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Anton Vrba ELECTROMAGNETIC SOLITON THEORY

Slide 2: What is a wave? (The d’Alembert wave equation)

Towne! states that the requirement for a physical condition to be referred to as
a wave, is that its mathematical representation give rise to a partial differential
equation of particular form, known as the wave equation. The classical form

1 0%w

=0 or V2w - ———=0
u? 0r?

w ~ iazw
op? w2 o

was proposed in 1748 by d’Alembert for a one-dimensional continuum. A decade
later, Euler established the equation for the three-dimensional continuum.
A pendulum is described by the pendulum equation
%0 g

—+2=0
orr 1

is not a wave and cannot described a soliton even if it is Lorentz boosted, e. g.

taking the pendulum on a journey in an aeroplane. A pendulum equation does

not, and will never describe displacement motion.

1 Dudley H. Towne. Wave phenomena. New York: Dover Publications, 1988.
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Slide 3: Three orthogonal vectors in an Euclidean reference system

The reference system whose axis are the unit vectors X,y and 2

2
is defined by:
X-§=0 y-2=0 2-x=0
“ g Xxy=2 gxz=% IxX=§
Consider three orthogonal vectors of function of time
r(r)
gives:
u-a=0 ar=0 r-u=0

u(p) a(t) uxa=r axr=u rxu=a

Next consider the indefinite series

Z] =Up xap, Uy =9 xXr;, a4y =r xu;, rp=u; xa ... rp, =uUn-

and what needs to be done so that ug =u,, ag =a,, ro=r;, to give us a simulta-
neous vector cross product equation set which has defined solutions?
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Slide 4: Theorem: The Soliton Equation System

ME

. .. 1 1
We introduce normalisation: u = Wa Xr, a=——=rxu, r=—uxa
a

Theorem 1: The soliton equation system. In a space C3 the sys-
tem of simultaneous equations
1 1

axr, a=
a-a* u-u*

M(u,a,r)m{u: rxu, r:uxa}
defines the motion of a soliton characterised by a velocity vector
u(?) and two co-orthogonal vectors a(t) and r(t) that describe the
disturbance in a homogenous and isotropic medium.

Here the vector quantities u, a and r are complex vectors, for example
a=3Xaze'™ +yaye'® +zaze'"z a* =Xaye ' +ya,e' +2a,e7'%

therefore a-a* = a} + aj + aZ = a® = ||a®
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Slide 5: Proof: {u:axr/a-a*, a=rxu/u-u*, r=u><a} describes a soliton.

Performing a ‘left and right side’ curl operation on the second and third equa-
tions of the equation-set gives

1
Vxa= ——Vx(@xu and Vxr=Vx(uxa) @))
u-u

and to evaluate the vector triple products we use general vector analytic methods
to give

Vxrxuw=r(V-u)—-u(V-r)+ (u-V)ir—(r-V)u
Vxuxa)=uV-a)—a(V-u)+(@-V)u— (u-V)a.

Because the vectors a and r are position independent (from theorem: vectors
a(?) and r(#) describe the disturbance in a homogenous and isotropic medium.,
therefore we have

V-a=0 and V-.-r=0. (2)
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Slide 6: Proof: {u: axr/a-a*, a=rxu/u-u*, r=ux a} describes a soliton.

Vx@xuw)=r(V-u)—ul~1+u-V)r—(r-V)u
Vxuxa) =uV-a -aV-u)+ (@ V)u—-(u-V)a.

Evaluating the terms containing u==% 0x/0r +9 dy/dt +2 0z/dt we obtain

0xd 0yd 0zd 0

'v:v- o — — — — — — =
" U= 5iox "otay "otoz ot

Because a(u-V) =a 01/dr =0, we are left with
Vx (uxa) 0a and Vx(rxu or
x(uxa)=—— x (rxu)=—.

ot ot

Therefore, the ‘left and right side’ curl operations (1) generate the new relations:

an—ig and er——a—a 3)
Ut ot Y
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Slide 7: Proof: {u: axr/a-a*, a=rxu/u-u*, r=ux a} describes a soliton.

Therefore, the ‘left and right side’ curl operations generate the new relations:

1 Or da
Vxa=—— and Vxr=-— 3)
u? ot ot

A further ‘left and right side’ curl operation on (3) gives

v 1 0V
V><V><r=—M and vaxa:_ﬂ
ot uz ot

and because V x V x r = V(V -r) — V2r we recover the d’Alembert wave equations

Vo L2 0 and va- L2 @
r-——=0 an a-——=0.

u? ar? u? ot?
This concludes the proof that the three vector algebraic equations of M give
rise to the d’Alembert wave equations (4). Therefore, the equation set M is a
generic bimodal-transverse soliton equation system. O
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Slide 8: One Plane of an Electromagnetic Wave

M (u,B,E) recovers the Maxwell equations in vacuum

from (2): V-B=0 V-E=0
from (3): VxB= 1 OE VxE= JB
© ' 2ot Y
X
B
y z
E P =

1 1
{E:uxB, u:—szE, B:—zExu} p:fudr
B lull
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Slide 9: Electrostatic versus Electromotive

Remark 1: Electrostatic versus Electromotive. I intentionally distinguish be-
tween

« the elementary electrostatic charge e (represented by e in italic serif
font) and
« the electromotive charge € (represented by ¢ in script font)

In the conventional interpretation of electromagnetic theory, both charges are
considered equal in magnitude and are measured in units of coulombs.

Remark 2: Defining the emflux. As a consequence of above, we must distin-
guish between

e the magnetic flux ¢ (slanted ¢) and
« the elementary magnetic momentum ¢ (upright ¢)

The elementary magnetic momentum ¢ or its vector form ¢, which will hence-
forth be referred to as a magnetic emflux (magnetic electromotive flux)
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Slide 10: Theorem: Elementary Electromagnetic Soliton

The equation system M defines a purely mathematical and a purely generical
Maxwell equation system allowing us to formulate new Maxwellian like system.

Theorem 2: Elementary Electromagnetic Soliton. There exists an
elementary length denoted as 1, and an elementary time denoted
as t, defining the speed of light ¢ such that [, = ct,. Addition-
ally, an elementary magnetic emflux ¢, represents a quantum of
magnetic momentum. Furthermore, an elementary EM-soliton, de-
fined by M(u, §,,Y,), carries an elementary electromotive charge
denoted as € and has action h, whilst propagating at the speed
of light.

Here Y, is the electric electromotive flux.
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Slide 11: Proof: Elementary Electromagnetic Soliton

The proof is structured by demonstrating that the set of simultaneous equations

efines 1 1
M, by, Yo) el {uz 2 Yo, &, = 2 xu, Yo=ux q)o}
1o ul

together with the theorem’s assertions demands the presence of ¢y and g in
their known forms.

Assuming that ¢, x ¥, represents wave action, we multiply the equation
u= (¢, xYo) n b, H_z by h and evaluate its norm, yielding

I hull = to give

iy
] (ol 161 (5)

h=

cbd

where the square brackets indicate the development of a constant.
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Slide 12: Proof: Electromagnetic action

 We define the elementary EM-action as h, = ph, where p =1 C/kg
* Theorem 2 demands that ¢ is transported at a velocity ¢

* Action is momentum times distance, we consider the elementary distance [,

therefore
h,=ph=xecl, (6)

where K is a dimensionless proportionality constant of unknown value,
scaling ecl, to the EM-action h,.

Also, Theorem 2 states that ¢ represents a quantum of magnetic momentum.
Consequently, EM-action is also proportional to the product of ¢ and the distance
travelled:

oh= X“ (0N ” I, combining with (6) ” o, ” — K€C)(_1 @)

where Y is a physical quantity with units and scaling to be determined.
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Slide 13: Proof: Permittivity and Permeability

Repeating equation (5):  h = [h/cd?] (|| &, || 1Yo II) which we now rewrite, using
|| q>0|| =xecy ! and the relationship Yo =u x ¢, (or [ Yol = CH d, H) giving:

h 1
2kedy

cdZllx

We are now in a position to define the expression for 5 = — but only if
K€

h 1
1= [ ] [— c? and replacing ¢, gives
cd2llx ?
2,2
1 1
S © iy which requires — = ———, hence
ch |l 1 x%e?c
) K%e? h ) ®)
= ———|C
ch ||x%e?c
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Slide 14: Proof: Permittivity and Permeability

x2e? h

ch [|x%e?c
permittivity and permeability of the medium. These are the two constants devel-
oped mathematically and enclosed in the square brackets.

Equation (8), thatis 1 = ¢? defines, purely mathematical the

2
h
€0 = e and o

 k2elc
and mapping e — ¢ and setting x 2 = 2a gives the accustomed

e and _ 2ah
" 2ahc Ho= e’c

€0
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Slide 15: The Mass Gap

Recalling ph = x€lyc, i.e. (6); we are now in the position to calculate the
numeric values for the elementary length and time, using k=2 = 2a, p = 1 C/kg,
and the 2018 CODATA values:

x =8.277 559999 29(62) which I name the Heaviside constant

I, = 1.66656629911(12) x 10~>*  elementary length in metres

to =5.559 066 796 49(42) x 1033 elementary time in seconds

Ao =3.683 476656 21(18) x 107 mass gap in joules
where Ag = ht, is the least energy gap from a vacuum to the next lowest energy
state.
Historic note: In the late 19" century Oliver Heaviside developed vector cal-

culus, and rewrote the Maxwell works into the form commonly used today. The

Heaviside constant « is a coupling constant relating the electric charge momen-
tum to mechanical momentum.



Anton Vrba ELECTROMAGNETIC SOLITON THEORY

Slide 16: Syntax for describing solutions of M

Introducing a new mathematical syntax, utilising a row-by-row matrix product
operator ¢, defined as follows:

Pay;; Paip ] _ [P] o [611,1 a1,2]

Qazy Qa2 Q a1 az2
A wave or soliton & that is a solution of M is precisely defined by the three
vectors u, ¢,, and Y, expressed in matrix form as

gt a, a2 aps

e

&5 a1 az2 a3
c Cbo as) asz a3

This expression can be further simplified by considering only the parameters of
interest:

N> <> X

c a, a2 a3

ar
Ehr [dofo]azr ap axs
Yo as) as2 ass
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slide 17: Solutions of M(u,a,r) &M, fy—axr/a-a*, a=rxu/u-u*, r=uxa}

Electromagnetic solitons of interest are described generically:

par

&1 by
or

par

& by
or

par

&5

c

$o
Yo

cos©
o | —sinOsind
sin© cosd

sinB cosd
S cos©
—sinOsind

—sinOsind
o | sinBcosd
cosO

sin®
cos0sin?d
—cos0cos?d

—cosBcosd
sin©®
cos0sind

cos0sind
—cos0cos?d
sin®

0
cosd
sind

sind
0
cosd

cosd
sind
0

> where <

0 = snwet

¥ =rmwyt

sa€ {l/2,1,3/2,...}
r,€{-1,0,1}
S=Sal
r,e{-1,0,1}
ne@=0

meQ=0
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Slide 18: Rotating flux vectors

We are working with rotating emflux vectors. For instance, ¢, represents a
rotating vector, which we define as the source of a north-pointing elementary
magnetic emflux, denoted as ¢, = lgcbo. Consequently, —, still acts as a source
of a north-pointing emflux but in the opposite direction. We are now required to
introduce @, as the magnetic field vector that absorbs a north-pointing emflux.
This implies that ¢, + &, =0, and ¢, — B, = 2¢, if and only if P, = pd, and
&, = P, where p represents any unit vector. Below is a visual representation
of this concept where the symbol § signifies the source or the sink:

¢o— S®—N and -¢P,— N—SS
$y— N©—S and -,— S—GN
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Slide 19: Elementary EM-solitons, the emtron

c 1 00 )
a
Mo = [do|o]0 1 0 and‘l’)’l,op—>
by
o 0 0 1
c 1 0 0 c -1
ar -
mo%%oo—l 0 andmop—>¢>o<>0
") lo o -1 Y, 0

0
0
1

0 0
1 0
0 -1

The overaccented bar represents an ’anti’ (where the source becomes an ab-
sorber), while the underaccented dot signifies 'contra’ (indicating a 180-degree

rotation). At creation the recoil reactions are:

E p b Yo
a) Mo+Mo+Mo+My, = 4 0 0 0
b) Mo +My => 2 0 0o 2
c) Mo+, = 2 0 2 0
d) Mo+ Mg > 2 2 0o o
e) M+ > 2 -2 0 0
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Slide 20: Emtrons in circular self-orbits: Spin=0

The notable finding is that the solutions to M permit circular self-orbits. As
proven by Theorem 1, M leads to the Maxwell equations. Thus, circular and
spherular self-orbits are intrinsic features of electromagnetic phenomena. Circu-
lar self-orbits are mathematically described by the following equations:

l
|

These emtrons are classified as spin-zero because either ¢, or Y, remains static.

c COSwol  Sinwet

f .

m%i—?» $o | o | —sinwot coswot
Yo

0
0
0 0 1
c CoSwot  sinwet 0
my 5 |do|o| O 0 1
0

Yo sinwet —Ccoswet

N> <> X

N> <> X

These would be responsible for establishing the electromotive field between
capacitor plates, or the electromotive magnetic fields of permanent magnets.
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Slide 21: Emtrons with Rotation and Linear Motion; Spin=1

c 1 0 0
m db—‘;f» $o | 0|0 cosmnwet  sinranwet
nYo 0 —sinpnwet cosrnwet
c 1 0 0
y def 0 .
U e do | ¢ —CoSinwet  —sinRnwet
nYo 0 sinrnwqt —COSRNWot
y
Jo
// 27 sem~e ] q)
7 - A0
4 e — <~
// L‘/ \\ YO u
1
!
v
z \
\
\
\
N
\\
-~ M- \ . !

~ -

u=2ct, c=1lyfo ~=--3C
Oy = do(R coswpt+§sinw, )
Yo = Yo(-&sinwet+§ coswot), wo =27, So -7
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Slide 22: Toroidal EM-eddy — Emtrons in Circular Self-Orbits: Spin=1

c COSWol/y sinwo t/y 0
mr 2 Go | © | —coswoltly sinwelly, CcOsSWoltly coswolly sinwetly
Y, sinwo t/y sinwot/py —sinwot/pwoltly COSWot/py
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Slide 23: Particles as EM-Solitons — Emtrons in Spherular Orbits: Spin=1

c CoS2Wolly;  —Sin2wolly,sinwotlyy  Sin2Wot/p coswotlmp
m® db_eyf> d)o <& 0 cosWollmn sinwot/mn
Yo —sin2wotly; —coS2Wol/msSinWol/;mn €COS2Wollp cOSWolimn

where n € {2,3,5,...prime}, and m an integer scaling value. The integral p= [ud?
determines the path shape which has a length 2mnl, and encloses a sphere of
radius ry = ml,/ (2n).
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Slide 24: Summary and Conclusion

Please refer to my full paper "A Novel Constructive Electromagnetic Quantum
Theory describes the Origin of Mass and Unifies the Forces" available https:
//hnp.onl/1882

Theorem 1 and 2 provide the mathematical framework to define electromag-
netic solitons.

We are required to separate the electrostatic fields from the electromotive fields.
They are two different phenomena that combine into the electromagnetic
phenomenon.

The various solutions of M(u, ¢,,¥,) give explanation to electric currents,
photons and particles.

The Origin of Mass is an EM-phenomenon, E = mc? is derived from energies
of these solitons in C3

The paper provides explanation to unify the forces.
The paper provides explanation to all quantum phenomena

The paper provides a method for algorithmic nucleus packing of all elements
and their isotopes giving the correct atomic mass number.


https://hnp.onl/1882
https://hnp.onl/1882
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Slide 25: Finale

Unfortunately Theorem 1 and 2 require C3 and will not work in the four dimen-
sional space-time constructs. I predict that a paradigm revolution in physics is
upon us.

Thank You
Anton Vrba

Independent Researcher
anton.vrba@neophysics.org
Full paper: https://hnp.onl/1882
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