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Slide 2: What is a wave? (The d’Alembert wave equation)

Towne1 states that the requirement for a physical condition to be referred to as
a wave, is that its mathematical representation give rise to a partial differential
equation of particular form, known as the wave equation. The classical form

∂2w

∂p2 − 1

u2

∂2w

∂t 2 = 0 or ∇2w− 1

u2

∂2w

∂t 2 = 0.

was proposed in 1748 by d’Alembert for a one-dimensional continuum. A decade
later, Euler established the equation for the three-dimensional continuum.

A pendulum is described by the pendulum equation

∂2θ

∂t 2 + g

l
= 0

is not a wave and cannot described a soliton even if it is Lorentz boosted, e. g.
taking the pendulum on a journey in an aeroplane. A pendulum equation does
not, and will never describe displacement motion.

1 Dudley H. Towne. Wave phenomena. New York: Dover Publications, 1988.
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Slide 3: Three orthogonal vectors in an Euclidean reference system

The reference system whose axis are the unit vectors x̂, ŷ and ẑ

x̂ ŷ

ẑ
is defined by:
x̂ · ŷ= 0 ŷ · ẑ= 0 ẑ · x̂= 0
x̂× ŷ= ẑ ŷ× ẑ= x̂ ẑ× x̂= ŷ

Consider three orthogonal vectors of function of time

u(t ) a(t )

r(t )
gives:
u ·a = 0 a · r = 0 r ·u = 0
u×a = r a× r = u r×u = a

Next consider the indefinite series

z1 = u0 ×a0, u1 = a0 × r1, a1 = r1 ×u1, r2 = u1 ×a1 . . . rn = un−1 ×an−1 . . . . . .

and what needs to be done so that u0 = un , a0 = an , r0 = rn to give us a simulta-
neous vector cross product equation set which has defined solutions?
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Slide 4: Theorem: The Soliton Equation System

We introduce normalisation: u = 1

∥a∥2 a× r, a = 1

∥u∥2 r×u, r = u×a

Theorem 1: The soliton equation system. In a space C3 the sys-
tem of simultaneous equations

(u,a,r) defines−−−→
{

u = 1

a ·a∗ a× r, a = 1

u ·u∗ r×u, r = u×a
}

defines the motion of a soliton characterised by a velocity vector
u(t ) and two co-orthogonal vectors a(t ) and r(t ) that describe the
disturbance in a homogenous and isotropic medium.

Here the vector quantities u, a and r are complex vectors, for example
a = x̂axeiαx + ŷayeiαy + ẑazeiαz a∗ = x̂axe−iαx + ŷaye−iαy + ẑaze−iαz

therefore a ·a∗ = a2
x +a2

y +a2
z = a2 = ∥a∥2
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Slide 5: Proof:
{

u = a× r/a ·a∗, a = r×u/u ·u∗, r = u×a
}

describes a soliton.

Performing a ‘left and right side’ curl operation on the second and third equa-
tions of the equation-set gives

∇×a = 1

u ·u∗∇× (r×u) and ∇× r =∇× (u×a) (1)

and to evaluate the vector triple products we use general vector analytic methods
to give

∇× (r×u) = r(∇·u)−u(∇· r)+ (u ·∇)r− (r ·∇)u

∇× (u×a) = u(∇·a)−a(∇·u)+ (a ·∇)u− (u ·∇)a.

Because the vectors a and r are position independent (from theorem: vectors

a(t ) and r(t ) describe the disturbance in a homogenous and isotropic medium.,

therefore we have

∇·a = 0 and ∇· r = 0. (2)
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Slide 6: Proof:
{

u = a× r/a ·a∗, a = r×u/u ·u∗, r = u×a
}

describes a soliton.

∇× (r×u) = r(∇·u)−���u(∇· r)+ (u ·∇)r− (r ·∇)u

∇× (u×a) =����u(∇·a)−a(∇·u)+ (a ·∇)u− (u ·∇)a.

Evaluating the terms containing u = x̂ ∂x
/
∂t + ŷ ∂y

/
∂t + ẑ ∂z

/
∂t we obtain

u ·∇ =∇·u = ∂x

∂t

∂

∂x
+ ∂y

∂t

∂

∂y
+ ∂z

∂t

∂

∂z
= ∂

∂t

Because a(u ·∇) = a ∂1
/
∂t = 0, we are left with

∇× (u×a) =−∂a

∂t
and ∇× (r×u) = ∂r

∂t
.

Therefore, the ‘left and right side’ curl operations (1) generate the new relations:

∇×a = 1

u2

∂r

∂t
and ∇× r =−∂a

∂t
(3)
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Slide 7: Proof:
{

u = a× r/a ·a∗, a = r×u/u ·u∗, r = u×a
}

describes a soliton.

Therefore, the ‘left and right side’ curl operations generate the new relations:

∇×a = 1

u2

∂r

∂t
and ∇× r =−∂a

∂t
(3)

A further ‘left and right side’ curl operation on (3) gives

∇×∇× r =−∂(∇×a)

∂t
and ∇×∇×a = 1

u2

∂(∇× r)

∂t

and because ∇×∇× r =∇(∇· r)−∇2r we recover the d’Alembert wave equations

∇2r− 1

u2

∂2 r

∂t 2
= 0 and ∇2a− 1

u2

∂2 a

∂t 2
= 0. (4)

This concludes the proof that the three vector algebraic equations of  give
rise to the d’Alembert wave equations (4). Therefore, the equation set  is a
generic bimodal-transverse soliton equation system. □
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Slide 8: One Plane of an Electromagnetic Wave

(u,B,E) recovers the Maxwell equations in vacuum

from (2): ∇·B = 0 ∇·E = 0

from (3): ∇×B = 1

c2

∂E

∂t
∇×E =−∂B

∂t

z

x

y

u

B

E p

{
E = u×B, u = 1

∥B∥2 B×E, B = 1

∥u∥2 E×u
}

p =
∫

u dt
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Slide 9: Electrostatic versus Electromotive

Remark 1: Electrostatic versus Electromotive. I intentionally distinguish be-
tween

• the elementary electrostatic charge e (represented by e in italic serif
font) and

• the electromotive charge e (represented by e in script font)

In the conventional interpretation of electromagnetic theory, both charges are
considered equal in magnitude and are measured in units of coulombs.

Remark 2: Defining the emflux. As a consequence of above, we must distin-
guish between

• the magnetic flux φ (slanted φ) and

• the elementary magnetic momentum ϕ (upright ϕ)

The elementary magnetic momentum ϕ or its vector form ϕ, which will hence-
forth be referred to as a magnetic emflux (magnetic electromotive flux)
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Slide 10: Theorem: Elementary Electromagnetic Soliton

The equation system  defines a purely mathematical and a purely generical

Maxwell equation system allowing us to formulate new Maxwellian like system.

Theorem 2: Elementary Electromagnetic Soliton. There exists an
elementary length denoted as lo and an elementary time denoted
as to defining the speed of light c such that lo = cto. Addition-
ally, an elementary magnetic emflux ϕo represents a quantum of
magnetic momentum. Furthermore, an elementary EM-soliton, de-
fined by (u,ϕo,Υo), carries an elementary electromotive charge
denoted as e and has action h, whilst propagating at the speed
of light.

Here Υo is the electric electromotive flux.
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Slide 11: Proof: Elementary Electromagnetic Soliton

The proof is structured by demonstrating that the set of simultaneous equations

(u,ϕo,Υo) defines−−−−→
{

u = 1∥∥ϕo

∥∥2 ϕo ×Υo, ϕo = 1

∥u∥2Υo ×u, Υo = u×ϕo

}

together with the theorem’s assertions demands the presence of ϵ0 and µ0 in
their known forms.

Assuming that ϕo ×Υo represents wave action, we multiply the equation

u = (ϕo ×Υo)
∥∥ϕo

∥∥−2 by h and evaluate its norm, yielding

∥hu∥ =
∥∥∥∥∥ h∥∥ϕ2

o

∥∥ϕo ×Υo

∥∥∥∥∥ to give

h =
[

h

cϕ2
o

](∥∥ϕo

∥∥∥Υo∥
)

(5)

where the square brackets indicate the development of a constant.
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Slide 12: Proof: Electromagnetic action

• We define the elementary EM-action as he = ϱh, where ϱ= 1 C/kg
• Theorem 2 demands that e is transported at a velocity c

• Action is momentum times distance, we consider the elementary distance lo

therefore

he = ϱh = κeclo (6)

where κ is a dimensionless proportionality constant of unknown value,
scaling eclo to the EM-action he .

Also, Theorem 2 states that ϕ represents a quantum of magnetic momentum.

Consequently, EM-action is also proportional to the product of ϕ and the distance

travelled:

ϱh =χ∥∥ϕo

∥∥lo combining with (6)
∥∥ϕo

∥∥= κecχ−1 (7)

where χ is a physical quantity with units and scaling to be determined.
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Slide 13: Proof: Permittivity and Permeability

Repeating equation (5): h = [
h/cϕ2

o
](∥∥ϕo

∥∥∥Υo∥
)

which we now rewrite, using∥∥ϕo

∥∥= κecχ−1 and the relationship Υo = u×ϕo (or ∥Υo∥ = c
∥∥ϕo

∥∥) giving:

h =
[

h

cϕ2
o

][
1

χ

]
c2κeϕo

We are now in a position to define the expression for ϕo = h

κe
but only if

1 =
[

h

cϕ2
o

][
1

χ

]
c2 and replacing ϕo gives

1 =
[
κ2e2

ch

][
1

χ

]
c2 which requires

1

χ
= h

κ2e2c
, hence

1 =
[
κ2e2

ch

][
h

κ2e2c

]
c2 (8)
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Slide 14: Proof: Permittivity and Permeability

Equation (8), that is 1 =
[
κ2e2

ch

][
h

κ2e2c

]
c2 defines, purely mathematical the

permittivity and permeability of the medium. These are the two constants devel-
oped mathematically and enclosed in the square brackets.

ϵo = κ2e2

hc
and µo = h

κ2e2c

and mapping e 7→ e and setting κ−2 = 2α gives the accustomed

ϵ0 = e2

2αhc
and µ0 = 2αh

e2c
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Slide 15: The Mass Gap

Recalling ϱh = κeloc, i. e. (6); we are now in the position to calculate the
numeric values for the elementary length and time, using κ−2 = 2α, ϱ= 1 C/kg,
and the 2018 CODATA values:

κ= 8.277 559 999 29(62) which I name the Heaviside constant

lo = 1.666 566 299 11(12)×10−24 elementary length in metres

to = 5.559 066 796 49(42)×10−33 elementary time in seconds

∆0 = 3.683 476 656 21(18)×10−66 mass gap in joules

where ∆0 = hto is the least energy gap from a vacuum to the next lowest energy
state.

Historic note: In the late 19th century Oliver Heaviside developed vector cal-
culus, and rewrote the Maxwell works into the form commonly used today. The
Heaviside constant κ is a coupling constant relating the electric charge momen-
tum to mechanical momentum.
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Slide 16: Syntax for describing solutions of 

Introducing a new mathematical syntax, utilising a row-by-row matrix product
operator ⋄, defined as follows:Pa1,1 Pa1,2

Qa2,1 Qa2,2

=
P

Q

⋄
a1,1 a1,2

a2,1 a2,2


A wave or soliton ξ that is a solution of  is precisely defined by the three
vectors u, ϕo, and Υo, expressed in matrix form as

ξ def−−→by


u
ϕo
Υo

=


c
ϕo

cϕo

⋄


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



x̂
ŷ
ẑ


This expression can be further simplified by considering only the parameters of
interest:

ξ par−−→by


c
ϕo

Υo

⋄


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


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Slide 17: Solutions of (u,a,r) defines−−−−−→ {
u = a× r/a ·a∗, a = r×u/u ·u∗, r = u×a

}
Electromagnetic solitons of interest are described generically:

ξ1
par−−→by


c
ϕo

Υo

⋄


cosθ sinθ 0
−sinθsinϑ cosθsinϑ cosϑ
sinθcosϑ −cosθcosϑ sinϑ


or

ξ2
par−−→by


c
ϕo

Υo

⋄


sinθcosϑ −cosθcosϑ sinϑ
cosθ sinθ 0

−sinθsinϑ cosθsinϑ cosϑ


or

ξ3
par−−→by


c
ϕo

Υo

⋄

−sinθsinϑ cosθsinϑ cosϑ
sinθcosϑ −cosθcosϑ sinϑ

cosθ sinθ 0





where



θ= snωot

ϑ= rzmωot

sa∈ {1/2,1,3/2, . . .}

ra∈ {−1,0,1}

s = sara
rz∈ {−1,0,1}

n ∈Q≥ 0

m ∈Q≥ 0
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Slide 18: Rotating flux vectors

We are working with rotating emflux vectors. For instance, ϕo represents a
rotating vector, which we define as the source of a north-pointing elementary
magnetic emflux, denoted as ϕo = l 2

oϕo. Consequently, −ϕo still acts as a source
of a north-pointing emflux but in the opposite direction. We are now required to
introduce ϕo as the magnetic field vector that absorbs a north-pointing emflux.
This implies that ϕo +ϕo ≡ 0, and ϕo −ϕo ≡ 2ϕo if and only if ϕo = p̂ϕo and
ϕo = p̂ϕ̄o, where p̂ represents any unit vector. Below is a visual representation
of this concept where the symbol Ⓢ signifies the source or the sink:

ϕo 7→ SⓈ−→N and −ϕo 7→ N←−ⓈS
ϕo 7→ NⓈ←−S and −ϕo 7→ S−→ⓈN
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Slide 19: Elementary EM-solitons, the emtron

mo
par−→
by


c
ϕo
Υo

⋄


1 0 0
0 1 0
0 0 1

 and mo
par−→
by


c
ϕ̄o
Ῡo

⋄

−1 0 0
0 −1 0
0 0 1


.mo

par−→
by


c
ϕo
Υo

⋄


1 0 0
0 −1 0
0 0 −1

 and .mo
par−→
by


c
ϕ̄o
Ῡo

⋄

−1 0 0
0 1 0
0 0 −1


The overaccented bar represents an ’anti’ (where the source becomes an ab-

sorber), while the underaccented dot signifies ’contra’ (indicating a 180-degree
rotation). At creation the recoil reactions are:

 p ϕo Υo

a) mo +mo + .mo + .mo ⇒ 4 0 0 0
b) mo +mo ⇒ 2 0 0 2
c) mo + .mo ⇒ 2 0 2 0
d) mo + .mo ⇒ 2 2 0 0
e) mo + .mo ⇒ 2 −2 0 0
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Slide 20: Emtrons in circular self-orbits: Spin=0

The notable finding is that the solutions to  permit circular self-orbits. As
proven by Theorem 1,  leads to the Maxwell equations. Thus, circular and
spherular self-orbits are intrinsic features of electromagnetic phenomena. Circu-
lar self-orbits are mathematically described by the following equations:

m⊙
o

def−−→by


c
ϕo

Υo

⋄


cosωot sinωot 0
−sinωot cosωot 0

0 0 1



x̂
ŷ
ẑ


.m
⊙
o

def−−→by


c
ϕo

Υo

⋄


cosωot sinωot 0
0 0 1

sinωot −cosωot 0



x̂
ŷ
ẑ


These emtrons are classified as spin-zero because either ϕo or Υo remains static.

These would be responsible for establishing the electromotive field between
capacitor plates, or the electromotive magnetic fields of permanent magnets.
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Slide 21: Emtrons with Rotation and Linear Motion; Spin=1

mγ def−−→by


c
ϕo

nΥo

⋄


1 0 0
0 cosranωot sinranωot
0 −sinranωot cosranωot


.m
γ def−−→by


c
ϕo

nΥo

⋄


1 0 0
0 −cosranωot −sinranωot
0 sinranωot −cosranωot



x

y

z

lo

u

ϕo

Υo

u = ẑct , c = lo fo

ϕo =ϕo
(
x̂ cosωo t + ŷ sinωo t

)
Υo =Υo

(−x̂ sinωo t + ŷ cosωo t
)
, ωo = 2π fo

lo
2π
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Slide 22: Toroidal EM-eddy — Emtrons in Circular Self-Orbits: Spin=1

mτ def−−→by


c
ϕo

Υo

⋄


cosωot/n sinωot/n 0
−cosωot/n sinωot/n cosωot/n cosωot/n sinωot/n

sinωot/n sinωot/n −sinωot/nωot/n cosωot/n


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Slide 23: Particles as EM-Solitons — Emtrons in Spherular Orbits: Spin=1

m⊕ def−−→by


c
ϕo

Υo

⋄


cos2ωot/m −sin2ωot/m sinωot/mn sin2ωot/m cosωot/mn
0 cosωot/mn sinωot/mn

−sin2ωot/m −cos2ωot/m sinωot/mn cos2ωot/m cosωot/mn


where n ∈ {2,3,5, . . .prime}, and m an integer scaling value. The integral p = ∫

u dt
determines the path shape which has a length 2mnlo and encloses a sphere of
radius rs = mlo/(2π).
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Slide 24: Summary and Conclusion

Please refer to my full paper "A Novel Constructive Electromagnetic Quantum
Theory describes the Origin of Mass and Unifies the Forces" available https:
//hnp.onl/1882

• Theorem 1 and 2 provide the mathematical framework to define electromag-
netic solitons.

• We are required to separate the electrostatic fields from the electromotive fields.
They are two different phenomena that combine into the electromagnetic
phenomenon.

• The various solutions of (u,ϕo,Υo) give explanation to electric currents,
photons and particles.

• The Origin of Mass is an EM-phenomenon, E = mc2 is derived from energies
of these solitons in C3

• The paper provides explanation to unify the forces.

• The paper provides explanation to all quantum phenomena

• The paper provides a method for algorithmic nucleus packing of all elements
and their isotopes giving the correct atomic mass number.

https://hnp.onl/1882
https://hnp.onl/1882
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Slide 25: Finale

Unfortunately Theorem 1 and 2 require C3 and will not work in the four dimen-
sional space-time constructs. I predict that a paradigm revolution in physics is
upon us.

Thank You
Anton Vrba
Independent Researcher
anton.vrba@neophysics.org
Full paper: https://hnp.onl/1882

https://hnp.onl/1882
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