representing azimuthal rotation around the
z-axis, and rz, indicating rotation toward the zenith along the xcosθ+ysinθ axis. The
azimuthal rotation direction ra, provides the sign for spin s = rasa. We are working
with rotating field vectors. For instance, ϕo represents a rotating vector, which we
define as the source of a north-pointing elementary magnetic emflux, denoted as
ϕo = l 2

oϕo. Consequently, −ϕo still acts as a source of a north-pointing emflux but
in the opposite direction. We are now required to introduce ϕo as the magnetic
field vector that absorbs a north-pointing emflux. This implies that ϕo +ϕo ≡ 0, and
ϕo −ϕo ≡ 2ϕo if and only if ϕo = p̂ϕo and ϕo = p̂ϕ̄o, where p̂ represents any unit
vector. Below is a visual representation of this concept where the symbol Ⓢ signifies
the source or the sink:

ϕo 7→ SⓈ−→N and −ϕo 7→ N←−ⓈS
ϕo 7→ NⓈ←−S and −ϕo 7→ S−→ⓈN

A solution to the equation (12) can take the following form:

ξ def−−→by


c
ϕo

nΥo

⋄


1 0 0
0 cosωt sinωt
0 −sinωt cosωt


This solution represents a single rotating disturbance, akin to a propeller, propagat-
ing in a direction parallel to the x-axis. However, it’s worth noting that the extent of
the emflux ϕo is precisely defined by the equation (9). According to Theorem 2, an
elementary EM-soliton encloses a volume of l 3

o, forming a cylinder with a length of
lo and a radius of ro = lo/

p
2π. When the center of rotation is at zero potential, then

the end of the ϕo vector exhibits a raised magnetic potential, while the end of the
Υo vector has an elevated electrical potential.

3 The Family of Elementary Emtrons

An elementary emtron mo—or more precisely, the set {mo, m̄o, .mo, .̄mo}—is de-
fined as an EM-soliton by Theorem 2. It serves as a solution to the equations
(u,ϕo,Υo) and (u,ϕo,Υo), and represents the least energetic configuration

(1882 - 7)
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with an action h. The elementary emtron manifests in three distinct topological
structures, or flavours:

1. A soliton moving in a straight line at velocity c, exemplified by a photon; this
is a special case of the first solution ξ1 of (12) when limωo → 0.

2. A soliton in circular motion at velocity c around a stationary point, represented
by ξ1 in (12).

3. A soliton in spherular motion at velocity c around a stationary point, described
by either ξ2 or ξ3 in (12). Spherular motion follows a geometric path encom-
passing a sphere and exhibits rotational symmetry.

Experimental evidence, such as electron transitions or electron-positron annihila-
tions, suggests that an emtron can transition between these flavours under certain
atomic interactions.

3.1 Elementary Emtrons in Linear Motion: Spin=0

The set of elementary emtrons {mo, m̄o, .mo, .̄mo} which serve as the least energetic
configuration within the solutions of (u,ϕo,Υo) and (u,ϕo,Υo) are mathemati-
cally characterised as follows:

mo
par−−→by


c
ϕo

Υo

⋄


1 0 0
0 1 0
0 0 1

 and m̄o
par−−→by


c
ϕ̄o

Ῡo

⋄

−1 0 0
0 −1 0
0 0 1


.mo

par−−→by


c
ϕo

Υo

⋄


1 0 0
0 −1 0
0 0 −1

 and .̄mo
par−−→by


c
ϕ̄o

Ῡo

⋄

−1 0 0
0 1 0
0 0 −1


In this context, the overaccented bar represents the concept of ’anti’ (where the
source becomes an absorber), while the underaccented dot signifies ’contra’ (indi-
cating a 180-degree rotation). One may further comprehend this family through the
following relations:

 p Ao φo

a) mo + m̄o + .mo + .̄mo ⇒ 4 0 0 0
b) mo + m̄o ⇒ 2 0 0 2
c) mo + .̄mo ⇒ 2 0 2 0
d) mo + .mo ⇒ 2 2 0 0
e) m̄o + .̄mo ⇒ 2 −2 0 0

Here, the energy  = hto and the momentum p = h/c are specified, along with
magnetic Ao and electric φo potentials. These are the quantities carried away by the
emtrons resulting from the interactions that produced them.

3.2 Elementary Emtrons in Circular Self-Orbits: Spin=0

The notable finding is that the solutions to  permit circular self-orbits. As proven
by Theorem 1,  leads to the Maxwell equations. Thus, circular and spherular

(1882 - 8)
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self-orbits are intrinsic features of electromagnetic phenomena. Circular self-orbits
are mathematically described by the following equations:

m⊙
o

def−−→by


c
ϕo

Υo

⋄


cosωot sinωot 0
−sinωot cosωot 0

0 0 1



x̂
ŷ
ẑ

 (13a)

m̄⊙
o

def−−→by


c
ϕ̄o

Ῡo

⋄

−sinωot cosωot 0
cosωot sinωot 0

0 0 −1



x̂
ŷ
ẑ


.m
⊙
o

def−−→by


c
ϕo

Υo

⋄


cosωot sinωot 0
0 0 1

sinωot −cosωot 0



x̂
ŷ
ẑ


.̄m
⊙
o

def−−→by


c
ϕ̄o

Ῡo

⋄


sinωot −cosωot 0
0 0 −1

cosωot sinωot 0



x̂
ŷ
ẑ


These emtrons are classified as spin-zero because either ϕo or Υo remains static.
To interpret these equations, we introduce an elementary electric emflux vector
Υo = cϕo, where ϕo = ϕol 2

o. For the emtron pairs specified in (13), we observe
that the pair (m⊙, m̄⊙) generates an electric emflux Υo, while the pair ( .m

⊙, .̄m
⊙)

establishes a magnetic emflux ϕo, both aligned along the z-axis. The path of self-
orbit lies in the xy-plane, defined by the unit position vector p = ∫

ûdt . For (13a), it
evaluates to p = (

x̂ sinωot − ŷ cosωot
)
/ωo, yielding a circle with a radius of lo/2π.

We further note that the unit position vector p̂(t) aligns with the field vectors
for both m⊙ and .̄m

⊙; specifically, p̂(t) = −ϕ̂(t) and p̂(t) = Υ̂(t), indicating radial
alignment of the respective emfluxes.

The energy of an elementary emtron in a circular self-orbit remains invariant at
o = hto. Equations (13) predict that such emtrons in circular self-orbits within the
xy-plane project electric and magnetic emfluxes in the z direction. These emfluxes
potentially elucidate the mechanisms behind charge accumulation in capacitors and
the nature of permanent magnets as they provide the means for generating electric
and magnetic motive forces.

3.3 Emtrons with Rotation and Linear Motion; Spin=1

The action of an emtron with rotation, denoted by mγ, is governed by its rotational
frequency. Emtrons in linear motion with rotating fields which are solutions of 
are mathematically expressed as

mγ def−−→by


c
ϕo

nΥo

⋄


1 0 0
0 cosranωot sinranωot
0 −sinranωot cosranωot


m̄γ def−−→by


c
ϕ̄o

nῩo

⋄

−1 0 0
0 cosranωot sinranωot
0 sinranωot −cosranωot


.m
γ def−−→by


c
ϕo

nΥo

⋄


1 0 0
0 −cosranωot −sinranωot
0 sinranωot −cosranωot


(1882 - 9)
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.̄m
γ def−−→by


c
ϕ̄o

nῩo

⋄

−1 0 0
0 −cosranωot −sinranωot
0 −sinranωot +cosranωot


These equations describe emtrons where the fields exhibit a rotational velocity nωo

while propagating, as illustrated in Figure 2. According to Theorem 2, an elementary
emtron carries an elementary electromotive charge e and possesses an action h.
Earlier, we introduced Equation (8) to describe the action of the EM-wave, restated
here as:

he = ϱh = κeclo = κel 2
o/to (15)

However, Equation (14) describes EM-disturbances that, in addition to linear propa-
gation, also possess rotational momentum.

Action is traditionally defined as momentum multiplied by distance. However,
our system exhibits both linear and rotational motion, necessitating a comprehen-
sive definition of action that includes both components. I introduce the concept of
angular-action, defined as the product of angular momentum Lo = Ioωo times the
angle θ subtended. Guided by (15) we define the elementary EM-moment of inertia
as Io = κel 2

o/(2π)2 (see Figure 2) to give

hrot = Ioωoθ = κel 2
oωoθ/(2π)2

= κel 2
on fo = nhe

Thus, an elementary emtron with spin has both linear recoil action h and rotational
recoil action hrot, giving it a total energy content of  = (hrot+h)to. This serves
as a precise mathematical justification for Planck’s energy-frequency equivalence
 = hrot f +h fo = heff fo, where heff = (n +1)h.

Additionally, according to Equation (7), we find that h ∝ (∥∥ϕo

∥∥,∥Υo∥
)
. This

implies that the electric field must scale with the factor n, i.e., Eeff = (n + 1)Υo.
Consequently, the effective action of the soliton can also be expressed as heff ∝(∥∥ϕo

∥∥,∥(n +1)Υo∥
)
.

x

y

z

lo

u

ϕo

Υo

u = ẑct , c = lo fo

ϕo =ϕo
(
x̂ cosωo t + ŷ sinωo t

)
Υo =Υo

(−x̂ sinωo t + ŷ cosωo t
)
, ωo = 2π fo

lo
2π

Figure 2: A depiction of a single emtron at three arbitrary positions at times t = t1, t2, and
t3. The cross product of two vectors does not require the vectors to originate at the same
point. So that Io = κel 2

o/(2π)2 the vector ϕo is displaced as illustrated
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Figure 3: A toroidal eddy. The green represents the magnetic emflux, the emflux
vectors ϕo are tangential to the circles. The distance between each m is lo.

Remark 3. Instead of scaling by frequency, the energy of the emtron can also be
scaled by increasing the magnetic emflux vector’s displacement from the centre of
rotation to mlo/2π, which then gives heff = nm2 +1. Thus, three options for energy
scaling are available: rotational frequency nωo, radius mlo/2π, and the combination
of both.

3.4 Emtrons in Circular Self-Orbits: Spin=1

An elementary toroidal EM-eddy is described by

mτ def−−→by


c
ϕo

Υo

⋄


cosωot/n sinωot/n 0
−cosωot/n sinωot/n cosωot/n cosωot/n sinωot/n

sinωot/n sinωot/n −sinωot/nωot/n cosωot/n


and has elementary path length nlo and traces a circle of radius rs = nlo/2π.

Alternatively on a larger scale, if mγ is one charge of an electric current then mτ

is one loop of a transformer coil.

3.5 Emtrons in a Spherular Self-Orbit

In preceding sections, we discussed the possibility of spherular self-orbits. Mathe-
matically, an EM-spherular soliton is described by one of the following two equations,
or by one of their numerous variants:

m⊕ def−−→by


c
ϕo

Υo

⋄


cos2ωot/m −sin2ωot/m sinωot/mn sin2ωot/m cosωot/mn
0 cosωot/mn sinωot/mn

−sin2ωot/m −cos2ωot/m sinωot/mn cos2ωot/m cosωot/mn

 (16a)

or

.m
⊕ def−−→by


c
ϕo

Υo

⋄

−sin2ωot/m −cos2ωot/m sinωot/mn cos2ωot/m cosωot/mn
cos2ωot/m −sin2ωot/m sinωot/mn sin2ωot/m cosωot/mn

0 cosωot/n sinωot/n


where n ∈ {2,3,5, . . .prime}, and m an integer scaling value. The integral p = ∫

udt
determines the path shape which has a length 2mnlo and encloses a sphere of radius
rs = mlo/(2π).
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Figure 4: A graphic representation of the paths of the s, p, and d-shells. The visual
representation reinforces the number of half-emtrons each shell can support.

Because rs = lo4π, and referencing equation (15), we note that the length of the
magnetic emflux vector for an m⊕ is half of that used for calculating the energy
content of the mγ. Therefore, the energy content is one-fourth. If the spherule m⊕ is
to have the same energetic impact as mγ, then we require four half -emtrons evenly
distributed along the path.

For n = x, x ∈ {2,3,5, . . .prime} the spherule can be packed with one to x sets of
four half -emtrons. This is made clear in Figure-4 that illustrates the paths calculated
from p = ∫

udt .

4 Space has complex dimensionality

The spherule, as defined by Eq. (16a), is stationary in space because the cross-
product equations do not permit linear motion superimposed on the spherular
motion. One solution is to consider that the space xyz is complex, denoted by C3,
as already suggested by Theorem 1. Consequently, the vectors in (u,ϕo,Υo) can
be complex, necessitating that the charge e also be complex, and it can be shown
that the constants ϵ0 and µ0 remain real. Extending from our earlier definitions, we
generalise the relationship between the quantities as follows:

e 7→



eeiα thusϕo 7→ϕoe−iα andΥo 7→


Υoeiα, if c 7→ cei 2α

Υoe−i 3α, if c 7→ ce−i 2α

Υoe−iα, if c 7→ c

or

ee−iα thusϕo 7→ϕoeiα andΥo 7→


Υoei 3α, if c 7→ cei 2α

Υoe−iα, if c 7→ ce−i 2α

Υoeiα, if c 7→ c

To validate this, consider e 7→ eeiα and ϕo 7→ ϕoe−iα. Then Υo 7→ Υoeiα and the
action ϵ0ϕo ×Υo = h remains unchanged. Specifically, if α=π/4, the velocity u = i c.

As an illustrative example, we can define a spherular EM-soliton as follows:

m⊕ def−−→by


i c

e−iπ/4ϕo

eiπ/4Υo

⋄


cos2ωot −sin2ωot sinωot/2n sin2ωot cosωot/2n
0 cosωot/2n sinωot/2n

−sin2ωot −cos2ωot sinωot/2n cos2ωot cosωot/2n
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It has real energy and an imaginary velocity. Alternatively, we can define

mγ def−−→by


c

eiπ/4ϕo

eiπ/4Υo

⋄


1 0 0
0 cosωot/2n sin ωot/2n
0 −sinωot/2n cosωot/2n


In this case, the energy is imaginary or reactive, while the velocity is real. Working
towards a profound result, we combine these through superposition and scaling, to
derive:

ma
def−−→by



m⊕
a

def−−→by


i cosθcp

secθe−iπ/4ϕo

cosθ
p

secθeiπ/4Υo

⋄

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·


in superposition with

m
γ
a

def−−→by


sinθcp

secθeiπ/4ϕo

sinθ
p

secθeiπ/4Υo

⋄

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·


From our definitions we have h = ϵ0ϕo ×Υo implying that the energy is proportional
to the product of the magnetic and electric emflux magnitudes. For the superposition
defined above, we evaluate the energy as:

τ = o

(p
secθe−iπ/4 ×cosθ

p
secθeiπ/4

)
γ = o

(p
secθeiπ/4 × sinθ

p
secθeiπ/4

)
⃗a = τ+γ = o

(
1+ i

sinθ

cosθ

)
Here the over-accented arrow ⃗a indicates structural energy Since uγ = c sinθ and
u⊕ = i c cosθ, we can calculate the perceived energy:

A =
∣∣∣⃗a

∣∣∣= τ

√
c2

c2 −u2
γ

Proceeding with this established energy A, if we increment the real velocity uγ
by duγ then we obtain:

A +dA = τ

√
1+ (uγ+duγ)2

c2 − (uγ+duγ)2

therefore

dA = τ

√
1+ (uγ+duγ)2

c2 − (uγ+duγ)2
−τ

√√√√1+ u2
γ

c2 −u2
γ

and performing a series expansion on dA gives

dA = τ
c uγduγ

(c2 −u2
γ)3/2

+[du2
γ]

(1882 - 13)



N O V E L S O L I T O N E Q U A T I O N S Y S T E M & C O N S T R U C T I V E EM Q U A N T U M T H E O R Y

A.L. Vrba

Energy = force × distance and force is defined by Newton’s second law of motion,
hence we also have

dNewton = mi
duγ
dt

uγdt

where mi is the inertial mass. Equating dNewton = dA we obtain after cancelling
common terms

mi = τ
c

(c2 −u2
γ)3/2

and if uγ = 0 the above reduces to

τ = mc2 (17)

and it follows trivially that

A = mc2√
1− v2/c2

The above discussion is not complete without noting that Eγ+τ >
√

E 2
γ+2

τ , mean-

ing that when ma undergoes further acceleration, energy is released in some form
or other, such as radiation.

Having successfully demonstrated that mass is an emergent property of the
electromagnetic phenomenon—made possible only by the transformation e 7→
eeiπ/4—we establish that a complex charge is a physical reality. We proceed to
define the complexification constants Xo = eiπ/4 and X o =−Xo = ei 5π/4 as physical
variables. It is worth noting that although the electromagnetic phenomenon itself is
not dependent on this value, its manifestations undoubtedly are.

5 Efficacy, Presence and Distant Interactions

It is now clear that a distinction must be made between motive EM-fields and static
EM-fields. These two categories represent different facets of the electromagnetic
phenomenon. A motive EM-field (for example, an electric field established between
two plates of a capacitor) serves as an accelerating field. This field facilitates the
transfer of energy between itself and an emtron with which it interacts. Conversely,
a static EM-field alters the EM-structure of an emtron without affecting the structural
energy of the emtron.

Contrary to the discussion in the previous section, consider the superposition
described by:

mb
def−−→by



m⊕
b

def−−→by


i cosθc
e−iπ/4ϕo

cosθeiπ/4Υo

⋄

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·


in superposition with

m
γ

b
def−−→by


sinθc
eiπ/4ϕo

sinθeiπ/4Υo

⋄

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·


(18)

This superposition yields

⃗b = τ+γ = o(cosθ+ i sinθ)
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Interestingly, the perceived energy remains B = o, even when the emtron ex-
hibits varying real velocity. While this result contradicts our limited experiential
understanding, it persists and provides, I believe, a classical interpretation for the
Aharonov-Bohm effect [1]. The significance of (18) is that it represents outcomes of
interactions with static fields that do not change the energy content.

In this section, two new terms are introduced: efficacy, denoted by  , and pres-
ence, denoted by  . Until this point, the paper has focused primarily on the efficacy
of the EM-phenomenon, that is collectively everything regarding the emtron’s ener-
getic structure. The emtron signals its state to the rest of the universe via its presence.
That means that the presence of an emtron alters the nature of a vacuum.

Let us consider that the universe is composed of

Universe =
n∑

i=1
(mi + m̄i + .mi + .̄mi )

This corresponds to an energy U = 4no, which exhibits no net recoil upon cre-
ation; in other words, U as a whole is at rest, with neither movement nor rotations.
Importantly, this energy U remains invariant, regardless of any interactions that
may occur between emtrons.

In summary, the interaction outcome between two directly interacting emtrons
is determined by both their efficacies and presences. Moreover, their presences also
simultaneously govern the states of all other emtrons. The implications of this are
profound: each entity is entangled with every other entity, thereby ensuring that the
universe as a whole remains at rest.

We now formalise the EM-presence: An emtron efficacy, defined by (u,ϕo,Υo),
is invariably accompanied by (u,Λo,Ξo), where Λo and Ξo are the magnetic and
electric vector latencies, respectively. Given that the emflux vectors ϕo and Υo are
defined from zero to a length lo, these vector latencies extend the range from lo to
infinity.

Here, I introduce a new physical unit termed latentness, symbolised by l, with
units expressed in changelings and dimensional characteristics J−1 s−1. The numeri-
cal value of latentness is set to be the reciprocal of the Planck constant.

In a system involving two emtrons, the latentness of emtron-A influences the
structural energy of emtron-B, and vice versa. Specifically, if the structural energy is
denoted as ⃗b = beiβ, then latentness serves to modify the value of β.

We define the magnetic and electric latencies as follows:

Λo = lol

r h
ϕo = lol

rκe
and Ξo = lol

r h
Υo = clol

rκe
where r = ρlo represents a distance expressed in multiples ρ of the elementary length
lo. The definition of latencies necessitates the definition of latent permittivity and
latent permeability, given by:

ϵ̃0 = κ2e2

lc
and µ̃0 = l

cκ2e2
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Here, the over-accented tilde indicates latency. In a previous section, we demon-
strated that h = ϵ0

∣∣ϕo ×Υo
∣∣, having treated ϕo and Υo as impulses. The analogous

calculation for the vector latencies involves evaluating the integral

l=
∫ lo

∞
ϵ̃0

∣∣Λo ×Ξo
∣∣dr

Latentness is responsible for the entanglement phenomenon, famously derided as
“spooky action at a distance” [2]. Latentness causes changes in the wave structure of
the emtrons subjected to it.

We are now in a position to define the presence o as a function of location
r = ρlo. This is expressed in terms of the electromagnetic emfluxes and latencies, as
follows:

o(r ) = o

(
ϵ0

∣∣ϕo ×Υo
∣∣)∫ ρlo

∞

(
ϵ̃0

∣∣Λo ×Ξo
∣∣)dr = 1

ρ

This evaluates to a complex scalar quantity that specifies the strength of the latent-
ness at that particular point. In Question 1, I proposed that space possesses an
additional property known as transportivity, which is defined as  = c2 in a vacuum.
The presence modifies the transportivity according to the equation:

 = c2(1−o(r )) = c2(1− 1

ρ
) (19)

This is interpreted to mean that the speed of light at ρ is cρ = ceiβ, where sinβ =
±√

1/ρ. The sign of the angle β, or the sign of the imaginary component of cρ, is
determined by the type of emtron—either positive for m or negative for m̄

This concludes the foundational work required to analyse action at a distance.
Let us consider two emtrons mA and mB separated by a distance r = ρlo. Their
energies are A = nao and B = nbo, respectively. The respective presences are
scaled in the same proportions, thus A = nao(r ) and B = nbo(r ).

Earlier, equation (17) established that energy is proportional to the square of the
speed of light. Coupled with equation (19), this allows for the following manipulation:

⃗A = A
(
cosβb + i sinβb

)
where sinβb =√

nb/ρ. This yields the perceived energy as:

A = A
(
cos2βb + sin2βb

)
We now define  ′

A = A cos2βb and, after rearrangement, obtain:

 ′
A = nao

(
1− nb

ρ

)
 ′

B = nbo

(
1− na

ρ

)
Force is the product of energy and distance. Differentiating with respect to ρ yields:

FA = FB = nanb

ρ2

This is a well-known result; we shall determine its direction next.
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With Theorem 1 and equation (8), we established that the electrical action is
he = ϱh = κeloc. This implies that the energy of an emtron is also proportional to
its charge. Therefore, it follows that

FA = ke
ca

|ca|
naeXanbeXb

ρ2
,

FB = ke
cb

|cb|
naeXanbeXb

ρ2
,

(20)

The factors ca/|ca| and cb/|cb| are necessary to define the forces in a manner that
accommodates complex velocities.

For the stationary emtron m⊕
A, we find that ca/|ca| = i . To ascertain the direction

of the forces, we examine the products i XaXb. Recalling the definitions for the
complexification constants Xo = eiπ/4 and X o =−Xo = ei 5π/4, we have

i XoXo =−1, i XoX o = 1, iX oX o =−1,

which demonstrates that like charges repel, while oppositely charged emtrons attract
each other.

We have now recovered Coulomb’s law, which serves as a special case of equation
(20) when the charges are stationary. The inclusion of the Coulomb constant ke was
made retrospectively.

Let us consider two identical emtrons m⊕
A =m⊕

B =m⊕+ m̄⊕. From our previous
discussions, it is evident that the sum of all forces on these emtrons will be zero.
However, if we break the charge symmetry such that Xo = eiπ/4+δx and X o = ei 5π/4−δx ,
the ensuing equation is:

i
(
XoXo +2XoX o +X oX o

)= 4δ2
x for δx ≪ 1,

This reveals not only the unification of the gravitational force with the electric force,
but also introduces another universal constant, δx. In Appendix B, I offer a classical
explanation for the precession of planetary orbits using a method derived from what
was developed in this section.

6 Proton and Electron Orbits

Convention, as an example, symbolises a sodium isotope as 23
11Na indicating an

atomic mass number of 23 and a charge of 11. This is interpreted that the nucleus is
a bundle of 11 protons and 12 neutrons bound together by the strong force, but that
is far from the truth. Specifically, there is no clear understanding of how to describe
an atom as a comprehensive model where both the nucleus and the electron shells
are described as a unified onion-shell model.

In this work, I propose the onion-shell model for atomic nuclei. Appendix C
provides a partial list—for the isotopes of elements from hydrogen through to
cadmium—and the rules for the progression of filling these nuclei shells. Each
shell is numbered 1 through 8 with sub-shells labelled {s, p, d , f , g }. A well-defined
algorithmic method is established, demonstrating the progression of the atomic
mass number for each element and its isotopes. The electron shell packing is well
understood using the same terminology but limited to the {s, p, d , f } sub-shells.
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Guided by Section 3.5, we define the sub-shells and their capacities as

s, p, d , f , g = {1, 3, 5, 7, 11}

which are populated by sets of four half-emtrons in the following sequence:(
1s +2(s, p)+3(s, p,d)+4(s, p,d , f )+5(s, p,d , f , g )

)×4×1/2m

+(
6(s, p,d , f , g )

)×8×1/2m

+(
7(s, p,d , f , g )

)×16×1/2m

Each half-emtron has an action h[m/2] = h/4 but carries an equivalent charge of
e/2. The p-shell is populated with tuples {3,1}, {2,2}, {1,3} of {m,m̄}, resulting
in a charge of {−1,0,+1}. As an example, we denote this as 3⌜

1⌞3p 7
5, indicating a 3p

sub-shell in the third onion shell of an atom’s nucleus and its contribution to the
atomic mass number is 3 = (7+5)/4 and has a charge of 1 = (7−5)/2. The left super-
and subscript indicate the contributions to the atomic mass number and charge
(atomic number), while the right super- and subscript specify the ratio of positive
and negative half-charges.

The shell packing configurations for Hydrogen through to Carbon are excerpted
from Appendix C:

1
1H = 1⌜

1⌞1s 3
1

2
1H = 1⌜

0⌞1s 2
2 + 1⌜

1⌞2s 3
1

3
1H = 1⌜

1⌞1s 3
1 + 1⌜

−1⌞2s 1
3 + 1⌜

1⌞2p 3
1

4
2He = 1⌜

1⌞1s 3
1 + 1⌜

0⌞2s 2
2 + 2⌜

1⌞2p 5
3

5
2He = 1⌜

1⌞1s 3
1 + 1⌜

0⌞2s 2
2 + 3⌜

1⌞2p 7
5

6
3Li = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 3⌜

1⌞2p 7
5 + 1⌜

0⌞3s 2
2 + 0⌜

0⌞3p

7
3Li = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 2⌜

1⌞2p 5
3 + 1⌜

−1⌞3s 1
3 + 2⌜

1⌞3p 5
3

9
4Be = 5

2He + 1⌜
1⌞3s 3

1 + 3⌜
1⌞3p 7

5

10
5B = 5

2He + 1⌜
1⌞3s 3

1 + 2⌜
1⌞3p 5

3 + 2⌜
1⌞3d 5

3

12
6C = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 3⌜

1⌞2p 7
5 + 1⌜

1⌞3s 3
1 + 3⌜

1⌞3p 7
5 + 3⌜

1⌞3d 7
5

13
6C = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 3⌜

1⌞2p 7
5 + 1⌜

1⌞3s 3
1 + 3⌜

1⌞3d 7
5 + 5⌜

1⌞3d 7
5

14
6C = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 3⌜

1⌞2p 7
5 + 1⌜

1⌞3s 3
1 + 3⌜

1⌞3p 7
5 + 5⌜

1⌞3d 11
9

It is evident that the shell sequence { s, p, d, f, g } is fundamental and when
the first five sets are filled in the sequence 1s + 2(s, p) + 3(s, p,d) + 4(s, p,d , f ) +
5(s, p,d , f , g ) they define either the isotope 57

26Fe or 57
25Mn.

The next shell 6(s, p,d , f , g ) is then filled with groups of eight half-emtrons in-
stead of the sets of four of the earlier, beginning with Cobalt 59

27Co = 57
25Mn + 2⌜

2⌞6s 6
2.
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The seventh shell is filled in groups of 16 half-emtrons establishing that the shell
packings for gold and bismuth are

197
79Au = 57

25Mn + 2⌜
2⌞6s 6

2 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
6⌞6 f 34

22 + 22⌜
10⌞6g 54

34

+ 4⌜
4⌞7s 12

4 + 12⌜
4⌞7p 28

20 + 20⌜
4⌞7d 44

36 + 28⌜
4⌞7 f 60

52 + 22⌜
10⌞7g 54

34

209
83Bi = 57

25Mn + 2⌜
2⌞6s 6

2 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
6⌞6 f 34

22 + 22⌜
10⌞6g 54

34

+ 4⌜
4⌞7s 12

4 + 12⌜
4⌞7p 28

20 + 20⌜
4⌞7d 44

36 + 28⌜
4⌞7 f 60

52 + 34⌜
14⌞7g 82

54

Completing the 7th shell would result in an atomic mass number of 219. I have not
enough data to guide the shell configurations for elements with atomic mass higher
than that of bismuth, such as 238

92U.
The shell packing model is a convenient visualisation aid, but reality is different.

Recalling h = ϵ0
∣∣ϕo ×Υo

∣∣= ϵ0c
∣∣ϕo

∣∣2 which we now express as

h =
∫ xlo

0
ϵ0c

∣∣ϕo

∣∣2

x
,dr

Therefore, a single m⊕ can inflate its volume and keep its energy content invariant.
But one can also do the calculation for n emtrons in superposition as

nh =
∫ nxlo

0
ϵ0c

∣∣ϕo

∣∣2

x
,dr

therefore the superposition of two s-orbitals gives 1⌜
1⌞1s 3

1+1⌜
1⌞1s 3

1 → 2⌜
2⌞̈s

6
2 which is a fusion

of the two. This explains the strong force. Once the initial repulsive energies are
overcome, the fused result is extremely hard if not impossible to fission. However,
the superposition of ⇐ 1⌜

1⌞1s 3
1 + 1⌜

0⌞1s 2
2 → 2⌜

1⌞̈s
5
3 would require a minimal force to fuse

(no repulsive charge forces here) and possibly a weaker force to fission, as this
configuration may prove to be unstable.

Having successfully described the atomic nuclei, we now shift our focus to the
electron. Unlike the atomic nuclei, the electron is generally considered as a point
particle but assumed to have a finite radius. Drawing upon insights from previous
sections, I propose that an electron behaves as a photon-like particle that propagates
in an imaginary direction when observed in a state of rest. This perspective immedi-
ately accounts for the three generations observed in the Standard Model. Earlier, in
Section 5 I demonstrated that particles can be considered as solitons travelling with
an imaginary speed of light when observed at rest.

We can represent the electron by mγ, the muon by m⊙, and the tau by m⊕, each
propagating with an imaginary speed of light when in a state of rest.

The packing orders for the {s, p,d , f } electron orbits are well-established. Given
that each electron can be described as a pair of half-emtrons, it becomes clear why
the s-orbit contains two electrons and the p-orbit can accommodate six, and so
forth. The kinetic and potential energy of the electron modulate the radius of its
orbit in order to satisfy the Bohr conditions.

In conclusion, both the atomic nucleus and the electron shell can be understood
as a superposition of synchronous three-dimensional wave structures. These struc-
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tures share a common center, and a common emflux vector ϕo. In effect forming a
spherical onion-shell structure.

If the proton is described by 1⌜
1⌞1s 3

1 then we can describe a neutron as 1+e⌜
0⌞1p 3

1+2(1/2e).

The temporary 1p shell requires extra potential, so when the neutron decays to a
proton, the elevated potential is released in kinetic energy of the ejected electron re-
quiring a recoil, namely the neutrino. A p-shell is required because a proton plus an
electron constitute six half charges which cannot fit in an s-shell. This explanation
is consistent with the onion shell proton packing.

7 General Discussion

Where should I begin? The mathematical evidence is compelling in its own right!
This paper conclusively demonstrates that electrostatic and electromotive fields

are two distinct phenomena. The immediate implication is that Quantum Electro-
dynamics (QED) is incomplete. Calculations in QED, guided by Feynman diagrams,
must be expanded to include electromagnetic potential energy. It is inconceivable
to assume that the outcomes of atomic interactions are invariant of electromagnetic
potential energy. In my opinion, any efforts to achieve sustainable and controllable
fusion must address this issue, particularly the need to neutralise self-generated
electromotive effects—should they exist in the plasma—in the effort to maintain
plasma stability.

The latencies that generate the presence of a particle provide an explanation for
the phenomenon of entanglement. Two entangled photons are bathed by the other’s
presence. As each photon experiences different environmental conditions, the de-
gree of their entanglement diminishes over time. This process of de-entanglement
explains why outcomes that initially are causal later manifest as probabilistic upon
observation. In essence, this gives free will, which a purely deterministic interpreta-
tion would negate. In my opinion, developers of quantum computers will inevitably
encounter a signal-to-noise ratio threshold, as it is impossible to shield against the
ever-varying presence field emanating from a constantly, and randomly, changing
environment.

I shall diplomatically refrain from expressing any further opinions at this junc-
ture. From a generalised philosophical perspective, it suffices to state that this work
provides an explanation, using classic methods, for all major discoveries that have
shaped our current understanding of nature. Furthermore, it establishes the frame-
work for a comprehensive theory of unified forces and perhaps even paves the way
for the formulation of a grand theory of everything, should such a theory ever be
attainable.

8 Energy production by isotope transmutation in electro-weak reactions

Transmutation of the elements are widely reported. Vysotskii [3] studied transmuta-
tions in biological systems, Cardone [4] subjected iron bars to sonic excitation and
observed neutron emissions and he reports the presence of transmuted elements.
Transmutation in low energy nuclear reactions using deuterium are extensively re-
ported, a recent summary is provided by Srinivasan [5]; common to all reactions is
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that deuterium is used as a donor catalyst; that is deuterium transmutes to hydro-
gen releasing a ‘neutron’. In reactions using palladium and deuterium the isotope
composition of the palladium was altered; as a rule, the ratio of 106

46Pd to 108
46Pd was

decreased. This is explained by the reaction 106
46Pd+2×2

1H ⇒ 108
46Pd+2×1

1H+11.3MeV,
the deuterium donated two ‘neutrons’ and the palladium captured them.

Here I propose to exploit an isotope transmutation within the element’s crys-
tal structure were an isotope acts as the donor and a neighbouring isotope of the
same element captures it. This phenomenon if controlled is exploitable for sus-
tainable energy production. As an example, the charge neutral isotope transmu-
tation in zinc 2× 67

30Zn ⇒ 66
30Zn+ 68

30Zn releases 3.15MeV, that is about one eighth of
the energy produced by the fusion of hydrogen to helium reaction, i. e. 4× 2

1H ⇒
4
2He+2e +2ν+26.7MeV. The same reaction in germanium releases 3.41MeV, and
in zirconium 1.44MeV. These elements are abundantly available. Furthermore,
because isotope transmutations are charge neutral means that a low temperature
electro-weak reaction is possible.

The above proposed isotope transmutation reaction, I believe, was unknowingly
demonstrated at a conference in 2017 by the SAFIRE project team [6]. Childs re-
ported that 180 watts of power in a plasma reactor melted, repeatedly, a tungsten
Langmuir probe. The reaction here is 2× 183

74W ⇒ 182
74W+ 184

74W+1.22MeV. This abun-
dance of energy released within the tungsten’s crystal matrix was responsible for the
destruction of the Langmuir probe. Childs also reported visible flaring—documented
in the video recordings—and he showed electron microscopy photographs which
revealed changes in the tungsten crystal structure. I assert that this is evidence to
the isotope transmutation reaction but unfortunately analysis for this was not done
at the time.

The process is explained as follows: Using zinc as an example the atomic weights
and the nuclei compositions are:

Atomic weight Shell packing

65.9260334 66
30Zn = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 2⌜
2⌞6d 6

2

72.9234590 67
30Zn = 57

27Co + 2⌜
−1⌞6s 3

5 + 6⌜
2⌞6p 14

10 + 2⌜
2⌞6d 6

2

66.9271273 68
30Zn = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 4⌜
2⌞6d 10

6

Our attention is on 67
30Zn; the 7s shell is a superposition of two solitons, that

is 2⌜
1⌞7s 5

3 = 1⌜
1⌞7s 3

1 + 1⌜
0⌞7s 2

2. The 1⌜
0⌞7s 2

2 soliton is a 1
0Π nucleoid without charge. In an

energised environment with the correct conditions, a 67
30Zn decays to 66

30Zn isotope
by releasing a 1

0Π nucleoid. The freed 1
0Π nucleoid is captured by the second 67

30Zn
isotope producing a 68

30Zn; summarised as follows:

67
30Zn − 1

0Π⇒ 206
82Pb

67
30Zn + 1

0Π⇒ 208
82Pb

 ≡ 2× 67
30Zn ⇒ 206

82Pb + 208
82Pb + 6.30MeV

That is 11.8% of the energy that a hydrogen to helium fusion yields.
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The 1
0Π nucleoid—lets refer to it as a pitron—differs from the neutron as it will

decay into a positron, an electron, and a pair of pi-neutrinos (or an electron- and a
positron neutrino) that carry away any excess energies.

I plead for the immediate funding of institutions capable of research in and
developing this technology, because environmentally friendly and sustainable energy
is producible by this method. Furthermore, the process is not weaponisable allowing
these isotope transmutation reactors to be erected, without concern, in all parts of
the World. We must note that these isotope transmutation reactions do not produce
radioactive byproducts, but rather the spent reaction material is returned to industry
for its usual industrial usages.

9 Conclusion

It was only the fortuitous discovery of the soliton equation set

(u,a,r) defines−−−−→
{

u = 1

a ·a∗ a× r, a = 1

u ·u∗ r×u, r = u×a
}

which allowed me to advance our understanding of electromagnetic theory in ways
that had previously eluded comprehension.

Since the time when Maxwell formulated his field equations, what has largely
been overlooked is the formal separation of the electromotive and the electrostatic
fields. I have not conducted a study of Maxwell’s original work to ascertain whether
he made this separation or not. However, it is evident that Heaviside’s vector al-
gebraic interpretation of Maxwell’s work, treats the electrostatic and electromotive
fields as identical.

In conclusion, I contend that this paper comprehensively addresses the Clay
Mathematics Institute’s Millennium Prize Problem concerning “Yang-Mills & The
Mass Gap.” The Institute acknowledges in its problem description that: Progress in
establishing the existence of the Yang-Mills theory and a mass gap will require the
introduction of fundamental new ideas both in physics and in mathematics.

The introduction of this paper began with an excerpt from Aharonov and Bohm;
fittingly, I will conclude with another, courtesy of Poincaré [7]:

"If we were to admit the postulate of relativity, we would find the same number in
the law of gravitation and the laws of electromagnetism—the speed of light—and we
would find it again in all other forces of any origin whatsoever. This state of affairs
may be explained in one of two ways: either everything in the universe would be of
electromagnetic origin, or this aspect—shared, as it were, by all physical phenomena—
would be a mere epiphenomenon, something due to our methods of measurement.
How do we go about measuring? The first response will be: we transport solid objects
considered to be rigid, one on top of the other. But that is no longer true in the current
theory if we admit the Lorentzian contraction. In this theory, two lengths are equal,
by definition, if they are traversed by light in equal times.

Perhaps if we were to abandon this definition, Lorentz’s theory would be as fully
overthrown as was Ptolemy’s system by Copernicus’s intervention. Should that happen
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someday, it would not prove that Lorentz’s efforts were in vain, because regardless of
what one may think, Ptolemy was useful to Copernicus."

APPENDIX

A Electric current is not a drift of electrons

In a normal conductor, Drude’s [8] 1900 theory visualises electric current as a fluid of
free electrons flowing through the atomic lattice. In 1927 Sommerfeld [9] combined
the classical Drude model with the Fermi–Dirac statistics providing a quantum me-
chanical description for the behaviour of charge carriers in a metallic solid. However,
this theory can be easily refuted:

P R O O F . Now let’s devise a thought experiment to test Drude’s electron drift theory.
Figure-5 sketches the apparatus, an adaptation of a particle accelerator. The cathode

BA DC

CRS V1 V2

e- e- e- e-

I1 I2

Figure 5: Apparatus to test Drude’s theory.

ray source (CRS) emits electrons, at ground potential, and with a defined kinetic
energy. The electrons do not gain, nor lose, any kinetic energy on the path CRS–A,
because A is at the same potential as CRS. Along the path from A to B, the electrons
gain energy; this is due to the electromotive field between points A and B. The battery
V 1 supplies the power to accelerate the electrons and subsequently discharges,
causing an electric current I1 to flow from A to B. Anything else would violate energy
conservation laws

The path from B to C is electrically neutral; it features no potential difference
and serves to electrically isolate circuits A–B and C–D. On the path from C to D, the
electrons decelerate, returning their gained energy and charging battery V 2 through
an electric current I2.

Electrons exit the apparatus with their original kinetic energy. The sum of ener-
gies stored in batteries V 1 and V 2 remains unchanged; one battery discharges while
the other charges. The electron beam can be sustained indefinitely, implying that the
electric currents I1 and I2 are also maintained indefinitely. We must then question
the validity of Drude’s electron drift theory. Specifically, the question “In electrically
isolated circuits, where do the infinitely many charge carriers (i.e., electrons) come
from, which are required to sustain the electric currents I1 and I2 that discharge and
charge the two batteries respectively?” remains unanswered in this experimental
setup. □
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B Precession of Planetary Orbits

Transportivity  is defined in Section 5 by Equation (19). This appendix aims to
demonstrate how to apply the concept of transportivity in classical mechanics.
Specifically, we analyse a two-body system in a circular orbit around their com-
mon barycentre, which serves as the origin for this analysis. We define x = mb/ma,
ra = xρ and rb = ρ with the aim that ma and mb are separated by r = (1+ x)ρ. The
transportivity  at positions A and B is given by

A = c2
a = c2 − Gmb

r
and B = c2

b = c2 − Gma

r
(B.1)

For the case mb < ma and assuming Gma/r ≪ c2, we relate the kinetic energy of the
orbiting bodies ma and mb to a fraction of the available potential energy (Gmamb)/r
as follows:

mbv2
b

2
= mbc2 −mbc2

b

2(1+x)2
= Gmamb

2(1+x)2ρ
(B.2)

mav2
a

2
= mac2 −mac2

a

2 (1+x)2

x

= Gmamb

2 (1+x)2

x ρ
(B.3)

The orbiting velocities v are thus found to be:

vb =
√

Gma

ρ(1+x)2
and va =

√
Gmbx

ρ(1+x)2
(B.4)

Recalling the relation mb = xma we obtain

va =
√

Gmax2

ρ(1+x)2
= xvb

confirming the division of the available potential energy which led to equations (B.2)
and (B.3)

In Section 5, Equation (18) describes the outcome of a body in free fall interacting
with a static field. The perceived energy of the body remains constant, but its
inertial mass changes. The inertial mass is directly proportional to the ratio of the
transportivity  to c2. Consequently, the centrifugal forces acting on both ma and
mb are also modified as follows:

F centri
b = c2

b

c2

mbv2
b

ρ
and F centri

a = c2
a

c2

mav2
a

xρ

The gravitational force acting on mb and ma is determined by the derivatives of
mac2

a and mbc2
b with respect to r , yielding the expected

F gravi
b = Gmamb

r 2
and F gravi

a = Gmamb

r 2

Using Newtonian mechanics, the effective potential of the orbits for mb and ma

are formulated as

Vb(ρ) = c2
b

c2

L2
b

2mbρ2
− Gmamb

ρ(1+x)
(B.5)

Va(xρ) = c2
a

c2

L2
a

2max2ρ2
− Gmamb

ρ(1+x)
(B.6)
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where L = r mν. We continue with (B.5)—the treatment for the second equation (B.6)
proceeds analogously—and multiply and divide by the second term c2, giving

Vb(ρ) = c2
b

c2

L2
b

2mbρ2
− Gma

c2ρ(1+x)
mbc2 (B.7)

Next, we expand mbc2 in terms of its constituent components. Utilising Equation
(B.1) and recalling that r = (1+x)ρ, we obtain

mbc2 = mbc2
b +

Gmamb

ρ(1+x)

Rewriting the last term using Equation (B.4), we get

mbc2 = mbc2
b + (1+x)mbv2

b

Incorporating Lb = mbvbρ into the second term yields

mbc2 = mbc2
b + (1+x)

L2
b

mbρ2
(B.8)

Substituting mbc2 from Equation (B.8) into Equation (B.7), we arrive at

Vb(ρ) = c2
b

c2

(
L2

b

2mbρ2
− Gmamb

(1+x)ρ

)
− GmaL2

b

mbc2ρ3
(B.9)

Similarly, we have

Va(xρ) = c2
a

c2

(
L2

a

2max2ρ2
− Gmamb

(1+x)ρ

)
− GmbL2

a

mac2x3ρ3
(B.10)

This result is familiar; upon simplifying Equation (B.9) by setting M = ma, m =
mb, c = ca = cb, and considering the limit x → 0, the variables ρ and mbρ transform
into r and µr , respectively, where µ represents the reduced mass. We obtain:

Vb ≈ L2

2µr 2
− GMm

r
− GML2

µc2r 3
, (B.11)

This equation was first derived following Schwarzschild’s discovery of the first exact
solution to Einstein’s field equations. The first two terms of Equation (B.11) are
well-known classical energies: the second term represents the attractive Newtonian
gravitational potential energy, while the first corresponds to the repulsive ‘centrifu-
gal’ potential energy. The additional third term is an attractive energy term. As
documented in numerous textbooks, this inverse-cubic energy results in a gradual
precession of elliptical orbits by an angle δϕ per revolution,

δϕ≈ 6πG(M +m)

c2 A(1−e2)
where A is the semi-major axis and e is the eccentricity.

The result given in Equation (B.11) was initially thought to be unique to general
relativity. It has now been derived through a classical approach by incorporating the
transportivity  , equation (B.1). Furthermore, the motion of both bodies is analysed
simultaneously, eschewing approximations like reduced mass. Equations (B.9) and
(B.10) describe the effective potential for the orbits of the two bodies around their
common centre of mass.
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C Proton Packing

Atomic shell packing is by half charges. A proton 1⌜
1⌞1s 3

1 indicates 3 positive half
charges and one negative half charge. In this case the atomic mass is (3+1)/4 = 1
and the charge (3−1)/2 = 1 and an anti-proton is indicated by 1⌜

−1⌞1s 1
3. The shells are

compound structures, e. g. a configuration of the 6p 4⌜
2⌞6p 10

6 gives an atomic mass of
4 and a positive charge 2. The shell packing follows the following rules:

s 7→ 〈1, 3〉, 〈2, 2〉, 〈3, 1〉 gives charges -1, 0, +1

p 7→ 〈3, 1〉, 〈5, 3〉, {〈7, 5〉,〈9, 3〉} gives charges 1, 1, {1, 3}

d 7→ p,
{〈9, 7〉,〈11, 5〉},

{〈11, 9〉,〈13, 7〉}
f 7→ d ,

{〈13, 11〉,〈15, 9〉},
{〈15, 13〉,〈17, 11〉}

g 7→ f ,
{〈17, 15〉,〈19, 13〉},

{〈19, 17〉,〈21, 15〉},
{〈21, 19〉,〈23, 17〉},

{〈23, 21〉,〈25, 19〉}
Note the maximum shell packing quantities are {s, p, d , f , g } = 4× {1, 3, 5, 7, 11}. The
shell packing sequence is 1s, 2s, 2p, 3s . . .3d , 4s . . .4 f , 5s . . .5g . The completion of the
first five shells results in either the iron isotope 57

26Fe or the cobalt isotope 57
27Co

The sixth shell is filled as above, but instead of groups of four they are filled
in groups of eight to give packing quantities for the 6th shell {6s, 6p, 6d , 6 f , 6g } as
8× {1, 3, 5, 7, 11} with exceptions in the 6s which packs either in groups of four or
eight. Completing the sixth shell gives the cadmium stable isotope 111

48Cd. Similarly
the 7th shell packs in groups of sixteen.

We know that the nickel isotope 62
28Ni = 57

27Co + 1⌜
−1⌞6s 1

3 + 4⌜
2⌞6p 10

6 has the least
binding energy but this is not reflected in the packing, The charge difference between
the 6s and 6p shell is 3e. However, with a rearrangement of 62

28Ni = 57
27Co + 1⌜

1⌞6s 3
1 +

4⌜
0⌞6p 3+5

5+3 this charge difference is reduced to e which heuristically is a lower energy
state. This indicates that a further rule needs to be applied.

From the 6th shell onwards, after packing with above rules, the charge differences
between the sub shells are minimised. Example: 86

36Kr = 57
27Co + 1⌜

−1⌞6s 1
3 + 6⌜

2⌞6p 14
10 +

10⌜
6⌞6d 26

14 + 12⌜
2⌞6 f 26

22 The 6d 〈26, 14〉 packing is according to the above rules but the
charge difference between the 6s and 6d shell is 7e. The rearrangement 1⌜

−1⌞6s 1
3 →

1⌜
1⌞6s 3

1 and 10⌜
6⌞6d 26

14 → 10⌜
4⌞6d 24

16 reduces the difference to 3e, clearly a lower energy state,

giving 86
36Kr = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
4⌞6d 24

16 + 12⌜
2⌞6 f 26

22. The packing sequence listed
in the table below does not consider charge difference minimisation, The list serves
to confirm the basic shell packing rules.

1
0Π= 1⌜

1⌞1s 2
2

1
1H = 1⌜

1⌞1s 3
1

2
1H = 1⌜

0⌞1s 2
2 + 1⌜

1⌞2s 3
1

3
1H = 1⌜

1⌞1s 3
1 + 1⌜

−1⌞2s 1
3 + 1⌜

1⌞2p 3
1

4
2He = 1⌜

1⌞1s 3
1 + 1⌜

0⌞2s 2
2 + 2⌜

1⌞2p 5
3

5
2He = 1⌜

1⌞1s 3
1 + 1⌜

0⌞2s 2
2 + 3⌜

1⌞2p 7
5
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6
3Li = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 3⌜

1⌞2p 7
5 + 1⌜

0⌞3s 2
2

7
3Li = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 2⌜

1⌞2p 5
3 + 1⌜

−1⌞3s 1
3 + 2⌜

1⌞3p 5
3

9
4Be = 5

2He + 1⌜
1⌞3s 3

1 + 3⌜
1⌞3p 7

5

10
5B = 5

2He + 1⌜
1⌞3s 3

1 + 2⌜
1⌞3p 5

3 + 2⌜
1⌞3d 5

3

12
6C = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 3⌜

1⌞2p 7
5 + 1⌜

1⌞3s 3
1 + 3⌜

1⌞3p 7
5 + 3⌜

1⌞3d 7
5

13
6C = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 3⌜

1⌞2p 7
5 + 1⌜

1⌞3s 3
1 + 3⌜

1⌞3d 7
5 + 5⌜

1⌞3d 9
7

14
6C = 1⌜

1⌞1s 3
1 + 1⌜

1⌞2s 3
1 + 3⌜

1⌞2p 7
5 + 1⌜

1⌞3s 3
1 + 3⌜

1⌞3p 7
5 + 5⌜

1⌞3d 11
9

14
7N = 13

6C + 1⌜
1⌞4s 3

1

15
7N = 14

6C + 1⌜
1⌞4s 3

1

16
8O = 13

6C + 1⌜
1⌞4s 3

1 + 2⌜
1⌞4p 5

3

17
8O = 14

6C + 1⌜
1⌞4s 3

1 + 2⌜
1⌞4p 5

3

18
8O = 14

6C + 1⌜
1⌞4s 3

1 + 3⌜
1⌞4p 7

5

19
9F = 14

6C + 1⌜
1⌞4s 3

1 + 2⌜
1⌞4p 5

3 + 2⌜
1⌞4d 5

3

20
10Ne = 14

6C + 1⌜
0⌞4s 2

2 + 2⌜
1⌞4p 5

3 + 3⌜
3⌞4d 9

3

21
10Ne = 14

6C + 1⌜
0⌞4s 2

2 + 3⌜
1⌞4p 7

5 + 3⌜
3⌞4d 9

3

22
10Ne = 14

6C + 1⌜
0⌞4s 2

2 + 3⌜
1⌞4p 7

5 + 4⌜
3⌞4d 11

5

23
11Na = 14

6C + 1⌜
1⌞4s 3

1 + 3⌜
1⌞4p 7

5 + 5⌜
3⌞4d 13

7

24
12Mg = 14

6C + 1⌜
1⌞4s 3

1 + 3⌜
1⌞4p 7

5 + 5⌜
3⌞4d 13

7 + 1⌜
1⌞4 f 3

1

25
12Mg = 14

6C + 1⌜
1⌞4s 3

1 + 3⌜
1⌞4p 7

5 + 5⌜
3⌞4d 13

7 + 2⌜
1⌞4 f 5

3

26
12Mg = 14

6C + 1⌜
1⌞4s 3

1 + 3⌜
1⌞4p 7

5 + 5⌜
3⌞4d 13

7 + 3⌜
1⌞4 f 7

5

27
13Al = 14

6C + 1⌜
0⌞4s 2

2 + 3⌜
1⌞4p 7

5 + 5⌜
3⌞4d 13

7 + 4⌜
3⌞4 f 11

5

28
14Si = 14

6C + 1⌜
1⌞4s 3

1 + 3⌜
1⌞4p 7

5 + 5⌜
3⌞4d 13

7 + 5⌜
3⌞4 f 13

7

29
14Si = 14

6C + 1⌜
1⌞4s 3

1 + 3⌜
1⌞4p 7

5 + 5⌜
3⌞4d 13

7 + 6⌜
3⌞4 f 15

9

30
14Si = 14

6C + 1⌜
1⌞4s 3

1 + 3⌜
1⌞4p 7

5 + 5⌜
3⌞4d 13

7 + 7⌜
3⌞4 f 17

11

31
15P = 30

14Si + 1⌜
1⌞5s 3

1

32
16S = 30

14Si + 1⌜
1⌞5s 3

1 + 1⌜
1⌞5p 3

1

33
16S = 30

14Si + 1⌜
1⌞5s 3

1 + 2⌜
1⌞5p 5

3
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34
16S = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5

36
16S = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 2⌜
1⌞5d 5

3

35
17Cl = 30

14Si + 1⌜
1⌞5s 3

1 + 2⌜
1⌞5p 5

3 + 2⌜
1⌞5d 5

3

37
17Cl = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 3⌜
1⌞5d 7

5

36
18Ar = 30

14Si + 1⌜
0⌞5s 2

2 + 2⌜
1⌞5p 5

3 + 3⌜
3⌞5d 9

3

38
18Ar = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 4⌜
3⌞5d 11

5

39
18Ar = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 3⌜
1⌞5d 7

5 + 2⌜
1⌞5 f 5

3

39
19K = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 3⌜
3⌞5d 9

3 + 2⌜
1⌞5 f 5

3

40
19K = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 4⌜
3⌞5d 11

5 + 2⌜
1⌞5 f 5

3

41
19K = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 2⌜
1⌞5 f 5

3

40
20Ca = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 1⌜
1⌞5 f 3

1

41
18Ca = 30

14Si + 1⌜
−1⌞5s 1

3 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 2⌜
1⌞5 f 5

3

42
20Ca = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 3⌜
1⌞5 f 7

5

43
20Ca = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 4⌜
1⌞5 f 9

7

44
20Ca = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 5⌜
1⌞5 f 11

9

45
21Sc = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 6⌜
3⌞5 f 15

9

46
22Ti = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11

47
22Ti = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 6⌜
3⌞5 f 15

9 + 2⌜
1⌞5g 5

3

48
22Ti = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 2⌜
1⌞5g 5

3

49
22Ti = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 3⌜
1⌞5g 7

5

50
22Ti = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 4⌜
1⌞5g 9

7

50
23V = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 4⌜
1⌞5g 9

7

51
23V = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 5⌜
1⌞5g 11

9

50
24Cr = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 4⌜
3⌞5g 11

5

52
24Cr = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 6⌜
3⌞5g 15

9

53
24Cr = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 7⌜
3⌞5g 17

11

54
24Cr = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
1⌞5p 7

5 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 8⌜
3⌞5g 19

13
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54
26Fe = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
3⌞5p 9

3 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 8⌜
3⌞5g 19

13

56
26Fe = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
3⌞5p 9

3 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 10⌜
3⌞5g 23

17

57
26Fe = 30

14Si + 1⌜
0⌞5s 2

2 + 3⌜
3⌞5p 9

3 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 11⌜
3⌞5g 25

19

57
27Co = 30

14Si + 1⌜
1⌞5s 3

1 + 3⌜
3⌞5p 9

3 + 5⌜
3⌞5d 13

7 + 7⌜
3⌞5 f 17

11 + 11⌜
3⌞5g 25

19

58
26Fe = 57

26Fe + 2⌜
0⌞6s 4

4

59
27Co = 57

27Co + 2⌜
0⌞6s 4

4

58
28Ni = 57

27Co + 1⌜
1⌞6s 3

1

60
28Ni = 57

27Co + 1⌜
−1⌞6s 1

3 + 2⌜
2⌞6p 6

2

61
28Ni = 57

27Co + 1⌜
−1⌞6s 1

3 + 3⌜
2⌞6p 8

4

62
28Ni = 57

27Co + 1⌜
−1⌞6s 1

3 + 4⌜
2⌞6p 10

6

64
28Ni = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10

63
29Cu = 57

27Co + 2⌜
0⌞6s 4

4 + 4⌜
2⌞6p 10

6

65
29Cu = 57

27Co + 2⌜
0⌞6s 4

4 + 6⌜
2⌞6p 14

10

64
30Zn = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10

66
30Zn = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 2⌜
2⌞6d 6

2

67
30Zn = 57

27Co + 2⌜
−1⌞6s 3

5 + 6⌜
2⌞6p 14

10 + 2⌜
2⌞6d 6

2

68
30Zn = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 4⌜
2⌞6d 10

6

70
30Zn = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 6⌜
2⌞6d 14

10

69
31Ga = 57

27Co + 2⌜
0⌞6s 4

4 + 6⌜
2⌞6p 14

10 + 4⌜
2⌞6d 10

6

71
31Ga = 57

27Co + 2⌜
0⌞6s 4

4 + 6⌜
2⌞6p 14

10 + 6⌜
2⌞6d 14

10

70
32Ge = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 6⌜
2⌞6d 14

10

72
32Ge = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 8⌜
2⌞6d 18

14

73
32Ge = 57

27Co + 2⌜
1⌞6s 5

3 + 6⌜
2⌞6p 14

10 + 8⌜
2⌞6d 18

14

74
32Ge = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
2⌞6d 22

18

76
34Ge = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
2⌞6d 22

18

75
33As = 57

27Co + 2⌜
2⌞6s 6

2 + 6⌜
2⌞6p 14

10 + 10⌜
2⌞6d 22

18

74
34Se = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14
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74
34Se = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 6⌜
2⌞6d 14

10 + 4⌜
2⌞6 f 10

6

76
34Se = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 8⌜
2⌞6d 18

14 + 4⌜
2⌞6 f 10

6

77
34Se = 57

27Co + 2⌜
1⌞6s 5

3 + 6⌜
2⌞6p 14

10 + 8⌜
2⌞6d 18

14 + 4⌜
2⌞6 f 10

6

78
34Se = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 8⌜
2⌞6d 18

14 + 6⌜
2⌞6 f 14

10

80
34Se = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 8⌜
2⌞6d 18

14 + 8⌜
2⌞6 f 18

14

79
35Br = 57

27Co + 2⌜
2⌞6s 6

2 + 6⌜
2⌞6p 14

10 + 8⌜
2⌞6d 18

14 + 6⌜
2⌞6 f 14

10

81
35Br = 57

27Co + 2⌜
2⌞6s 6

2 + 6⌜
2⌞6p 14

10 + 10⌜
2⌞6d 22

18 + 6⌜
2⌞6 f 14

10

78
36Kr = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 4⌜
2⌞6 f 10

6

80
36Kr = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 6⌜
2⌞6 f 14

10

82
36Kr = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 8⌜
2⌞6 f 18

14

83
36Kr = 57

27Co + 2⌜
−1⌞6s 3

5 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 8⌜
2⌞6 f 18

14

84
36Kr = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 10⌜
2⌞6 f 22

18

86
36Kr = 57

27Co + 1⌜
−1⌞6s 1

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 12⌜
2⌞6 f 26

22

85
37Rb = 57

27Co + 2⌜
0⌞6s 4

4 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 10⌜
2⌞6 f 22

18

87
37Rb = 57

27Co + 2⌜
0⌞6s 4

4 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 12⌜
2⌞6 f 26

22

84
38Sr = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 10⌜
2⌞6 f 22

18

86
38Sr = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 12⌜
2⌞6 f 26

22

87
38Sr = 57

27Co + 2⌜
1⌞6s 5

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 12⌜
2⌞6 f 26

22

88
38Sr = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
2⌞6 f 30

26

89
39Y = 57

27Co + 2⌜
2⌞6s 6

2 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
2⌞6 f 30

26

90
40Zr = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 12⌜
2⌞6 f 26

22 + 4⌜
2⌞6g 10

6

91
40Zr = 57

27Co + 2⌜
1⌞6s 5

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 12⌜
2⌞6 f 26

22 + 4⌜
2⌞6g 10

6

92
40Zr = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
2⌞6 f 30

26 + 4⌜
2⌞6g 10

6

94
40Zr = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
2⌞6 f 30

26 + 6⌜
2⌞6g 14

10

96
40Zr = 57

27Co + 1⌜
1⌞6s 3

1 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
2⌞6 f 30

26 + 8⌜
2⌞6g 18

14

93
41Nb = 57

27Co + 2⌜
2⌞6s 6

2 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
2⌞6 f 30

26 + 4⌜
2⌞6g 10

6

103
45Rh = 57

27Co + 2⌜
2⌞6s 6

2 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
6⌞6 f 34

22 + 14⌜
2⌞6g 30

26
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111
48Cd = 57

27Co + 2⌜
1⌞6s 5

3 + 6⌜
2⌞6p 14

10 + 10⌜
6⌞6d 26

14 + 14⌜
6⌞6 f 34

22 + 22⌜
6⌞6g 50

38

D Nomenclature

In the table below the explanation mark denotes a new definition.

a, â, a Generalised, each vector is expresses as the product
of a scalar that carries dimensionality and a unit
vector, e. g. a = aâ

x̂ , ŷ , ẑ Unit vectors ẑ = x̂ × ŷ defining an Euclidean space
[XYZ] in C3.

e the Euler number to express a complex number eiθ

as a rotation.
⌞⌟o An elementary quantity ⌞⌟, convention dictates the

exceptions for e, e, h, land c (see below)
! lo elementary length
! to elementary time

e elementary charge e = 1.602176634 × 10−19

coulombs
! e elementary electromotive charge |e| = e coulombs

h Planck’s constant h = 6.62607015×10−34

! l elementary latentness l = 1/h and has unit
changelings

!  The transportivity of space,  = c2

! ϕo,ϕo Magnetic vector emflux, its magnitude
! Υo,Υo Electromotive vector emflux, its magnitude
! Λo,Λo Magnetic latency emflux vector, its magnitude
! Ξo,Ξo Electromotive latency emflux vector, its magnitude
! Xo The complexification constant ei (pi /4+δx )

! ⃗ Energy as a complex quantity, ⃗ = eiθ

! m An emtron is a solitary wave that propagates on a
path that is either straight, circular, or spherular.

! m̄, .m The over-accented bar indicates an anti-emtron,
and the under-accented dot the contra-emtron.
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