## Nahm-like construction for M2-M5

## Seiji Terashima (Yitp)

25 September 2023
at International Seminar-Type Online Workshop on Topological Solitons
mainly based on the papers:
"Integrability of BPS equations in ABJM theory "
K. Sakai and ST, JHEP 1 (2013)002,
"M5-branes in ABJM theory and Nahm equation"
T.Nosaka and ST, Phys.Rev. D86 (2012) 125027

## (11dim.) M-theory is "defined" by

Non-perturbative ( 10 dim.) IIA string theory

More precisely,

## M-theory on $\mathbf{S}^{1}=$ type IIA string

radius of $\mathbf{S}^{1}$ ~ string coupling constant

## It was claimed: <br> "All string theories are unified"



Any string theory = a compactification of M-theory
Various string dualities are manifest in M-theory

## M-theory is described by

11d supergravity in a low energy limit

## Fields in 11d sugra are

3-forms $C_{\mu \nu \rho}$ and metric only.
(except gravitino)

## Only M2-branes and M5-branes are (charged) branes

Here, M2-brane is $(2+1)$ d object and $\mathbf{M} 5$-brane is $(5+1) \mathrm{d}$ object.

Let us concentrate on M2-brane, which has been significantly understood recently.

The low energy effective theory on M2-branes is given by
ABJM (Aharony-Bergman-.Jfferis-Maldaceno) $^{\text {then }}$ theory,
which is just a $(2+1) d$ Chern-Simons-matter theory after the important works by Basu-Harvey
and Bagger-Lambert (and Gustavsson).

# M5-branes may be more interesting, but, mysterious. 

Nevertheless, we expect that M2-branes know M5-branes.

Why?

## Now, remember that in type IIA string theory, D2-branes know D4-branes.

D2-branes (no boundary)


$x^{3}, x^{4}, x^{5}$
$x^{0}, x^{1} \quad$ Yang-Mills theory describes the D2-branes $x^{2}$

## ADHM(N) construction

Monopole equation
$\frac{1}{2} \epsilon_{I J K} F^{I J}=D_{K} \Phi$


Nahm equation

$$
\dot{T}^{I}=i \epsilon_{I J K} T^{J} T^{K}
$$



D2-branes (terminated at D4-branes)
$x^{0}, x^{1} \quad$ This is a soliton solution in $Y M$ theory

$$
x^{2}(\equiv s)
$$

## IIA string :

D2-brane D4-brane


M-theory (on $S^{1}$ ): M2-brane M5-brane

## We expect that

## the M2-branes know the M5-branes.

M2-branes (no boundary)


$x^{3}, x^{4}, x^{5}, x^{6}$
$x^{0}, x^{1}$
ABJM theory describes these M2-branes

$$
x^{2}
$$

## We expect that

## the M2-branes know the M5-branes.



## In ABJM theory, BPS equations for this M5-brane-M2-brane bound state is

$$
\begin{aligned}
0 & =\frac{d Y^{1}}{d x^{2}}+\frac{2 \pi}{k}\left(Y^{2} Y_{2}^{\dagger} Y^{1}-Y^{1} Y_{2}^{\dagger} Y^{2}\right) \\
0 & =\frac{d Y^{2}}{d x^{2}}+\frac{2 \pi}{k}\left(Y^{1} Y_{1}^{\dagger} Y^{2}-Y^{2} Y_{1}^{\dagger} Y^{1}\right)
\end{aligned}
$$

# In ABJM theory, BPS equations for this M5-brane-M2-brane bound state is 

$$
\begin{aligned}
0 & =\frac{d Y^{1}}{d x^{2}}+\frac{2 \pi}{k}\left(Y^{2} Y_{2}^{\dagger} Y^{1}-Y^{1} Y_{2}^{\dagger} Y^{2}\right) \\
0 & =\frac{d Y^{2}}{d x^{2}}+\frac{2 \pi}{k}\left(Y^{1} Y_{1}^{\dagger} Y^{2}-Y^{2} Y_{1}^{\dagger} Y^{1}\right)
\end{aligned}
$$

Cubic interaction, not quadratic, not commutator like Nahm eq, ADHM, instanton,,, new type of soliton equation!

# Thus, <br> the solutions of these BPS eq. should represent the M5-branes. Those will be important! 

(for example, in order to try to find a Nahm-like transformation to the BPS solutions in the M5-brane action).

## However,

only a few solutions had been known.

## We found all solutions for two M2-branes:



## The KEY facts:

## The BPS equations

$$
\begin{aligned}
& 0=\frac{d Y^{1}}{d x^{2}}+\frac{2 \pi}{k}\left(Y^{2} Y_{2}^{\dagger} Y^{1}-Y^{1} Y_{2}^{\dagger} Y^{2}\right), \\
& 0=\frac{d Y^{2}}{d x^{2}}+\frac{2 \pi}{k}\left(Y^{1} Y_{1}^{\dagger} Y^{2}-Y^{2} Y_{1}^{\dagger} Y^{1}\right),
\end{aligned}
$$

equivalent!

## Lax equation $\dot{A}=[A, B]$ for Lax pair

$$
\begin{aligned}
A(s ; \lambda) & =\left(\begin{array}{cc}
O & Y^{1}+\lambda Y^{2} \\
Y^{1 \dagger}-\lambda^{-1} Y^{2 \dagger} & O
\end{array}\right), \\
B(s ; \lambda) & =\left(\begin{array}{cc}
\lambda^{-1} Y^{1} Y^{2 \dagger}+\lambda Y^{2} Y^{1 \dagger} & O \\
O & \lambda Y^{1 \dagger} Y^{2}+\lambda^{-1} Y^{2 \dagger} Y^{1}
\end{array}\right)
\end{aligned}
$$

## Using this integrable structure rather tricky,

we find all solutions for two M2-branes.

# This could be a step toward understanding M5-branes 

I will talk about this.

## Plan

- Introduction
- D2-D4 and Nahm eqution
- ABJM theory and the BPS equations
- The Lax pair
- The solutions for two M2-branes

D2-D4 and Nahm equation

## N D2-branes in IIA string

D2-branes (no boundary)
$x^{3}, x^{4}, x^{5}, x^{6}, x^{7}, x^{8}, x^{9}$
$x^{0}, x^{1}$
SU(N) YM theory describes these D2-branes

$$
x^{2}
$$

D2-brane effective action (3 dim. field theory) is super Yang-Mills theory with maximal SUSY

7 scalars = location of D2-brane in 10d spacetime
16 SUSY and $S O(7)$ global symmetry
Not conformal

We will consider N D2-branes, which means SU(N) gauge

## Fields in $\mathrm{SU}(\mathrm{N})$ SYM action:

7 real scalars ( $I=1,2,3,4,5,6,7$ ) adjoint rep. of $U(N)$
$T^{I}$
location of D2-branes
$4(2+1) d$ Dirac spinors adjoint rep. of $U(N)$
$\psi_{A}, \psi^{A \dagger}$
$(2+1) d U(N)$ gauge fields

## D2-D4-brane bound state in super YM



Then,
$1 / 2$ BPS equations for D2-D5 bound stare is Nahm eq.

$$
\dot{T}^{I}=i \epsilon_{I J K} T^{J} T^{K} \quad \text { where } \dot{T}^{I}=\frac{d T^{I}}{d s}
$$

Diaconescu


If $T^{I}(c)=\infty$, there will be D4-brane at $x^{2}=c$

If $T^{I}(c)=\infty$, there will be D4-brane at $x^{2}=c$

Actually, any solution will becomes the following basic solution near the D4-branes:

$$
T^{I} \sim \frac{1}{x^{2}} R^{I}
$$

where
R is $\mathrm{N} \operatorname{dim}$. representation of $\mathrm{SU}(2)(\mathrm{N} x \mathrm{~N}$ matrices)

This correspond to the fuzzy 2 sphere

## The ABJM theory and the BPS equations

M2-brane effective action (3 dim. field theory) should have

8 scalars $=$ location of M2-brane in 11d spacetime
16 SUSY and SO(8) global symmetry
Conformal symmetry ( $\rightarrow$ not Yang-Mills theory)

## Fields in ABJM action:

4 complex scalars ( $A=1,2,3,4$ )
bi-fundamental rep. of $U(N) x U(N)$
$Y^{A}, Y_{A}^{\dagger}$
location of M2-branes
$4(2+1) d$ Dirac spinors
bi-fundamental rep. of $U(N) x U(N)$
$(2+1) \mathrm{d} U(N) \times U(N)$ gauge fields
$\psi_{A}, \psi^{A \dagger}$
$A_{\mu}, \hat{A}_{\mu}$

## ABJM action is

## $\mathrm{U}(\mathrm{N}) \times \mathrm{U}(\mathrm{N})$ Chern-Simons-matter theory

 which has12 SUSY (N=6)<br>SU(4) x U(1) global symmetry Conformal symmetry

This action describes $N$ M2-branes on $\mathrm{C}^{4} / \mathbf{Z}_{k}$

$$
Y^{A} \rightarrow e^{2 \pi i / k} Y^{A}
$$

## ABJM action:

$$
\begin{array}{r}
S=\int d^{3} x\left[\frac{k}{4 \pi} \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2 i}{3} A_{\mu} A_{\nu} A_{\lambda}-\hat{A}_{\mu} \partial_{\nu} \hat{A}_{\lambda}-\frac{2 i}{3} \hat{A}_{\mu} \hat{A}_{\nu} \hat{A}_{\lambda}\right)\right. \\
\left.-\operatorname{Tr} D_{\mu} Y_{A}^{\dagger} D^{\mu} Y^{A}-i \operatorname{Tr} \psi^{A \dagger} \gamma^{\mu} D_{\mu} \psi_{A}-V_{\text {bos }}-V_{\text {ferm }}\right] \\
V_{\text {bos }}=-\frac{4 \pi^{2}}{3 k^{2}} \operatorname{Tr}\left(Y^{A} Y_{A}^{\dagger} Y^{B} Y_{B}^{\dagger} Y^{C} Y_{C}^{\dagger}+Y_{A}^{\dagger} Y^{A} Y_{B}^{\dagger} Y^{B} Y_{C}^{\dagger} Y^{C}\right. \\
\left.+4 Y^{A} Y_{B}^{\dagger} Y^{C} Y_{A}^{\dagger} Y^{B} Y_{C}^{\dagger}-6 Y^{A} Y_{B}^{\dagger} Y^{B} Y_{A}^{\dagger} Y^{C} Y_{C}^{\dagger}\right) \\
V_{\text {ferm }}=-\frac{2 i \pi}{k} \operatorname{Tr}\left(Y_{A}^{\dagger} Y^{A} \psi^{B \dagger} \psi_{B}-\psi^{B \dagger} Y^{A} Y_{A}^{\dagger} \psi_{B}-2 Y_{A}^{\dagger} Y^{B} \psi^{A \dagger} \psi_{B}+2 \psi^{B \dagger} Y^{A} Y_{B}^{\dagger} \psi_{A}\right. \\
\left.+\epsilon^{A B C D} Y_{A}^{\dagger} \psi_{B} Y_{C}^{\dagger} \psi_{D}-\epsilon_{A B C D} Y^{A} \psi^{B \dagger} Y^{C} \psi^{D \dagger}\right),
\end{array}
$$

## M2-M5-brane bound state in ABJM



Then,
$1 / 2$ BPS equations for M2-M5 bound stare is given by

$$
\begin{align*}
\dot{Y}^{a}= & Y^{b} Y^{b \dagger} Y^{a}-Y^{a} Y^{b \dagger} Y^{b} \\
& \text { where } \dot{Y} \equiv \frac{d Y}{d s} \quad(a=1,2) \tag{ST}
\end{align*}
$$

$Y^{1}, Y^{2}$


If $Y^{a}(c)=\infty$, there will be M5-brane at $x^{2}=c$

If $Y^{a}(c)=\infty$, there will be M5-brane at $x^{2}=c$

Actually, any solution will becomes the following basic solution near the M5-branes:

$$
Y^{a}=\sqrt{\frac{k}{4 \pi x^{2}}} S^{a}
$$

where S are constant $\mathrm{N} \times \mathrm{N}$ matrices satisfying

$$
\begin{aligned}
& S^{1}=S^{2} S^{2 \dagger} S^{1}-S^{1} S^{2 \dagger} S^{2} \\
& S^{2}=S^{1} S^{1 \dagger} S^{2}-S^{2} S^{1 \dagger} S^{1}
\end{aligned}
$$

## This can be solved by digonalizing $\mathrm{S}^{1}$

 by $\mathrm{U}(\mathrm{N}) \times \mathrm{U}(\mathrm{N})$ gauge symmetry$$
\begin{gathered}
\left(S^{1}\right)_{i j}=\delta_{i, j-1} \sqrt{i}, \\
\left(S^{2}\right)_{i j}=\delta_{i j} \sqrt{N-i} \quad(i, j=1, \cdots, N) \\
\left(\begin{array}{ccccc}
0 & \sqrt{N-1} & & & \\
& 0 & \ddots & & \\
& & \ddots & \sqrt{2} & \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & \sqrt{N-2} & \\
& & & & \sqrt{N-1}
\end{array}\right)
\end{gathered}
$$

This should represent an Fuzzy 3-sphere

$$
\text { Because } \quad\left\{\begin{array}{l}
Y^{a}=\sqrt{\frac{k}{4 \pi x^{2}}} S^{a} \\
\frac{1}{N} \operatorname{Tr}\left(\left(S^{a}\right)^{\dagger} S_{a}\right)=N-1
\end{array}\right.
$$

radius of 3 -sphere is $r \sim \sqrt{k N /\left(4 \pi x^{2}\right)}$
The action is evaluated as

$$
\begin{aligned}
S & \sim-2 \int d^{3} x \operatorname{Tr} D_{\mu} Y_{a}^{\dagger} D^{\mu} Y^{a} \sim-2 \int d^{3} x \frac{k}{16 \pi\left(x^{2}\right)^{3}} \operatorname{Tr}\left(S^{a}\left(S^{a}\right)^{\dagger}\right) \\
& \sim-\int d x^{0} d x^{1} d r r^{\dagger} \frac{2 \pi}{k}
\end{aligned}
$$

Correct tension of M5-brane!

## The basic solution $Y^{a}=\sqrt{\frac{k}{4 \pi x^{2}}} S^{a}$



Adding to this, there are some few solutions had been known

## Translational symmetry

If $T$ is a solution of the Nahm equation $\dot{T}^{I}=i \epsilon_{I J K} T^{J} T^{K}$ then, $T^{I}+$ const. 1 is also a solution.

But, even if $Y$ is a solution of the BPS equation

$$
\dot{Y}^{a}=Y^{b} Y^{b \dagger} Y^{a}-Y^{a} Y^{b \dagger} Y^{b}
$$

$$
Y^{a}+\text { const. } 1 \text { is NOT necessary a solution. }
$$

Actually, translational symmetry is broken by the orbifolding. This is an origin of additional difficulty to solve the equation.

## 3-bracket

## Bagger and Lambert showed that

ABJM action also has Lie 3-algebra structure defined by

$$
\left[\tilde{Y}_{A}, \tilde{Y}_{B}, \tilde{Y}_{C}\right] \equiv \tilde{Y}_{A} \tilde{Y}_{B} \tilde{Y}_{C}-\tilde{Y}_{C} \tilde{Y}_{B} \tilde{Y}_{A} \quad \tilde{Y}_{A}=\left(\begin{array}{cc}
0 & Y^{A} \\
Y_{A}^{\dagger} & 0
\end{array}\right)
$$

## Structure constant: $f^{a b c d}$ which satisfy (i) and (ii)

(i) fundamental identities

$$
f^{e f g}{ }_{d} f^{a b c}{ }_{g}=f^{e f a}{ }_{g} f^{b c g}{ }_{d}+f^{e f b}{ }_{g} f^{c a g}{ }_{d}+f^{e f c}{ }_{g} f^{a b g}{ }_{d} .
$$

(ii) NOT total anti-symmetric

$$
f^{a b c d} \Rightarrow f^{[a b c d]}
$$

The BPS eqution is written as $\frac{d}{d s} \tilde{Y}_{A}=\left[\tilde{Y}_{B}, \tilde{Y}_{B}, \tilde{Y}_{A}\right]$

The Lax pair

## Lax pair for Nahm equation

$$
\dot{T}^{I}=i \epsilon_{I J K} T^{J} T^{K}
$$

## equivalent!

The Lax equation $\dot{A}=[A, B]$
Hitchin

$$
\begin{aligned}
& A=T^{3}+\frac{\lambda}{2}\left(T^{1}-i T^{2}\right)-\frac{1}{2 \lambda}\left(T^{1}+i T^{2}\right) \\
& B=\frac{\lambda}{2}\left(T^{1}-i T^{2}\right)+\frac{1}{2 \lambda}\left(T^{1}+i T^{2}\right)
\end{aligned}
$$

$\lambda$ is a arbitrary constant parameter

Because of $\dot{A}=[A, B]$

## $\operatorname{Tr} A^{m}$ are "conserved charge"

These are summarized to the spectral curve $P(\mu, \lambda)=0$ defined by

$$
P=\operatorname{det}\left(\eta \mathbf{1}_{N}-A\right)
$$

## We also introduce a star-conjugate:

$$
\mathcal{M}^{\star}(\lambda):=\mathcal{M}\left(-\bar{\lambda}^{-1}\right)^{\dagger}
$$

Then, we find

$$
A^{\star}=A, \quad B^{\star}=-B
$$

Now, we will consider the so-called linear problem:

$$
\begin{aligned}
& A(s ; \lambda) \psi(s ; \lambda)=\eta(\lambda) \psi(s ; \lambda) \\
& B(s ; \lambda) \psi(s ; \lambda)=-\dot{\psi}(s ; \lambda)
\end{aligned}
$$

We define an $\mathrm{N} x \mathrm{~N}$ matrix and an $\mathrm{N} x \mathrm{~N}$ matrix:

$$
\begin{aligned}
& \Psi=\left(\psi_{1}, \psi_{2}, \ldots \psi_{N}\right) \\
& D=\operatorname{diag}\left(\eta_{1}, \eta_{2}, \ldots \eta_{N}\right)
\end{aligned}
$$

Then, the linear problems are written as:

$$
A \Psi=\Psi D \quad B \Psi=-\dot{\Psi}
$$

We have assumed there are N linearly independent solutions for $A \psi=\eta \psi$

Then, we can reconstruct $\mathrm{A}(\mathrm{s} ; \lambda)$ from $\Psi(\mathrm{s} ; \lambda)$ and D . Indeed, we find

$$
A(s ; \lambda)=\Psi(s ; \lambda) C(\lambda) \Psi^{\star}(s ; \lambda)
$$

$$
\begin{aligned}
C & :=D \mathcal{N}^{-1} \\
\mathcal{N} & :=\Psi^{\star} \Psi
\end{aligned}
$$

The Lax pair for ABJM

## Let us consider the BPS equations:

$$
\begin{array}{r}
\dot{Y}^{a}=Y^{b} Y^{b \dagger} Y^{a}-Y^{a} Y^{b \dagger} Y^{b} \\
(a=1,2)
\end{array}
$$

The symmetry of the BPS equations is

$$
\begin{gathered}
Y^{a} \rightarrow Y^{\prime a}=e^{i \varphi} \Lambda^{a}{ }_{b} U Y^{b} V^{\dagger} \\
U, V \in \mathrm{SU}(N), \quad\left(\Lambda_{b}^{a}\right) \in \mathrm{SU}(2), \quad e^{i \varphi} \in \mathrm{U}(1)
\end{gathered}
$$

$$
\dot{Y}^{a}=Y^{b} Y^{b \dagger} Y^{a}-Y^{a} Y^{b \dagger} Y^{b}
$$

## equivalent!

The Lax equation $\dot{A}=[A, B]$

## Sakai-ST

$$
\begin{aligned}
& A(s ; \lambda)=\left(\begin{array}{cc}
O & Y^{1}+\lambda Y^{2} \\
Y^{1 \dagger}-\lambda^{-1} Y^{2 \dagger} & O
\end{array}\right), \\
& B(s ; \lambda)=\left(\begin{array}{cc}
\lambda^{-1} Y^{1} Y^{2 \dagger}+\lambda Y^{2} Y^{1 \dagger} & \partial Y^{1 \dagger} Y^{2}+\lambda^{-1} Y^{2 \dagger} Y^{1}
\end{array}\right)
\end{aligned}
$$

$\lambda$ is a arbitrary constant parameter

Because of $\dot{A}=[A, B]$

## $\operatorname{Tr} A^{m}$ are "conserved charge"

These are summarized to the spectral curve $P(\mu, \lambda)=0$ defined by

$$
\begin{aligned}
P & :=\operatorname{det}\left(\eta \mathbf{1}_{2 N}-A\right) \\
& =\operatorname{det}\left[\eta^{2} \mathbf{1}_{N}-\left(Y^{1}+\lambda Y^{2}\right)\left(Y^{1 \dagger}-\lambda^{-1} Y^{2 \dagger}\right)\right] \\
& =\operatorname{det}\left[\eta^{2} \mathbf{1}_{N}-\left(Y^{1 \dagger}-\lambda^{-1} Y^{2 \dagger}\right)\left(Y^{1}+\lambda Y^{2}\right)\right] \\
\mu & :=\eta^{2}
\end{aligned}
$$

We introduce a "chirality" matrix

$$
\Gamma:=\left(\begin{array}{cc}
\mathbf{1}_{N} & 0 \\
0 & -\mathbf{1}_{N}
\end{array}\right)
$$

Then, we find

$$
\begin{aligned}
& \{A, \Gamma\}=0, \quad[B, \Gamma]=0 \\
& \left\{\begin{array}{l}
A(s ; \lambda)=\left(\begin{array}{cc}
O & Y^{1}+\lambda Y^{2} \\
Y^{1 \dagger}-\lambda^{-1} Y^{2 \dagger} & O
\end{array}\right) \\
B=\lambda \frac{\partial}{\partial \lambda} A^{2}
\end{array}\right.
\end{aligned}
$$

We also introduce a star-conjugate:

$$
\mathcal{M}^{\star}(\lambda):=\mathcal{M}\left(-\bar{\lambda}^{-1}\right)^{\dagger}
$$

Then, we find

$$
\begin{aligned}
& A^{\star}=A, \quad B^{\star}=-B \\
& \left\{\begin{array}{l}
A(s ; \lambda)=\left(\begin{array}{cc}
Y^{1 \dagger}-\lambda^{-1} Y^{2 \dagger} & O
\end{array}\right) \\
B=\lambda \frac{\partial}{\partial \lambda} A^{2}
\end{array}\right.
\end{aligned}
$$

## Now, we will consider the so-called linear problem:

$$
\begin{aligned}
& A(s ; \lambda) \psi(s ; \lambda)=\eta(\lambda) \psi(s ; \lambda) \\
& B(s ; \lambda) \psi(s ; \lambda)=-\dot{\psi}(s ; \lambda)
\end{aligned}
$$

If $\psi$ is an eigen vector with eigen value $\eta$ then $\Gamma \psi$ is an eigen vector with eigen value $-\eta$

## Then, we will take

$$
\psi_{N+m}=\Gamma \psi_{m}, \quad \eta_{N+m}=-\eta_{m}, \quad m=1, \ldots, N
$$

We define an N x 2 N matrix and an $2 \mathrm{~N} x 2 \mathrm{~N}$ matrix:

$$
\begin{aligned}
\Psi & :=\left(\psi_{1}, \ldots, \psi_{2 N}\right)=\left(\psi_{1}, \ldots, \psi_{N}, \Gamma \psi_{1}, \ldots, \Gamma \psi_{N}\right), \\
D & :=\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{2 N}\right)=\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{N},-\eta_{1}, \ldots,-\eta_{N}\right)
\end{aligned}
$$

Then, the linear problems are written as:

$$
A \Psi=\Psi D \quad B \Psi=-\dot{\Psi}
$$

We have assumed there are 2 N linearly independent solutions for $A \psi=\eta \psi$

Then, we can reconstruct $\mathrm{A}(\mathrm{s} ; \lambda)$ from $\Psi(\mathrm{s} ; \lambda)$ and D . Indeed, we find

$$
A(s ; \lambda)=\Psi(s ; \lambda) C(\lambda) \Psi^{\star}(s ; \lambda)
$$

$$
\begin{aligned}
C & :=D \mathcal{N}^{-1} \\
\mathcal{N} & :=\Psi^{\star} \Psi
\end{aligned}
$$

## The relation to two Nahm equations

Each of these 3 matrices

$$
\begin{aligned}
& T_{1}^{I}:=\left(\sigma^{I}\right)_{a b} Y^{a} Y^{b \dagger} \\
& T_{2}^{I}:=\left(\sigma^{I}\right)_{a b} Y^{b \dagger} Y^{a}
\end{aligned}
$$

satisfy the Nahm equation $\dot{T}^{I}=i \epsilon_{I J K} T^{J} T^{K}$
(We do not know why two Nahm eq. appears.)

Nahm equation $\dot{T}^{I}=i \epsilon_{I J K} T^{J} T^{K}$
also has a Lax representation

$$
\begin{array}{ll}
\dot{A}_{\alpha}=\left[A_{\alpha}, B_{\alpha}\right] & A_{\alpha}:=T_{\alpha}^{3}+\frac{\lambda}{2}\left(T_{\alpha}^{1}-i T_{\alpha}^{2}\right)-\frac{1}{2 \lambda}\left(T_{\alpha}^{1}+i T_{\alpha}^{2}\right) \\
B_{\alpha}:=\frac{\lambda}{2}\left(T_{\alpha}^{1}-i T_{\alpha}^{2}\right)+\frac{1}{2 \lambda}\left(T_{\alpha}^{1}+i T_{\alpha}^{2}\right)
\end{array}
$$

relation to Lax pair for the BPS equations in ABJM? Indeed, a simple relation:

$$
\begin{aligned}
A^{2}= & \left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right) \\
& \text { similar to "Dirac equation"! }
\end{aligned}
$$

## These relations means

$$
P=\operatorname{det}\left(\mu \mathbf{1}_{N}-A_{1}\right)=\operatorname{det}\left(\mu \mathbf{1}_{N}-A_{2}\right)
$$

The linear problems for the Nahm equations:

$$
\begin{aligned}
& A_{\alpha} \Psi_{\alpha}=\Psi_{\alpha} M \\
& B_{\alpha} \Psi_{\alpha}=-\dot{\Psi}_{\alpha} \\
& \quad M=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{N}\right)
\end{aligned}
$$

## Now consider the original BPS eq. in ABJM and the linear problem $A \Psi=\Psi D$

If we express $\Psi=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\Psi_{1} & \Psi_{1} \\ \Psi_{2} & -\Psi_{2}\end{array}\right)$
$\Psi_{1}, \Psi_{2}$ are the eigenvectors of A for the corresponding Nahm equations

$$
\begin{aligned}
& D=\left(\begin{array}{cc}
H & O \\
O & -H
\end{array}\right), \quad H=\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{N}\right) \\
& H^{2}=M
\end{aligned}
$$

## Next, we assume

 eigenvectors for Nahm data are given:$$
\Psi_{1}, \Psi_{2}, M
$$

$$
\begin{aligned}
& D=\left(\begin{array}{cc}
H & O \\
O & -H
\end{array}\right), \quad H=\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{N}\right) \\
& H^{2}=M
\end{aligned}
$$

A candidate for $\Psi$ should be

$$
\Psi=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\Psi_{1} & \Psi_{1} \\
\Psi_{2} & -\Psi_{2}
\end{array}\right)
$$

For this $\Psi$, we can reconstruct $A$ as

$$
A=\left(\begin{array}{cc}
O & \Psi_{1} H \mathcal{N}_{2}^{-1} \Psi_{2}^{\star} \\
\Psi_{2} H \mathcal{N}_{1}^{-1} \Psi_{1}^{\star} & O
\end{array}\right)
$$

Comparing with $A(s ; \lambda)=\left(\begin{array}{cc}0 & Y^{1}+\lambda Y^{2} \\ Y^{14}-\lambda^{-1} Y^{2 \dagger} & O\end{array}\right)$
Cond.1 $\frac{\partial^{2}}{\partial \lambda^{2}}\left[\Psi_{1} H \mathcal{N}_{2}^{-1} \Psi_{2}^{\star}\right]=0$
Cond. $2 \quad H \mathcal{N}_{1}=\mathcal{N}_{2} H \quad A^{\star}=A$
With these conditions, this A gives the solutions of the BPS equations!

The solutions for two M2-branes

## General solutions of the Nahm equations for $\mathrm{N}=2$ case (with an M5-brane)

$$
\begin{aligned}
& T_{\alpha}^{1}=\frac{c}{\sinh \left(x-x_{\alpha}\right)} \frac{\sigma^{1}}{2}+t^{1} \mathbf{1}_{2}, \quad T_{\alpha}^{2}=\frac{c}{\sinh \left(x-x_{\alpha}\right)} \frac{\sigma^{2}}{2}+t^{2} \mathbf{1}_{2} \\
& T_{\alpha}^{3}=\frac{c}{\tanh \left(x-x_{\alpha}\right)} \frac{\sigma^{3}}{2}+t^{3} \mathbf{1}_{2} . \\
& x=c s, \quad c \geq 0 \\
& x_{1}=0, \quad x_{2}=-l, \quad l \geq 0 \\
& \\
& \text { D4-brane at } x=x_{\alpha}
\end{aligned}
$$

$$
t^{1}, t^{2}, t^{3}
$$



## For this, the Lax pair is written as

$$
\begin{gathered}
A_{\alpha}=\left(\tanh \frac{x-x_{\alpha}}{2}\right)^{-\rho^{1}} M\left(\tanh \frac{x-x_{\alpha}}{2}\right)^{\rho^{1}} \\
\left\{\begin{array}{l}
M=\left(\frac{c}{2} \sigma^{3}+t_{\lambda} \mathbf{1}_{2}\right) \\
\rho^{1}=\frac{\lambda+\lambda^{-1}}{4} \sigma^{1}+\frac{\lambda-\lambda^{-1}}{4 i} \sigma^{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & \lambda^{-1} \\
\lambda & 0
\end{array}\right) \\
t_{\lambda}=t^{3}+\frac{\lambda}{2}\left(t^{1}-i t^{2}\right)-\frac{1}{2 \lambda}\left(t^{1}+i t^{2}\right) \\
\longrightarrow \quad \Psi_{\alpha}=\left(\tanh \frac{x-x_{\alpha}}{2}\right)^{-\rho^{1}} D_{\alpha} \\
D_{\alpha}^{\star} D_{\alpha}=\mathbf{1}_{2}
\end{array}\right.
\end{gathered}
$$

## We can compute the candidate of A as

$$
\begin{aligned}
\Psi_{1} H \mathcal{N}_{2}^{-1} \Psi_{2}^{\star}= & \left(\tanh \frac{x-x_{1}}{2}\right)^{-\rho^{1}} D_{1} M^{1 / 2} D_{2}^{\star}\left(\tanh \frac{x-x_{2}}{2}\right)^{\rho^{1}} \\
& \left(\tanh \frac{x}{2}\right)^{ \pm \rho^{1}}=\frac{1}{\sqrt{2 \sinh x}}\left(\begin{array}{cc}
e^{x / 2} & \mp \lambda^{-1} e^{-x / 2} \\
\mp \lambda e^{-x / 2} & e^{x / 2}
\end{array}\right)
\end{aligned}
$$

Then, we require the conditions 1,2

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \lambda^{2}}\left[\Psi_{1} H \mathcal{N}_{2}^{-1} \Psi_{2}^{\star}\right]=0 \\
& A^{\star}=A
\end{aligned}
$$

## Finally, we find general solution for $\mathbf{N}=\mathbf{2}$

$$
\left\{\begin{array}{l}
\left.Y^{1}=\sqrt{\frac{c}{2 \sinh l \sinh x \sinh (x+l)}\left(\begin{array}{cc}
\sinh (x+l) \cos \frac{\theta}{2} e^{i \phi} & \sinh l \sin \frac{\theta}{2} \\
0 & \sinh x \cos \frac{\theta}{2} e^{i \phi}
\end{array}\right)} \begin{array}{l}
Y^{2}=\sqrt{\frac{c}{2 \sinh l \sinh x \sinh (x+l)}}\left(\begin{array}{cc}
\sinh x \sin \frac{\theta}{2} & 0 \\
\sinh l \cos \frac{\theta}{2} e^{i \phi} & \sinh (x+l) \sin \frac{\theta}{2}
\end{array}\right)
\end{array} \text { ( } \begin{array}{c} 
\\
\sin ^{2}
\end{array}\right)
\end{array}\right.
$$



$$
\left\{\begin{array}{l}
Y^{1}=\sqrt{\frac{c}{2 \sinh l \sinh x \sinh (x+l)}}\left(\begin{array}{cc}
\sinh (x+l) \cos \frac{\theta}{2} e^{i \phi} & \sinh l \sin \frac{\theta}{2} \\
0 & \sinh x \cos \frac{\theta}{2} e^{i \phi}
\end{array}\right) \\
Y^{2}=\sqrt{\frac{c}{2 \sinh l \sinh x \sinh (x+l)}}\left(\begin{array}{cc}
\sinh x \sin \frac{\theta}{2} & 0 \\
\sinh l \cos \frac{\theta}{2} e^{i \phi} & \sinh (x+l) \sin \frac{\theta}{2}
\end{array}\right)
\end{array}\right.
$$

$$
x \rightarrow 0 \quad Y^{a} \rightarrow \text { basic solution }
$$

$$
x \rightarrow \infty\left\{\begin{aligned}
Y^{1} & \rightarrow \sqrt{\frac{c}{2 \sinh l}} \cos \frac{\theta}{2} e^{i \phi} \operatorname{diag}\left(e^{l / 2}, 1\right) \\
Y^{2} & \rightarrow \sqrt{\frac{c}{2 \sinh l}} \sin \frac{\theta}{2} \operatorname{diag}\left(1, e^{l / 2}\right)
\end{aligned}\right.
$$

## We can rewrite the solution as

$$
\begin{aligned}
Y^{1} & =\frac{1}{2}\left(f_{1} \sin \frac{\theta}{2} \sigma^{1}+f_{2} \sin \frac{\theta}{2} i \sigma^{2}+f_{3} e^{i \phi} \cos \frac{\theta}{2} \sigma^{3}-f_{0} e^{i \phi} \cos \frac{\theta}{2} \mathbf{1}_{2}\right) \\
Y^{2} & =\frac{1}{2}\left(f_{1} e^{i \phi} \cos \frac{\theta}{2} \sigma^{1}-f_{2} e^{i \phi} \cos \frac{\theta}{2} i \sigma^{2}-f_{3} \sin \frac{\theta}{2} \sigma^{3}-f_{0} \sin \frac{\theta}{2} \mathbf{1}_{2}\right)
\end{aligned}
$$

$$
f_{1}=f_{2}=\sqrt{\frac{c \sinh l}{2 \sinh x \sinh (x+l)}}, \quad f_{3}=\frac{\cosh (x+l / 2)}{\cosh (l / 2)} f_{1}, \quad f_{0}=-\frac{\sinh (x+l / 2)}{\sinh (l / 2)} f_{1}
$$

## We can show that

$$
\begin{gathered}
Y^{1}=\frac{1}{2}\left(f_{1} \sin \frac{\theta}{2} \sigma^{1}+f_{2} \sin \frac{\theta}{2} i \sigma^{2}+f_{3} e^{i \phi} \cos \frac{\theta}{2} \sigma^{3}-f_{0} e^{i \phi} \cos \frac{\theta}{2} \mathbf{1}_{2}\right) \\
Y^{2}=\frac{1}{2}\left(f_{1} e^{i \phi} \cos \frac{\theta}{2} \sigma^{1}-f_{2} e^{i \phi} \cos \frac{\theta}{2} i \sigma^{2}-f_{3} \sin \frac{\theta}{2} \sigma^{3}-f_{0} \sin \frac{\theta}{2} \mathbf{1}_{2}\right) \\
\text { with } \\
\dot{f}_{i}=f_{j} f_{k} f_{l} \quad \text { where } \epsilon^{i j k l} \neq 0
\end{gathered}
$$

## are the solutions of the BPS equations.

$\Longrightarrow f_{I}^{2}-f_{0}^{2}$ are constants
It reduces to a first-order differential equation, and can be solved by elliptic integral.

## These include all solutions for two M2-branes:


$x^{0}, x^{1} \quad$ represented by Elliptic functions

$$
x^{2}(\equiv s)
$$

## explicit form 1

$$
f_{i}=\frac{\vartheta_{i+1}(u)}{\vartheta_{i+1}\left(u_{*}\right)} \sqrt{\frac{\pi}{2 \omega_{1}} \frac{\vartheta_{1}\left(u_{*}\right) \vartheta_{2}\left(u_{*}\right) \vartheta_{3}\left(u_{*}\right) \vartheta_{4}\left(u_{*}\right)}{\vartheta_{1}\left(u_{*}+u\right) \vartheta_{1}\left(u_{*}-u\right)}}
$$

where $\left\{\begin{array}{l}\vartheta_{i}(u):=\vartheta_{i}(u, \tau) \text { are Jacobi theta functions } \\ u=\frac{s-s_{0}}{2 \omega_{1}} \quad-u_{*}<u<u_{*} \\ s_{0} \in \mathbb{R}, \quad 0<u_{*}<\frac{1}{2}, \quad \omega_{1} \in \mathbb{R}_{>0}, \quad \tau \in i \mathbb{R}_{>0}\end{array}\right.$

## 4 parameters

They diverges at $u= \pm u_{*}$

## explicit form 2

$$
f_{0}=\left(\frac{\wp_{1}\left(s_{*}\right) \wp_{2}\left(s_{*}\right) \wp_{3}\left(s_{*}\right)}{\wp\left(s-s_{0}\right)-\wp\left(s_{*}\right)}\right)^{1 / 2}, \quad f_{I}=\frac{\wp_{I}\left(s-s_{0}\right)}{\wp_{I}\left(s_{*}\right)} f_{0} \quad(I=1,2,3)
$$



## explicit form 3

$$
\begin{array}{rlrl}
f_{0} & =\frac{a_{3} \operatorname{sn} x}{\sqrt{\operatorname{sn}^{2} x_{*}-\operatorname{sn}^{2} x}}, & f_{1} & =\frac{a_{1} \operatorname{sn} x_{*} \operatorname{cn} x}{\sqrt{\operatorname{sn}^{2} x_{*}-\operatorname{sn}^{2} x}} \\
f_{2} & =\frac{a_{2} \operatorname{sn} x_{*} \operatorname{dn} x}{\sqrt{\operatorname{sn}^{2} x_{*}-\operatorname{sn}^{2} x}}, & f_{3}=\frac{a_{3} \operatorname{sn} x_{*}}{\sqrt{\operatorname{sn}^{2} x_{*}-\operatorname{sn}^{2} x}}
\end{array}
$$

where
$c=a_{2} \sqrt{a_{1}^{2}-a_{3}^{2}}$, $\operatorname{sn} x_{*}=\sqrt{1-\frac{a_{3}^{2}}{a_{1}^{2}}}$

## Corresponding Nahm data:

$$
T_{\alpha}^{I}=\wp_{I}\left(s-s_{\alpha}\right) \frac{\sigma^{I}}{2}+\frac{n_{I}}{4}\left(a_{I}^{2}-a_{J}^{2}-a_{K}^{2}\right) \mathbf{1}_{2}
$$

where

$$
s_{1}=s_{0}-s_{*},
$$

$$
s_{2}=s_{0}+s_{*}
$$

Brown-Panagopoulos-Prasad

$$
\left\{\begin{array}{l}
\text { or } \\
\wp_{1}(\tilde{s})=c \frac{\mathrm{cn} x}{\operatorname{sn} x}, \quad \wp_{2}(\tilde{s})=c \frac{\mathrm{dn} x}{\operatorname{sn} x}, \quad \wp_{3}(\tilde{s})=c \frac{1}{\operatorname{sn} x} \\
x=c \tilde{s}
\end{array}\right.
$$

Two monopoles shifted in s direction.

## Conclusion

- New BPS equation for M5-branes in ABJM
- Lax representation
- Dirac equation like structure
- New solutions
- All solutions for 2 M2-branes


## Future works

- Little research has been done so far, so there remains much to be done!
- 3-algebra structure
- Moduli space metric, etc
- reduction to Toda chain

Fin.

