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The goals

▶ deriving Bogomolny equations for:

1. the restricted baby Skyrme model in (2+0) dimensions, by using
strong necessary conditions method (SNCM), (more references
can be find in the companion document)

2. the (2+0)-dimensional Heisenberg model of ferromagnet
▶ solving exactly Cauchy problem for these equations (an answer to B.

Szafirski’s question on the Cauchy problem associated to Bogomolny
equation derived using SNCM)

▶ nothing about the form of the potential V of the restricted baby Skyrme
model will be assumed

The results presented here, were published in: Ł. T. S. ”Strong Necessary
Conditions and the Cauchy Problem”, Symmetry, vol. 15, No. 9, 1622 (2023);
arXiv:1912.02609 (an older version).



Bogomolny equations - an introduction I
▶ The Euler-Lagrange equations for model ϕ4 with spontaneous symmetry

breaking, have the following form, [?]
d2ϕ
dx2 = 2λϕ(ϕ2 − γ2)

▶ Let Q be topological charge given by Q = ϕ(∞)− ϕ(−∞)
Then, one writes energy functional E as an integral of total differential

E =

∫ ∞

−∞

1
2

(
dϕ
dx

+
√
λ(ϕ2 − γ2)

)2
dx +

2
√
λ

3
γ2 | Q |, (1)

▶ now one requires reaching the minimum by the functional (1), so the first term
must vanish, and one gets Bogomolny equations, sometimes called also, as
”Bogomol’nyi equations” or ”BPS equations” (more references can be find in the
companion document):

dϕ
dx

=
√
λ(γ2 − ϕ2) (2)

The well-known solution of (2), so called ”kink” ϕ(x) = γ tanh (γ
√
λ(x − x0)).

So, the functional (1) attends the minimum: Emin = 2
√

λ
3 γ2 | Q |.

▶ the Bogomolny equations (2) were derived using classical method called as
”completing to square”

▶ some other method of deriving Bogomolny equations:



Bogomolny equations - an introduction II

1. strong necessary conditions method SNCM, (introduced by
K.Sokalski in 1979, and developed by him and his collaborators: P.
Jochym, Z. Lisowski (died in 2021), T. Wietecha; a systematic
approach to deriving Bogomolny equations using SNCM, was
published by K. Sokalski, Ł. T. S. and D. Sokalska in 2002)

2. first-order formalism (Bazeia, Brito, Costa, Gomes, Losano,
Marques, Menezes, Oliveira, Rodrigues, Rosenfeld, Zafalan 2006
- 2017)

3. On-Shell method (Atmaja and Ramadhan 2014)
4. BPS Lagrangian method (Atmaja 2015)
5. FOEL formalism (Adam and Santamaria 2016) - a development of

SNCM
▶ in further part of this talk we present deriving of the Bogomolny

equations using SNCM .



Baby Skyrme model - an introduction

▶ baby Skyrme model - an analogical model (on plane) to the Skyrme model in
three-dimensional space, applied to describe quantum Hall effect (more
references can be found in the companion document)

▶ the target space of Skyrme model is SU(2), [?] and the target space of baby
Skyrme model is S2, magnetic skyrmions are considered to be applied in
spintronic devices, [?], (more references can be found in the companion
document)

▶ in these both models: Skyrme and baby Skyrme, static field configurations can
be classified topologically by their winding numbers (more references can be
found in the companion document)

▶ this is the lagrangian of baby Skyrme model (more references can be found in
the companion document): L = ∂µS⃗ · ∂µS⃗ − β(∂µS⃗ × ∂ν S⃗)2 − V (S⃗), where
| S⃗ |2= 1.

▶ one considers the energy functional for restricted baby Skyrme model in (2+0)
dimensions (the static σ term is absent)

H =
1
2

∫
d2xH =

1
2

∫
d2x

(
β

4
(ϵij∂i S⃗ × ∂j S⃗)2 + γ2V (S⃗)

)
. (3)



The concept of strong necessary conditions I

▶ After making stereographic projection S⃗ =

[
ω+ω∗

1+ωω∗ ,
−i(ω−ω∗)

1+ωω∗ , 1−ωω∗

1+ωω∗

]
, where

ω = ω(x , y) ∈ C and x , y ∈ R, the density of the energy functional (3) has the
form

H = −4β
(ω,xω∗

,y − ω,yω∗
,x )

2

(1 + ωω∗)4
+ V (ω, ω∗) (4)

▶ from the extremum principle, applied to the functional (4), the Euler-Lagrange
equations follow
H,ω − d

dx H,ω,x − d
dy H,ω,y = 0,H,ω∗ − d

dx H,ω∗
,x

− d
dy H,ω∗

,y
= 0,

▶ instead of Euler-Lagrange equations, one considers strong necessary conditions
(obviously, all solutions of the following system, satisfy the Euler-Lagrange
equation):

H,ω = 0, H,ω,x = 0, H,ω,y = 0, (5)

c.c. (6)



The concept of strong necessary conditions II

▶ in order to get a chance for obtaining some non-trivial solutions, one makes
gauge transformation of the functional H =

∫
E2 Hdxdy : H → H + Inv ,

where Inv is such functional that its local variation with respect to u(x , t)
vanishes: δInv ≡ 0 =⇒ E.-L. equations are invariant with respect to the above
gauge transformation, in contrary to the strong necessary conditions, (Sokalski,
Ł. S., Sokalska 2002), (Ł.S. PhD Thesis 2003).

▶ the gauge transformation in the case of baby Skyrme model, has the form,

H −→ H̃ = −4β
(ω,xω∗

,y − ω,yω∗
,x )

2

(1 + ωω∗)4
+ V (ω, ω∗) +

3∑
k=1

Ik , (7)

where Ik are the densities of the invariants: I1 = G1(ω, ω
∗)(ω,xω∗

,y − ω,yω∗
,x ) is

the density of topological invariant,
I2 = Dx G2(ω, ω

∗), I3 = Dy G3(ω, ω
∗),Dx ≡ d

dx ,Dy ≡ d
dy

ω = ω(x , y), ω∗ = ω∗(x , y) ∈ C2 and Gk = Gk (ω, ω
∗) ∈ C2, (k = 1, 2, 3), are

some functions, which are to be determinated.



The concept of strong necessary conditions III
▶ If one applies the concept of strong necessary conditions to (7), the dual

equations are, as follows, (Ł.T. S. 2012), (Ł. T. S. 2013)

H̃,ω = 16β
(ω,xω∗

,y − ω,yω∗
,x )

2ω∗

(1 + ωω∗)5
+ V,ω(ω, ω

∗)+

G1,ω(ω, ω
∗)(ω,xω

∗
,y − ω,yω

∗
,x ) + Dx G2,ω(ω, ω

∗) +

Dy G3,ω(ω, ω
∗) = 0,

(8)

H̃,ω∗ = 16β
(ω,xω∗

,y − ω,yω∗
,x )

2ω

(1 + ωω∗)5
+ V,ω∗ (ω, ω∗)+

G1,ω∗ (ω, ω∗)(ω,xω
∗
,y − ω,yω

∗
,x ) + Dx G2,ω∗ (ω, ω∗) +

Dy G3,ω∗ (ω, ω∗) = 0,

(9)

H̃,ω,x = −8β
(ω,xω∗

,y − ω,yω∗
,x )ω

∗
,y

(1 + ωω∗)4
+ G1(ω, ω

∗)ω∗
,y + G2,ω = 0, (10)

H̃,ω,y = 8β
(ω,xω∗

,y − ω,yω∗
,x )ω

∗
,x

(1 + ωω∗)4
− G1(ω, ω

∗)ω∗
,x + G3,ω = 0, (11)

H̃,ω∗
,x

= 8β
(ω,xω∗

,y − ω,yω∗
,x )ω,y

(1 + ωω∗)4
− G1(ω, ω

∗)ω,y + G2,ω∗ = 0, (12)

H̃,ω∗
,y

= −8β
(ω,xω∗

,y − ω,yω∗
,x )ω,x

(1 + ωω∗)4
+ G1(ω, ω

∗)ω,x + G3,ω∗ = 0. (13)



The concept of strong necessary conditions IV

▶ Now, one needs to make the equations (8) - (13) self-consistent ⇒ the necessity
of the reduction of the number of independent equations by an appropriate
choice of the functions Gk , (k = 1, 2, 3).

▶ usually, such ansatzes exist only for some special V (ω, ω∗) ⇒ in most cases of
V (ω, ω∗) for many nonlinear field models, the reduction of the system of
corresponding dual equations, to Bogomolny equations, is impossible.

▶ by using the equations (24) - (13), one needs to eliminate in the equations (8) -
(9), all terms including ω,x , ω,y , ω∗

,x , ω
∗
,y , (Ł. T. S. 2015)

▶ we integrate obtained relations, with respect to ω and ω∗, correspondingly. Next,
the relation between the potential and function G1, has been obtained, (Ł. T. S.
2015)

V (ω, ω∗) = −
1

16β
G2

1(ω, ω
∗)(1 + ωω∗)4 + c1, c1 = const , (14)

G2(ω, ω
∗) = const , G3(ω, ω

∗) = const . (15)

▶ Thus

G1 =
4i
√
β

(1 + ωω∗)2

√
V (ω, ω∗)− c1 (16)



The concept of strong necessary conditions V

▶ Hence, after inserting (15) into (24) - (13) and simplifying, one gets one
equation, (Ł. T. S. 2012), (Ł. T. S. 2013), (Ł. T. S. 2015)
ω,xω∗

,y − ω,yω∗
,x = 1

8β G1(ω, ω
∗)(1 + ωω∗)4.

▶ by using the relation (16), one obtains from the above equation, the Bogomolny
decomposition for the given potential V (w ,w∗), [?] (in [?], [?], some special form
of the condition (16) was presented, in [?] some exact solutions of Bogomolny
decomposition for zero value of the constant c1, were presented)

ω,xω
∗
,y − ω,yω

∗
,x =

i
2
√
β

√
V (ω, ω∗)− c1(1 + ωω∗)2. (17)

Then, the equation (17) is Bogomolny decomposition (Bogomolny equation) for
restricted baby Skyrme model in (2+0) dimensions, for arbitrary potential.
An analogical result can be obtained also in the case of (3+0)-dimensional BPS
Skyrme model (the next page).



The (2+0)-dimensional Heisenberg model I
We consider the continuous Heisenberg model represented by the following
Hamiltonian, (Belavin and Polyakov 1975):

H =

∫
E2

Hdxdy =

∫
E2

(
∇w · ∇w∗

(1 + w · w∗)2

)
dxdy , (18)

where the complex field variable w consists of classical spin components:

w =
(Sx + iSy )

(1 + Sz)
, (19)

where Sx ,Sy ,Sz are the components of the classical spin. In this case, we have the
homotopy group π2(S2), refs. (Morandi 1991, (Saxena and Kevrekidis and
Cuevas-Maraver 2020)). The Bogomolny equations for this model were derived by
applying classical completing to square in (Belavin and Polyakov 1975; one can also
find this in (Saxena and Kevrekidis and Cuevas-Maraver 2020)).
Here, we apply the SCNM for the Hamiltonian:

H̃ =

∫
E2

H̃dxdy =

∫
E2

(
∇w · ∇w∗

(1 + w · w∗)2
+ I1 + I2 + I3

)
dxdy , (20)

where, as mentioned above, I1 is density of the topological invariant, being the
so-called winding number and Pontryagin index, (Morandi 1991) (c.f. for e.g.,
(Balakrishnan 1990, Balakrishnan 2023)):

I1 = G1(w ,w∗)(w,x w∗
,y − w,y w∗

,x ), (21)



The (2+0)-dimensional Heisenberg model II
where G1(w ,w∗) ∈ C1 is the function to be determined later. I2, I3 are the so-called
divergent invariants: I2 = dG2

dx , I3 =
dG3
dy , and Gk = Gk (w ,w∗) ∈ C1, (k = 2, 3) are the

functions to be determined later, during the further computations.
We apply strong necessary conditions to (20) and we obtain the system of dual
equations, which can also be obtained as a two-dimensional version of the system of
the dual equations derived in (Sokalski and Ł S. and Sokalska 2002):

−
2w∗∇w∇w∗

(1 + ww∗)3
+ G1,w (w,x w∗

,y − w,y w∗
,x ) + Dx G1,w (w ,w∗) + Dy G2,w (w ,w∗) = 0,

(22)

c.c., (23)

w∗
,x

(1 + ww∗)2
+ G1w∗

,y + G2,w = 0, (24)

w∗
,y

(1 + ww∗)2
− G1w∗

,x + G3,w = 0, (25)

c.c. (26)

We make this system self-consistent by choosing Gk = const (k = 2, 3) and (similarly
to (Sokalski and Ł S. and Sokalska 2002)) by choosing G1 = i

(1+ww∗)2
. Next,

expressing the complex fields w and w∗ by real fields:



The (2+0)-dimensional Heisenberg model III

w = U(x , y) + iV (x , y),w∗ = U(x , y)− iV (x , y), (27)

we derive from (24)–(26) the pair of equations governing real fields V (x , y) and
U(x , y):

∂U (x , y)
∂x

+
∂V (x , y)

∂y
= 0, (28)

∂U (x , y)
∂y

−
∂V (x , y)

∂x
= 0. (29)

An exact solution (in terms ω, ω∗) for this model was published in (Belavin and
Polyakov 1975) (however, the Bogomolny equations were derived there using a
classical Bogomolny trick, i.e., completing to a square). As we have indicated, we see
this issue from the point of view of the Cauchy problem. Then, solving (28) and (29),
we get, (Ł. T. S. 2023):

U(x , y) = F1(x − iy) + F2(x + iy), (30)

V (x , y) = −iF1(x − iy) + iF2(x + iy) + C1, (31)

where F1(·) and F2(·) are some functions. After taking into account the formula (27),
we see that F1,F2 are connected with w ,w∗ by the formulas, (Ł. T. S. 2023):



The (2+0)-dimensional Heisenberg model IV

F1 =
1
2
(w − iC1), (32)

F2 =
1
2
(w∗ + iC1) (33)

and C1 is an arbitrary real constant. Based on the general solutions (30) and (31)
of (28) and (29), we present the Cauchy problem for partial differential equations of the
first order created by the strong necessary conditions. The considered example
consists of two independent variables, x and y , and two functions. Therefore, it is
possible to formulate the following constraints for the general solutions:

U(x , 0) = f1(x), V (x , 0) = f2(x), (34)

where f1(x) and f2(x) are given functions. It is possible for the considered Heisenberg
model to derive analogous relations to U(0, y) and V (0, y), which relate integration
constants to initial or boundary conditions. Constraining (30) and (31) to (34) and
substituting y = 0, we obtain, (Ł. T. S. 2023):

f1(x) = F1(x) + F2(x), (35)

f2(x) = −iF1(x) + iF2(x) + C1. (36)

Since f1(x) and f2(x) are given, F1 and F2 cannot be arbitrary, (Ł. T. S. 2023):



The (2+0)-dimensional Heisenberg model V

F1(x) =
1
2
(f1(x) + if2(x)− iC1), (37)

F2(x) =
i
2
(f1(x)− if2(x) + iC1). (38)

As such, F1 = F∗
2 . Then, the only freedom for F1 and F2 is gauge transformation

regarding the C1 constant.



The (3+0)-dimensional BPS Skyrme model

In (Stepien 2016), Bogomolny equations were derived for (3+0)-dimensional BPS
Skyrme model

L = f (ω, ω∗)(εµνρσχ,νω,ρω
∗
,σ)

2 − µ2V , (39)

where χ,ν = ∂χ
∂xν etc. and the potential is a function of χ.

The derived BPS equations have the form, [?]

2
√

f · (εkmn iχ,kω,mω∗
,n) = ∓

√
4V + c2, (40)

where V (χ, ω, ω∗) = − 1
4

G2
1−fc1

f , c1 = −c2 = const ..
For c2 = 0 the Bogomolny equation for the BPS Skyrme model (where function f is
chosen in the proper way) have been re-derived. For c2 > 0 non-Bogomolny equation
has been obtained - in fact, this coincides with non-zero pressure equation for the BPS
Skyrme model (Adametal 2014), (Stepien 2016). Therefore, the constant found in our
construction can be related with the pressure. This is an interesting, unexpected
observation that our method not only leads to the Bogomolny equation, but also
includes the non-zero pressure generalization.



An exact solution of BPS equation for the restricted
baby-Skyrme model I

Now let me come back to derived Bogomolny equations for restricted baby BPS
Skyrme model. Now, we will find an exact solution of Bogomolny decomposition (17),
for V = (ωω∗ − γ2)2 - “Mexican hat” potential, i.e. it is the model with spontaneously
broken symmetry.
We find now an exact localized static solution (with localized density of energy) of the
Bogomolny decomposition (17) for the case of the so-called “Mexican hat” potential:
V = λ3(ωω

∗ − γ2)2, when c1 = 0. We use “hedgehog ansatz”:

ω =
sin (f (r)) cos (Nθ) + i sin (f (r)) sin (Nθ)

1 + cos (f (r))
, c.c., (41)

where (r , θ) are polar coordinates in the cartesian x − y plane.
We insert this ansatz into (17), and we formulate the Cauchy problem, (Ł. T. S. 2023):

(cos (f (r)) + 1)Nf ′(r) sin (f (r))
r

=

√
λ3

β

[
cos (f (r))(γ2 + 1) + γ2 − 1

]
, (42)

f (0) = c0 = const , (43)

where, in this case, we put c0 = 2.
We are interested in obtaining a localized solution, so we also impose the asymptotic
conditions:



An exact solution of BPS equation for the restricted
baby-Skyrme model II

lim
r→±∞

f (r) = const , (44)

lim
r→±∞

H = const . (45)

We solve this problem and we have, (Ł. T. S. 2023), after some simplification

f (r) = arccos (X1), (46)

where:

X1 =
1

γ2 + 1

(
(cos (2)(γ2 + 1) + γ2 − 1) exp

(
−

1
√
βN

Y
)

− γ2 + 1
)

(47)

and:

Y = Lambert
(

1
2
(cos (2)(γ2 + 1) + γ2 − 1) exp

(
Y2√
βN

))√
βN −

1
2

Y2 (48)

and:



An exact solution of BPS equation for the restricted
baby-Skyrme model III

Y2 = N(cos (2)(γ2 + 1) + γ2 − 1)
√

β −
√
λ3r2(γ2 + 1)2

2
(49)

and Lambert(Z ) is the so-called Lambert function, which satisfies the equation
Lambert(Z ) exp (Lambert(Z )) = Z . For γ = 2,N = 1, λ3 = 1, β = 1, (Ł. T. S. 2023):

f (r) = arccos

{[2Lambert
(

1
2 exp

(
− 25

4 r2 + 5 cos (2)+3
2

)
(5 cos (2) + 3)

)
− 3

5

]}
.

(50)
We present a figure of this above solution in Figure 1, (Ł. T. S. 2023).



An exact solution of BPS equation for the restricted
baby-Skyrme model IV

Figure: Figure of solution (50).



An exact solution of BPS equation for the restricted
baby-Skyrme model V

Let’s notice that if we insert the found solution of the Cauchy problem into the
ungauged and gauged Hamiltonian densities (4) and (7), correspondingly, then the
ungauged Hamiltonian density is nonzero (Figure 2).
One can see that both the found solution and the density of the ungauged Hamiltonian,
corresponding to this, are localized. Thus, one can tell this solution is a soliton solution
(or, at least, a soliton-like solution). For this solution, the gauged Hamiltonian density is
zero (of course, the conditions (15), (16) and Bogomolny Equation (17) hold), (Ł. T. S.
2023):

H̃ = 0. (51)

Hence, we can see here the degeneracy of the Hamiltonian (the problem of a
degenerate Hamiltonian, in the case of theory of gravity, was investigated in (Sanyal
2019); in (Del Castillo and Mirón and Rojas 2013, the existence of an infinite number of
Lagrangians for a given second-order ODE was proven). This corresponds to the fact
that if one considers two versions of a field-theoretical Lagrangian, ungauged and
gauged on total derivatives of any function of field variables, then the
energy-momentum tensors corresponding to each of these Lagrangians will be
different, ref. (Arodz 1997). The Euler–Lagrange equations are invariant with respect to
gauging of the Lagrangian on the term ∂ω

∂x , but there is an impact of this gauging on
the energy of the ground state of the medium, (Kiselev and Batalov 2023). Such a term
can appear only in crystals not possessing the inversion center, and this causes the



An exact solution of BPS equation for the restricted
baby-Skyrme model VI

spiral ordering of magnetic moments, (Kiselev and Batalov 2023) (and the references
[1] - [4] cited there )
Hence, we mention the breaking of some symmetry: the Euler–Lagrange equations are
the same for both Hamiltonians, gauged and ungauged; however, on the other hand,
the density of the ungauged Hamiltonian is nonzero and the density of the gauged
Hamiltonian is zero.



An exact solution of BPS equation for the restricted
baby-Skyrme model VII

Figure: The figure of the ungauged Hamiltonian density for solution
(50).

The effect of vanishing of energy-momentum tensor (when topological invariants occur
in an action functional), was established in (Hosoya 1978), for some two Yang-Mills
family models in SU(2) case (and for certain other field-theoretical models in refs.
(Dimopoulos and Eguchi 1977, de Vega and Schaposnik 1976, Belavin and Burlankov
1976). However, this result had been obtained there for a version of BPS equations
derived by using the method of classical completing action functional to square, so the
forms of the invariants used there, had been special (in contrary to this paper, where
we have used generalized forms of the invariants). The effect of degeneracy of
hamiltonian for the restricted baby Skyrme model (and the exact localized solution for
this), had been presented for the first time in (Ł. T. S. 2023), to our best knowledge.
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