Electromagnetic Soliton Theory

an excerpt from

A Novel Constructive Electromagnetic Quantum Theory describes the Origin of Mass and Unifies the Forces.

Anton Lorenz Vrba
Ryde, United Kingdom
September 29, 2023
Presentation to the

International Seminar-Type Online Workshop on

Topological Solitons

Copyright © 2023, A.L. Vrba; this work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives" license. (cc) BY-NC-ND

Slide 2: What is a wave? (The d'Alembert wave equation)
Towne ${ }^{1}$ states that the requirement for a physical condition to be referred to as a wave, is that its mathematical representation give rise to a partial differential equation of particular form, known as the wave equation. The classical form

$$
\frac{\partial^{2} w}{\partial p^{2}}-\frac{1}{u^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0 \quad \text { or } \quad \nabla^{2} w-\frac{1}{u^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0
$$

was proposed in 1748 by d'Alembert for a one-dimensional continuum. A decade later, Euler established the equation for the three-dimensional continuum.

A pendulum is described by the pendulum equation

$$
\frac{\partial^{2} \theta}{\partial t^{2}}+\frac{g}{l}=0
$$

is not a wave and cannot described a soliton even if it is Lorentz boosted, e.g. taking the pendulum on a journey in an aeroplane. A pendulum equation does not, and will never describe displacement motion.

[^0]
Slide 3: Three orthogonal vectors in an Euclidean reference system

The reference system whose axis are the unit vectors \hat{x}, \hat{y} and \hat{z}
$\hat{\mathrm{z}}$

$\hat{\hat{\mathrm{z}}}$	is defined by:	
$\hat{\mathrm{x}} \cdot \hat{\mathrm{y}}=0$	$\hat{\mathrm{y}} \cdot \hat{\mathrm{z}}=0$	
$\hat{\mathrm{x}} \times \hat{\mathrm{y}}=\hat{\mathrm{z}}$	$\hat{\mathrm{y}} \times \hat{\mathrm{z}}=\hat{\mathrm{x}}$	\quad
:---		

Consider three orthogonal vectors of function of time

$\substack{\mathbf{r}(t) \\ \mathbf{u}(t)}$	gives: $\mathbf{u} \cdot \mathbf{a}=0$ $\mathbf{u} \times \mathbf{a}=\mathbf{r}$	$\mathbf{a} \cdot \mathbf{r}=0$ $\mathbf{a} \times \mathbf{r}=\mathbf{u}$	$\mathbf{r} \cdot \mathbf{u}=0$ $\mathbf{r} \times \mathbf{u}=\mathbf{a}$

Next consider the indefinite series
$\mathbf{z}_{1}=\mathbf{u}_{0} \times \mathbf{a}_{0}, \mathbf{u}_{1}=\mathbf{a}_{0} \times \mathbf{r}_{1}, \mathbf{a}_{1}=\mathbf{r}_{1} \times \mathbf{u}_{1}, \mathbf{r}_{2}=\mathbf{u}_{1} \times \mathbf{a}_{1} \ldots \mathbf{r}_{n}=\mathbf{u}_{n-1} \times \mathbf{a}_{n-1} \ldots \ldots$
and what needs to be done so that $\mathbf{u}_{0}=\mathbf{u}_{n}, \mathbf{a}_{0}=\mathbf{a}_{n}, \mathbf{r}_{0}=\mathbf{r}_{n}$ to give us a simultaneous vector cross product equation set which has defined solutions?

Slide 4: Theorem: The Soliton Equation System
We introduce normalisation: $\mathbf{u}=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a} \times \mathbf{r}, \quad \mathbf{a}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{r} \times \mathbf{u}, \quad \mathbf{r}=\mathbf{u} \times \mathbf{a}$
Theorem 1: The soliton equation system. In a space \mathbb{C}^{3} the system of simultaneous equations

$$
\mathcal{M}(\mathbf{u}, \mathbf{a}, \mathbf{r}) \xrightarrow{\text { defines }}\left\{\mathbf{u}=\frac{1}{\mathbf{a} \cdot \mathbf{a}^{*}} \mathbf{a} \times \mathbf{r}, \quad \mathbf{a}=\frac{1}{\mathbf{u} \cdot \mathbf{u}^{*}} \mathbf{r} \times \mathbf{u}, \quad \mathbf{r}=\mathbf{u} \times \mathbf{a}\right\}
$$

defines the motion of a soliton characterised by a velocity vector $\mathbf{u}(t)$ and two co-orthogonal vectors $\mathbf{a}(t)$ and $\mathbf{r}(t)$ that describe the disturbance in a homogenous and isotropic medium.

Here the vector quantities \mathbf{u}, \mathbf{a} and \mathbf{r} are complex vectors, for example $\mathbf{a}=\hat{\mathrm{x}} a_{x} e^{i \alpha_{x}}+\hat{\mathrm{y}} a_{y} e^{i \alpha_{y}}+\hat{z} a_{z} e^{i \alpha_{z}} \quad \mathbf{a}^{*}=\hat{\mathrm{x}} a_{x} e^{-i \alpha_{x}}+\hat{\mathrm{y}} a_{y} e^{-i \alpha_{y}}+\hat{z} a_{z} e^{-i \alpha_{z}}$ therefore $\mathbf{a} \cdot \mathbf{a}^{*}=a_{x}^{2}+a_{y}^{2}+a_{z}^{2}=a^{2}=\|\mathbf{a}\|^{2}$
$\underline{\text { Slide 5: Proof: }\left\{\mathbf{u}=\mathbf{a} \times \mathbf{r} / \mathbf{a} \cdot \mathbf{a}^{*}, \quad \mathbf{a}=\mathbf{r} \times \mathbf{u} / \mathbf{u} \cdot \mathbf{u}^{*}, \quad \mathbf{r}=\mathbf{u} \times \mathbf{a}\right\} \text { describes a soliton. }}$

Performing a 'left and right side' curl operation on the second and third equations of the equation-set gives

$$
\begin{equation*}
\nabla \times \mathbf{a}=\frac{1}{\mathbf{u} \cdot \mathbf{u}^{*}} \nabla \times(\mathbf{r} \times \mathbf{u}) \quad \text { and } \quad \nabla \times \mathbf{r}=\nabla \times(\mathbf{u} \times \mathbf{a}) \tag{1}
\end{equation*}
$$

and to evaluate the vector triple products we use general vector analytic methods to give

$$
\begin{aligned}
\nabla \times(\mathbf{r} \times \mathbf{u}) & =\mathbf{r}(\nabla \cdot \mathbf{u})-\mathbf{u}(\nabla \cdot \mathbf{r})+(\mathbf{u} \cdot \nabla) \mathbf{r}-(\mathbf{r} \cdot \nabla) \mathbf{u} \\
\nabla \times(\mathbf{u} \times \mathbf{a}) & =\mathbf{u}(\nabla \cdot \mathbf{a})-\mathbf{a}(\nabla \cdot \mathbf{u})+(\mathbf{a} \cdot \nabla) \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{a}
\end{aligned}
$$

Because the vectors \mathbf{a} and \mathbf{r} are position independent (from theorem: vectors $\mathbf{a}(t)$ and $\mathbf{r}(t)$ describe the disturbance in a homogenous and isotropic medium., therefore we have

$$
\begin{equation*}
\nabla \cdot \mathbf{a}=0 \quad \text { and } \quad \nabla \cdot \mathbf{r}=0 . \tag{2}
\end{equation*}
$$

$\underline{\text { Slide 6: Proof: }\left\{\mathbf{u}=\mathbf{a} \times \mathbf{r} / \mathbf{a} \cdot \mathbf{a}^{*}, \quad \mathbf{a}=\mathbf{r} \times \mathbf{u} / \mathbf{u} \cdot \mathbf{u}^{*}, \quad \mathbf{r}=\mathbf{u} \times \mathbf{a}\right\} \text { describes a soliton. }}$

$$
\begin{aligned}
\nabla \times(\mathbf{r} \times \mathbf{u}) & =\mathbf{r}(\nabla \cdot \mathbf{u})-u(\nabla \cdot \mathbb{1})+(\mathbf{u} \cdot \nabla) \mathbf{r}-(\mathbf{r} \cdot \nabla) \mathbf{u} \\
\nabla \times(\mathbf{u} \times \mathbf{a}) & =u(\nabla \cdot \mathbf{a})-\mathbf{a}(\nabla \cdot \mathbf{u})+(\mathbf{a} \cdot \nabla) \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{a} .
\end{aligned}
$$

Evaluating the terms containing $\mathbf{u}=\hat{x} \partial x / \partial t+\hat{y} \partial y / \partial t+\hat{z} \partial z / \partial t$ we obtain

$$
\mathbf{u} \cdot \nabla=\nabla \cdot \mathbf{u}=\frac{\partial x}{\partial t} \frac{\partial}{\partial x}+\frac{\partial y}{\partial t} \frac{\partial}{\partial y}+\frac{\partial z}{\partial t} \frac{\partial}{\partial z}=\frac{\partial}{\partial t}
$$

Because $\mathbf{a}(\mathbf{u} \cdot \nabla)=\mathbf{a} \partial 1 / \partial t=0$, we are left with

$$
\nabla \times(\mathbf{u} \times \mathbf{a})=-\frac{\partial \mathbf{a}}{\partial t} \quad \text { and } \quad \nabla \times(\mathbf{r} \times \mathbf{u})=\frac{\partial \mathbf{r}}{\partial t}
$$

Therefore, the 'left and right side' curl operations (1) generate the new relations:

$$
\begin{equation*}
\nabla \times \mathbf{a}=\frac{1}{u^{2}} \frac{\partial \mathbf{r}}{\partial t} \quad \text { and } \quad \nabla \times \mathbf{r}=-\frac{\partial \mathbf{a}}{\partial t} \tag{3}
\end{equation*}
$$

$\underline{\text { Slide 7: Proof: }\left\{\mathbf{u}=\mathbf{a} \times \mathbf{r} / \mathbf{a} \cdot \mathbf{a}^{*}, \quad \mathbf{a}=\mathbf{r} \times \mathbf{u} / \mathbf{u} \cdot \mathbf{u}^{*}, \quad \mathbf{r}=\mathbf{u} \times \mathbf{a}\right\} \text { describes a soliton. }}$

Therefore, the 'left and right side' curl operations generate the new relations:

$$
\begin{equation*}
\nabla \times \mathbf{a}=\frac{1}{u^{2}} \frac{\partial \mathbf{r}}{\partial t} \quad \text { and } \quad \nabla \times \mathbf{r}=-\frac{\partial \mathbf{a}}{\partial t} \tag{3}
\end{equation*}
$$

A further 'left and right side' curl operation on (3) gives

$$
\nabla \times \nabla \times \mathbf{r}=-\frac{\partial(\nabla \times \mathbf{a})}{\partial t} \quad \text { and } \quad \nabla \times \nabla \times \mathbf{a}=\frac{1}{u^{2}} \frac{\partial(\nabla \times \mathbf{r})}{\partial t}
$$

and because $\nabla \times \nabla \times \mathbf{r}=\nabla(\nabla \cdot \mathbf{r})-\nabla^{2} \mathbf{r}$ we recover the d'Alembert wave equations

$$
\begin{equation*}
\nabla^{2} \mathbf{r}-\frac{1}{u^{2}} \frac{\partial^{2} \mathbf{r}}{\partial t^{2}}=0 \quad \text { and } \quad \nabla^{2} \mathbf{a}-\frac{1}{u^{2}} \frac{\partial^{2} \mathbf{a}}{\partial t^{2}}=0 \tag{4}
\end{equation*}
$$

This concludes the proof that the three vector algebraic equations of \mathcal{M} give rise to the d'Alembert wave equations (4). Therefore, the equation set \mathcal{M} is a generic bimodal-transverse soliton equation system.

Slide 8: One Plane of an Electromagnetic Wave

$\mathcal{M}(\mathbf{u}, \mathbf{B}, \mathbf{E})$ recovers the Maxwell equations in vacuum

from (2):	$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot \mathbf{E}=0$
from (3):	$\nabla \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}$	$\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$

$$
\left\{\mathbf{E}=\mathbf{u} \times \mathbf{B}, \quad \mathbf{u}=\frac{1}{\|\mathbf{B}\|^{2}} \mathbf{B} \times \mathbf{E}, \quad \mathbf{B}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{E} \times \mathbf{u}\right\} \quad \mathbf{p}=\int \mathbf{u} \mathrm{d} t
$$

Remark 1: Electrostatic versus Electromotive. I intentionally distinguish between

- the elementary electrostatic charge e (represented by e in italic serif font) and
- the electromotive charge e (represented by e in script font)

In the conventional interpretation of electromagnetic theory, both charges are considered equal in magnitude and are measured in units of coulombs.

Remark 2: Defining the emflux. As a consequence of above, we must distinguish between

- the magnetic flux ϕ (slanted ϕ) and
- the elementary magnetic momentum ϕ (upright ϕ)

The elementary magnetic momentum ϕ or its vector form ϕ, which will henceforth be referred to as a magnetic emflux (magnetic electromotive flux)

The equation system \mathcal{M} defines a purely mathematical and a purely generical Maxwell equation system allowing us to formulate new Maxwellian like system. Theorem 2: Elementary Electromagnetic Soliton. There exists an elementary length denoted as l_{0} and an elementary time denoted as t_{o} defining the speed of light c such that $l_{o}=c t_{0}$. Additionally, an elementary magnetic emflux ϕ_{o} represents a quantum of magnetic momentum. Furthermore, an elementary EM-soliton, defined by $\mathcal{M}\left(\mathbf{u}, \Phi_{o}, \Upsilon_{o}\right)$, carries an elementary electromotive charge denoted as e and has action h, whilst propagating at the speed of light.

Here Υ_{0} is the electric electromotive flux.

Slide 11: Proof: Elementary Electromagnetic Soliton
The proof is structured by demonstrating that the set of simultaneous equations

$$
\mathcal{M}\left(\mathbf{u}, \Phi_{\mathrm{o}}, \Upsilon_{\mathrm{o}}\right) \xrightarrow{\text { defines }}\left\{\mathbf{u}=\frac{1}{\left\|\Phi_{\mathrm{o}}\right\|^{2}} \Phi_{\mathrm{o}} \times \Upsilon_{\mathrm{o}}, \boldsymbol{\phi}_{\mathrm{o}}=\frac{1}{\|\mathbf{u}\|^{2}} \Upsilon_{\mathrm{o}} \times \mathbf{u}, \Upsilon_{\mathrm{o}}=\mathbf{u} \times \boldsymbol{\phi}_{\mathrm{o}}\right\}
$$

together with the theorem's assertions demands the presence of ϵ_{0} and μ_{0} in their known forms.

Assuming that $\phi_{0} \times \Upsilon_{0}$ represents wave action, we multiply the equation $\mathbf{u}=\left(\boldsymbol{\phi}_{\mathrm{o}} \times \Upsilon_{\mathrm{o}}\right)\left\|\boldsymbol{\phi}_{\mathrm{o}}\right\|^{-2}$ by h and evaluate its norm, yielding

$$
\begin{align*}
\|h \mathbf{u}\| & =\left\|\frac{h}{\left\|\Phi_{\mathrm{o}}^{2}\right\|} \boldsymbol{\phi}_{\mathrm{o}} \times \Upsilon_{\mathrm{o}}\right\| \quad \text { to give } \\
h & =\left[\frac{h}{c \phi_{\mathrm{o}}^{2}}\right]\left(\left\|\boldsymbol{\Phi}_{\mathrm{o}}\right\|\left\|\Upsilon_{\mathrm{o}}\right\|\right) \tag{5}
\end{align*}
$$

where the square brackets indicate the development of a constant.

- We define the elementary EM-action as $h_{e}=\varrho h$, where $\varrho=1 \mathrm{C} / \mathrm{kg}$
- Theorem 2 demands that e is transported at a velocity c
- Action is momentum times distance, we consider the elementary distance l_{o} therefore

$$
\begin{equation*}
h_{e}=\varrho h=\kappa e c l_{0} \tag{6}
\end{equation*}
$$

where κ is a dimensionless proportionality constant of unknown value, scaling $e c l_{0}$ to the Em-action h_{e}.

Also, Theorem 2 states that ϕ represents a quantum of magnetic momentum. Consequently, Em-action is also proportional to the product of ϕ and the distance travelled:

$$
\begin{equation*}
\varrho h=\chi\left\|\Phi_{\mathrm{o}}\right\| l_{\mathrm{o}} \quad \text { combining with (6) } \quad\left\|\Phi_{\mathrm{o}}\right\|=\kappa e c \chi^{-1} \tag{7}
\end{equation*}
$$

where χ is a physical quantity with units and scaling to be determined.

Repeating equation (5): $\quad h=\left[h / c \phi_{0}^{2}\right]\left(\left\|\Phi_{0}\right\|\left\|\Upsilon_{0}\right\|\right)$ which we now rewrite, using $\left\|\Phi_{\mathrm{o}}\right\|=\kappa e c \chi^{-1}$ and the relationship $\Upsilon_{\mathrm{o}}=\mathbf{u} \times \boldsymbol{\phi}_{\mathrm{o}}$ (or $\left\|\Upsilon_{\mathrm{o}}\right\|=c\left\|\boldsymbol{\phi}_{\mathrm{o}}\right\|$) giving:

$$
h=\left[\frac{h}{c \phi_{\mathrm{o}}^{2}}\right]\left[\frac{1}{\chi}\right] c^{2} \kappa e \phi_{\mathrm{o}}
$$

We are now in a position to define the expression for $\phi_{0}=\frac{h}{\kappa e}$ but only if

$$
\begin{align*}
& 1=\left[\frac{h}{c \phi_{\mathrm{o}}^{2}}\right]\left[\frac{1}{\chi}\right] c^{2} \quad \text { and replacing } \phi_{\mathrm{o}} \text { gives } \\
& 1=\left[\frac{\kappa^{2} e^{2}}{c h}\right]\left[\frac{1}{\chi}\right] c^{2} \quad \text { which requires } \frac{1}{\chi}=\frac{h}{\kappa^{2} e^{2} c}, \text { hence } \\
& 1=\left[\frac{\kappa^{2} e^{2}}{c h}\right]\left[\frac{h}{\kappa^{2} e^{2} c}\right] c^{2} \tag{8}
\end{align*}
$$

Equation (8), that is $1=\left[\frac{\kappa^{2} e^{2}}{c h}\right]\left[\frac{h}{\kappa^{2} e^{2} c}\right] c^{2}$ defines, purely mathematical the permittivity and permeability of the medium. These are the two constants developed mathematically and enclosed in the square brackets.

$$
\epsilon_{\mathrm{o}}=\frac{\kappa^{2} e^{2}}{h c} \quad \text { and } \quad \mu_{\mathrm{o}}=\frac{h}{\kappa^{2} e^{2} c}
$$

and mapping $e \mapsto e$ and setting $\kappa^{-2}=2 \alpha$ gives the accustomed

$$
\epsilon_{0}=\frac{e^{2}}{2 \alpha h c} \quad \text { and } \quad \mu_{0}=\frac{2 \alpha h}{e^{2} c}
$$

Recalling $\varrho h=\kappa e l_{0} c$, i.e. (6); we are now in the position to calculate the numeric values for the elementary length and time, using $\kappa^{-2}=2 \alpha, \varrho=1 \mathrm{C} / \mathrm{kg}$, and the 2018 CODATA values:

$$
\begin{array}{rll}
\kappa & =8.27755999929(62) & \text { which I name the Heaviside constant } \\
l_{0} & =1.66656629911(12) \times 10^{-24} & \text { elementary length in metres } \\
t_{0} & =5.55906679649(42) \times 10^{-33} & \text { elementary time in seconds } \\
\Delta_{0} & =3.68347665621(18) \times 10^{-66} & \text { mass gap in joules }
\end{array}
$$

where $\Delta_{0}=h t_{0}$ is the least energy gap from a vacuum to the next lowest energy state.

Historic note: In the late $19^{\text {th }}$ century Oliver Heaviside developed vector calculus, and rewrote the Maxwell works into the form commonly used today. The Heaviside constant κ is a coupling constant relating the electric charge momentum to mechanical momentum.

Slide 16: Syntax for describing solutions of $\boldsymbol{\mathcal { M }}$
Introducing a new mathematical syntax, utilising a row-by-row matrix product operator \diamond, defined as follows:

$$
\left(\begin{array}{ll}
P a_{1,1} & P a_{1,2} \\
Q a_{2,1} & Q a_{2,2}
\end{array}\right)=\binom{P}{Q} \diamond\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)
$$

A wave or soliton ξ that is a solution of \mathcal{M} is precisely defined by the three vectors $\mathbf{u}, \boldsymbol{\Phi}_{0}$, and Υ_{0}, expressed in matrix form as

$$
\xi \xrightarrow[\text { by }]{\text { def }}\left(\begin{array}{c}
\mathbf{u} \\
\boldsymbol{\phi}_{\mathrm{o}} \\
\Upsilon_{\mathrm{o}}
\end{array}\right)=\left(\begin{array}{c}
c \\
\phi_{\mathrm{o}} \\
c \phi_{\mathrm{o}}
\end{array}\right) \diamond\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{x}} \\
\hat{\mathrm{y}} \\
\hat{z}
\end{array}\right)
$$

This expression can be further simplified by considering only the parameters of interest:

$$
\xi \xrightarrow[\mathrm{by}]{\mathrm{par}}\left(\begin{array}{c}
c \\
\phi_{\mathrm{o}} \\
\Upsilon_{\mathrm{o}}
\end{array}\right) \diamond\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)
$$

Electromagnetic solitons of interest are described generically:
$\left.\begin{array}{l}\xi_{1} \frac{\mathrm{par}}{\mathrm{by}}\left(\begin{array}{c}c \\ \phi_{\mathrm{o}} \\ \Upsilon_{0}\end{array}\right) \diamond\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta \sin \vartheta & \cos \theta \sin \vartheta & \cos \vartheta \\ \sin \theta \cos \vartheta & -\cos \theta \cos \vartheta & \sin \vartheta\end{array}\right) \\ \text { or } \\ \xi_{2} \frac{\mathrm{par}}{\mathrm{by}} \\ \text { or } \\ \xi_{3} \frac{\mathrm{par}}{\mathrm{by}} \\ \left(\begin{array}{c}c \\ \phi_{0} \\ \Upsilon_{0}\end{array}\right) \diamond\left(\begin{array}{c}c \\ \phi_{0} \\ \Upsilon_{0}\end{array}\right) \diamond\left(\begin{array}{ccc}-\sin \theta \cos \vartheta & -\cos \theta \cos \vartheta & \sin \vartheta \\ \cos \theta & \sin \theta & 0 \\ -\sin \theta \sin \vartheta & \cos \theta \sin \vartheta & \cos \vartheta\end{array}\right) \\ \sin \theta \cos \vartheta \\ \cos \theta \sin \vartheta \\ \cos \theta\end{array} \begin{array}{c}\cos \vartheta \\ \cos \theta \cos \vartheta \\ \sin \vartheta \\ \sin \theta\end{array}\right)$ where $\left\{\begin{array}{l}\theta=s n \omega_{0} t \\ \vartheta=\mathrm{r}_{\mathrm{z}} m \omega_{\mathrm{o}} t \\ \mathrm{~s}_{\mathrm{a}} \in\{1 / 2,1,3 / 2, \ldots\} \\ \mathrm{r}_{\mathrm{a}} \in\{-1,0,1\} \\ s=\mathrm{s}_{\mathrm{a}} r_{\mathrm{a}} \\ \mathrm{r}_{\mathrm{z}} \in\{-1,0,1\} \\ n \in \mathbb{Q} \geq 0 \\ m \in \mathbb{Q} \geq 0\end{array}\right.$

We are working with rotating emflux vectors. For instance, ϕ_{0} represents a rotating vector, which we define as the source of a north-pointing elementary magnetic emflux, denoted as $\phi_{0}=l_{0}^{2} \phi_{0}$. Consequently, $-\phi_{0}$ still acts as a source of a north-pointing emflux but in the opposite direction. We are now required to introduce $\bar{\Phi}_{0}$ as the magnetic field vector that absorbs a north-pointing emflux. This implies that $\phi_{0}+\bar{\phi}_{0} \equiv 0$, and $\phi_{0}-\bar{\phi}_{0} \equiv 2 \phi_{0}$ if and only if $\phi_{0}=\hat{p} \phi_{0}$ and $\bar{\Phi}_{o}=\hat{p} \bar{\phi}_{o}$, where \hat{p} represents any unit vector. Below is a visual representation of this concept where the symbol (s) signifies the source or the sink:

$$
\begin{aligned}
& \phi_{0} \mapsto \mathrm{~S}(\mathrm{~S} \longrightarrow \mathrm{~N} \\
& \bar{\phi}_{0} \mapsto \mathrm{and}(\mathrm{~S})-\mathrm{S}
\end{aligned} \text { and }-\boldsymbol{\phi}_{0} \mapsto \mathrm{~N} \longleftarrow(\mathrm{~S}) \mathrm{S},
$$

$$
\begin{aligned}
& m_{\mathrm{O}} \xrightarrow[\text { by }]{\text { par }}\left(\begin{array}{c}
c \\
\phi_{\mathrm{o}} \\
\Upsilon_{\mathrm{O}}
\end{array}\right) \diamond\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } \bar{m}_{\mathrm{O}} \underset{\text { by }}{\text { par }}\left(\begin{array}{c}
c \\
\bar{\phi}_{\mathrm{o}} \\
\bar{\Upsilon}_{\mathrm{O}}
\end{array}\right) \diamond\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \boldsymbol{r}_{\mathrm{O}} \xrightarrow[\text { by }]{\text { par }}\left(\begin{array}{c}
c \\
\phi_{\mathrm{o}} \\
\Upsilon_{\mathrm{O}}
\end{array}\right) \diamond\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \text { and } \bar{m}_{\mathrm{o}} \xrightarrow[\text { by }]{\text { par }}\left(\begin{array}{c}
c \\
\bar{\phi}_{\mathrm{o}} \\
\bar{\Upsilon}_{\mathrm{O}}
\end{array}\right) \diamond\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

The overaccented bar represents an 'anti' (where the source becomes an absorber), while the underaccented dot signifies 'contra' (indicating a 180-degree rotation). At creation the recoil reactions are:
a) $m_{\mathrm{o}}+\bar{m}_{\mathrm{o}}+m_{\mathrm{o}}+\bar{m}_{\mathrm{o}} \Rightarrow 4 \quad 0 \quad 0 \quad 0$
b)
c) $\quad m_{0}+\bar{m}_{\mathrm{o}}$
d)

$$
m_{\mathrm{o}}+\bar{m}_{\mathrm{o}}
$$

$\Rightarrow \quad 2$
0
0
2
$\begin{array}{ccccc}\Rightarrow & 2 & 0 & 2 & 0 \\ \Rightarrow & 2 & 2 & 0 & 0 \\ \Rightarrow & 2 & -2 & 0 & 0\end{array}$
e) $\quad \bar{m}_{\mathrm{o}}+\dot{\bar{m}}_{\mathrm{o}} \quad \Rightarrow \quad 2 \quad-2 \quad 0 \quad 0$

The notable finding is that the solutions to \mathcal{M} permit circular self-orbits. As proven by Theorem 1, \mathcal{M} leads to the Maxwell equations. Thus, circular and spherular self-orbits are intrinsic features of electromagnetic phenomena. Circular self-orbits are mathematically described by the following equations:

$$
\left.\begin{array}{l}
m_{\mathrm{o}}^{\odot} \xrightarrow[\mathrm{by}]{\mathrm{def}} \\
m_{\mathrm{o}}^{\odot} \xrightarrow[\mathrm{by}]{\mathrm{def}} \\
\phi_{\mathrm{o}} \\
\Upsilon_{\mathrm{o}}
\end{array}\right) \diamond\left(\begin{array}{c}
c \\
c \\
\phi_{\mathrm{o}} \\
\Upsilon_{\mathrm{o}}
\end{array}\right) \diamond\left(\begin{array}{ccc}
\cos \omega_{\mathrm{o}} t & \sin \omega_{\mathrm{o}} t & 0 \\
-\sin \omega_{\mathrm{o}} t & \cos \omega_{\mathrm{o}} t & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{x} \\
\hat{y} \\
\hat{\mathrm{z}}
\end{array}\right)
$$

These emtrons are classified as spin-zero because either $\boldsymbol{\phi}_{0}$ or $\boldsymbol{\Upsilon}_{0}$ remains static.
These would be responsible for establishing the electromotive field between capacitor plates, or the electromotive magnetic fields of permanent magnets.

Slide 21: Emtrons with Rotation and Linear Motion; Spin=1

Slide 22: Toroidal EM-eddy — Emtrons in Circular Self-Orbits: Spin=1

$$
m^{\tau} \xrightarrow[\text { by }]{\text { def }}\left(\begin{array}{c}
c \\
\phi_{\mathrm{o}} \\
\Upsilon_{\mathrm{o}}
\end{array}\right) \diamond\left(\begin{array}{ccc}
\cos \omega_{\mathrm{o}} t / n & \sin \omega_{\mathrm{o}} t / n & 0 \\
-\cos \omega_{\mathrm{o}} t / n \sin \omega_{\mathrm{o}} t / n & \cos \omega_{\mathrm{o}} t / n \cos \omega_{\mathrm{o}} t / n & \sin \omega_{\mathrm{o}} t / n \\
\sin \omega_{\mathrm{o}} t / n \sin \omega_{\mathrm{o}} t / n & -\sin \omega_{\mathrm{o}} t / n \omega_{\mathrm{o}} t / n & \cos \omega_{\mathrm{o}} t / n
\end{array}\right)
$$

$$
m^{\oplus} \xrightarrow[\text { by }]{\text { def }}\left(\begin{array}{c}
c \\
\phi_{\mathrm{o}} \\
\Upsilon_{\mathrm{o}}
\end{array}\right) \diamond\left(\begin{array}{ccc}
\cos 2 \omega_{\mathrm{o}} t / m & -\sin 2 \omega_{\mathrm{o}} t / m \sin \omega_{\mathrm{o}} t / m n & \sin 2 \omega_{\mathrm{o}} t / m \cos \omega_{\mathrm{o}} t / m n \\
0 & \cos \omega_{\mathrm{o}} t / m n & \sin \omega_{\mathrm{o}} t / m n \\
-\sin 2 \omega_{\mathrm{o}} t / m & -\cos 2 \omega_{\mathrm{o}} t / m \sin \omega_{\mathrm{o}} t / m n & \cos 2 \omega_{\mathrm{o}} t / m \cos \omega_{\mathrm{o}} t / m n
\end{array}\right.
$$

where $n \in\{2,3,5, \ldots$ prime $\}$, and m an integer scaling value. The integral $\mathbf{p}=\int \mathbf{u} \mathrm{d} t$ determines the path shape which has a length $2 m n l_{0}$ and encloses a sphere of radius $r_{s}=m l_{0} /(2 \pi)$.

Please refer to my full paper "A Novel Constructive Electromagnetic Quantum Theory describes the Origin of Mass and Unifies the Forces" available https: //hnp.onl/1882

- Theorem 1 and 2 provide the mathematical framework to define electromagnetic solitons.
- We are required to separate the electrostatic fields from the electromotive fields. They are two different phenomena that combine into the electromagnetic phenomenon.
- The various solutions of $\mathcal{M}\left(\mathbf{u}, \boldsymbol{\phi}_{0}, \boldsymbol{\Upsilon}_{0}\right)$ give explanation to electric currents, photons and particles.
- The Origin of Mass is an EM-phenomenon, $E=m c^{2}$ is derived from energies of these solitons in \mathbb{C}^{3}
- The paper provides explanation to unify the forces.
- The paper provides explanation to all quantum phenomena
- The paper provides a method for algorithmic nucleus packing of all elements and their isotopes giving the correct atomic mass number.

Unfortunately Theorem 1 and 2 require \mathbb{C}^{3} and will not work in the four dimensional space-time constructs. I predict that a paradigm revolution in physics is upon us.

Thank You

Anton Vrba

Independent Researcher
anton.vrba@neophysics.org
Full paper: https://hnp.onl/1882

[^0]: 1 Dudley H. Towne. Wave phenomena. New York: Dover Publications, 1988.

