Noncommutative exterior product in lattice integrable systems

M. Skopenkov ${ }^{1}$

${ }^{1}$ King Abdullah University of Science and Technology
Noncommutative Integrable Systems, 11.03.2024

Overview

- $-\operatorname{div} \rightarrow \partial$
(2) $\mathrm{d} \rightarrow \delta$
- $\wedge \rightarrow \smile$
- $\lrcorner \rightarrow \frown$
- $\int \rightarrow \epsilon$

$-\operatorname{div} \rightarrow \partial$

Discretization

Domain \rightarrow Grid (or a triangulation):

- a grid of tubes with sources at the boundary, pumping fluid in and out.
- a grid of unit resistors with current sources at the boundary.

Discrete conservation law

A conserved current j is a real-valued
function defined on the set of edges satisfying

Discrete conservation law

A conserved current j is a real-valued function defined on the set of edges satisfying

$$
\partial j=0,
$$

where

$$
\begin{gathered}
\partial j(v)=\sum_{e \text { ending at } v} j(e)-\sum_{e \text { starting at } v} j(e) . \\
-j(1)-j(2)+j(3)+j(4)=0
\end{gathered}
$$

Boundary operator

ϕ - function on faces
$[\partial \phi](-)=\phi(\infty)-\phi(\infty)+\phi(\square)-\phi(\square)$

Step 2

$$
\mathrm{d} \rightarrow \delta
$$

 $$
j(a b)=\phi(a)-\phi(b)
$$
 where ϕ is a function on vertices

$$
j=-\delta \phi,
$$

where ϕ is a function on vertices and

$$
[\delta \phi](a b)=\phi(b)-\phi(a)
$$

$$
j=-\delta \phi
$$

where ϕ is a function on vertices and

$$
[\delta \phi](a b)=\phi(b)-\phi(a)
$$

- discrete (exterior) derivative (de Rham)

Variational formulation

$\sum_{\text {edgese }}[\delta \phi](e)^{2} \rightarrow \min$,
values on the boundary fixed

0 -form $=$ scalar function

$$
\phi\left(x_{0}, x_{1}, x_{2}\right)
$$

$$
\downarrow
$$

function on vertices

Discretization of differential forms

$$
\begin{gathered}
1 \text { 1-form }={ }^{*} \text { vector function } \\
j_{0} d x_{0}+j_{1} d x_{1}+j_{2} d x_{2} \\
\downarrow
\end{gathered}
$$

function on edges

Take edges with a common endpoint!
k-form \rightarrow function on k-dimensional faces
$F_{12} d x_{1} \wedge d x_{2}+F_{02} d x_{0} \wedge d x_{2}+F_{01} d x_{0} \wedge d x_{1}$

Take faces with a common maximal point!

Coboundary operator

ϕ - function on faces
$[\delta \phi](\square)=$
$\phi(\mathbb{\square})-\phi(\otimes)-\phi(\mathbb{\square})+\phi(\square)+\phi(\mathbb{\square})$

Step 3

$\Lambda \rightarrow$

Cup-product: anticommutative vs associative

Cup product anticommutative associative

Cup-product: anticommutative vs associative

Cup product
anticommutative
Kolmogorov-Alexander
\qquadassociative $[\phi \smile j](a b)=\frac{\phi(a)+\phi(b)}{2} j(a b)$

Cup-product: anticommutative vs associative

Cup product

anticommutative
 associative

Kolmogorov-Alexander
Whitney

$$
[\phi \smile j](a b)=\frac{\phi(a)+\phi(b)}{2} j(a b) \quad[\phi \smile j](a b)=\phi(a) j(a b)
$$

Cup-product: anticommutative vs associative

Cup product

anticommutative
Kolmogorov-Alexander

associative

Whitney

$$
\begin{array}{ll}
{[\phi \smile j](a b)=\frac{\phi(a)+\phi(b)}{2} j(a b)} & {[\phi \smile j](a b)=\phi(a) j(a b)} \\
{[j \smile \phi](a b)=j(a b) \frac{\phi(a)+\phi(b)}{2}} & {[j \smile \phi](a b)=j(a b) \phi(b)}
\end{array}
$$

Cup-product: anticommutative vs associative

Cup product anticommutative associative

Kolmogorov-Alexander
Whitney

$$
\begin{array}{ll}
\left.[\phi \smile j](a b)=\frac{\phi(a)+\phi(b)}{2}\right)(a b) & {[\phi \smile j](a b)=\phi(a) j(a b)} \\
{[j \smile \phi](a b)=j(a b) \frac{\phi(a)+\phi(b)}{2}} & {[j \smile \phi](a b)=j(a b) \phi(b)}
\end{array}
$$

requires orientation requires vertices ordering

Cup-product: anticommutative vs associative

Cup-product: anticommutative vs associative

Cup product

anticommutative
Kolmogorov-Alexander

associative

Whitney

$$
\begin{array}{ll}
{[\phi \smile j](a b)=\frac{\phi(a)+\phi(b)}{2} j(a b)} & {[\phi \smile j](a b)=\phi(a) j(a b)} \\
{[j \smile \phi](a b)=j(a b) \frac{\phi(a)+\phi(b)}{2}} & {[j \smile \phi](a b)=j(a b) \phi(b)}
\end{array}
$$

requires orientation common in DEC
requires vertices ordering common in topology

Cup-product: anticommutative vs associative

Cup product anticommutative associative

Kolmogorov-Alexander
Whitney

$$
\begin{array}{ll}
{[\phi \smile j](a b)=\frac{\phi(a)+\phi(b)}{2} j(a b)} & {[\phi \smile j](a b)=\phi(a) j(a b)} \\
{[j \smile \phi](a b)=j(a b) \frac{\phi(a)+\phi(b)}{2}} & {[j \smile \phi](a b)=j(a b) \phi(b)}
\end{array}
$$

requires orientation common in DEC
requires vertices ordering common in topology curvature $F=\delta A+A \smile A$

Cup-product: anticommutative vs associative

Cup product

anticommutative (for a commutative ring)
associative (for an associative ring)

Kolmogorov-Alexander
Whitney

$[\phi \smile j](a b)=\frac{\phi(a)+\phi(b)}{2} j(a b) \quad[\phi \smile j](a b)=\phi(a) j(a b)$
$[j \smile \phi](a b)=j(a b) \frac{\phi(a)+\phi(b)}{2} \quad[j \smile \phi](a b)=j(a b) \phi(b)$
requires orientation common in DEC
requires vertices ordering common in topology curvature $F=\delta A+A \smile A$

Step 4

$$
\lrcorner \rightarrow \frown
$$

Dual: cap product

$$
\begin{gathered}
\stackrel{a b}{a} \\
{[j \smile \phi](a b)=j(a b) \phi(b)} \\
{[j \frown \phi](a b)=j(a b) \phi(a)} \\
{[j \frown j](v)=j(3) j(3)+j(4) j(4)}
\end{gathered}
$$

Leibnitz rule

$$
\partial(\psi \frown \phi)=(-1)^{\operatorname{dim} \phi}(\partial \psi \frown \phi-\psi \frown \delta \phi)
$$

Step 5

$$
\int \rightarrow \epsilon
$$

$$
\begin{gathered}
\mathcal{S}:=\sum_{\text {edges } e}[\delta \phi](e)^{2} \rightarrow \min \\
\mathcal{S}=\underbrace{\sum_{\text {vertices v }}}_{\varepsilon} \underbrace{[\delta \phi \frown \delta \phi](v)}_{\mathcal{L}[\phi]} \\
{[\delta \phi \frown \delta \phi](v)=\delta \phi(3) \delta \phi(3)+\delta \phi(4) \delta \phi(4)}
\end{gathered}
$$

Spacetime M is an arbitrary finite simplicial or cubical complex with fixed vertices ordering. For a cubical complex, we require that the minimal and the maximal vertex of each 2-face are opposite.
A k-dimensional field or k-cochain ϕ is a real-valued function defined on the set of k-dimensional faces.
Notation: $C^{k}(M ; \mathbb{R})=C_{k}(M ; \mathbb{R})$.
A Lagrangian is a function

$$
\mathcal{L}: C^{k}(M ; \mathbb{R}) \rightarrow C_{0}(M ; \mathbb{R})
$$

ϕ is stationary if $\frac{\partial}{\partial t} \epsilon \mathcal{L}[\phi+t \Delta]=0 \forall \Delta \in C^{k}(M ; \mathbb{R})$.

Discretization algorithm

In a Lagrangian, replace continuum operation \rightarrow discrete one

exterior derivative d coboundary δ

 exterior product \wedge cup product interior product \quad cap product connection 1-form A connection A curvature 2-form F curvature F
Examples

Table 2: Discretization of basic field theories

Field theory	Continuum		Discrete				Reference
	Field	Lagrangian	Lagrangian	Equation of motion	Conserved current	Energy-momentum tensor	
Electric network	\mathbb{R}-valued 0 -form ϕ	$\left.\left.\frac{1}{2} \mathrm{~d} \phi\right\lrcorner \mathrm{d} \phi-\mathrm{s}\right\lrcorner \phi$	$\frac{1}{2} \delta \phi \frown \delta \phi-s \frown \phi$	$\partial \delta \phi=s$	$\delta \phi$	$\delta \phi \times \delta \phi$	§2.1
Electrodynamics	\mathbb{R}-valued 1-form A	$\left.\left.-\frac{1}{2} \# \mathrm{dA}\right\lrcorner \mathrm{dA}-j\right\lrcorner \mathrm{A}$	$-\frac{1}{2} \# \delta A \frown \delta A-j \frown A$	$-\partial \# \delta A=j$	${ }^{j}$	$-\# \delta A \times \delta A$	§2.2
Gauge theory	connection 1-form A	$\begin{gathered} \left.\left.-\operatorname{Re} \operatorname{Tr}\left[\frac{1}{2} \# \mathrm{~F}^{*}\right\lrcorner \mathrm{F}+j\right\lrcorner \mathrm{~A}\right], \\ F=\mathrm{dA}+\mathrm{A} \wedge \mathrm{~A} \end{gathered}$	$\begin{gathered} -\operatorname{Re} \operatorname{Tr}\left[\frac{1}{2} \# F^{*} \frown F+j \frown A\right], \\ F=\delta A+A \smile A \end{gathered}$	$\begin{gathered} \operatorname{Pr}_{T_{U} G} D_{A}^{*} \# F \\ =-\operatorname{Pr}_{T_{U} G} j \end{gathered}$	${ }^{j}$	$-\operatorname{Re} \operatorname{Tr}[\# F \times F]$	§2.3
Klein-Gordon field	C-valued 0 -form ϕ	$\left.\# \mathrm{~d} \phi\lrcorner \mathrm{d} \phi^{*}-m^{2} \phi\right\lrcorner \phi^{*}$	$\# \delta \phi \frown \delta \phi^{*}-m^{2} \phi \frown \phi^{*}$	$\partial \# \delta \phi=m^{2} \phi$	$-2 \operatorname{Im}\left[\# \delta \phi^{*} \frown \phi\right]$	$\begin{gathered} 2 \operatorname{Re}\left[\# \delta \phi^{*} \times \delta \phi\right. \\ \left.-m^{2} \phi^{*} \times \phi\right] \end{gathered}$	§A. 2
Boson in a gauge field	$\begin{gathered} \mathbb{C}^{1 \times n} \text {-valued } \\ k \text {-form } \phi \end{gathered}$	$\begin{gathered} \left.\# \mathrm{D}_{\mathrm{A}} \phi\right\lrcorner\left(\mathrm{D}_{\mathrm{A}} \phi\right)^{*} \\ \left.-m^{2} \phi\right\lrcorner \phi^{*} \end{gathered}$	$\begin{gathered} \# D_{A} \phi \frown\left(D_{A} \phi\right)^{*} \\ -m^{2} \phi \frown \phi^{*} \end{gathered}$	$\begin{gathered} D_{A}^{*} \# D_{A} \phi \\ =m^{2} \phi \end{gathered}$	$-2 \phi^{*} \smile \# D_{A} \phi$	unknown	§A. 2

A Lagrangian \mathcal{L} is local, if its value at a vertex v depends only on the values of ϕ and $\delta \phi$ at the faces for which v is maximal. $\mathcal{L}[\phi](v)=L(\phi(v), \delta \phi(3), \delta \phi(4))$.
Partial derivatives $\frac{\partial \mathcal{L}}{\partial \phi}$ and $\frac{\partial \mathcal{L}}{\partial(\delta \phi)}$ are fields of dimension k and $k+1$ respectively, obtained by differentiating \mathcal{L} as if ϕ and $\delta \phi$ were independent variables. $\frac{\partial \mathcal{L}}{\partial \phi}(v)=\left.\frac{\partial L(x, y, z)}{\partial x}\right|_{x=\phi(v), y=\delta \phi(3), z=\delta \phi(4)}$.

Lagrangian $\mathcal{L}[\phi]$	$\frac{\partial \mathcal{L}}{\partial \phi}$	$\frac{\partial \mathcal{L}}{\partial(\delta \phi)}$
$\frac{1}{2} \delta \phi \frown \delta \phi$	0	$\delta \phi$
	$\bullet 3$	\mathbf{n}^{\vee}
$\frac{1}{2} \delta \phi \frown \delta \phi+\frac{1}{2} m^{2} \phi \frown \phi$	$m^{2} \phi$	$\delta \phi$

Conservation laws

$j \in C_{1}(M ; \mathbb{R})$ is a conserved current, if $\partial j=0$. The Noether theorem gives a conserved current for each continuous symmetry of the Lagrangian.

Discrete Nöther's theorem

Theorem (Discrete Nöther's theorem, S)

Let $\mathcal{L}: C^{k}(M ; \mathbb{R}) \rightarrow C_{0}(M ; \mathbb{R})$ be a local
Lagrangian and $\phi \in C^{k}(M ; \mathbb{R})$ be a stationary field.
The Lagrangian is invariant under an infinitesimal transformation $\Delta \in C^{k}(M ; \mathbb{R})$, i.e.,

$$
\left.\frac{\partial}{\partial t} \mathcal{L}[\phi+t \Delta]\right|_{t=0}=0,
$$

iff the following current is conserved:

$$
j[\phi]=\frac{\partial[[\phi]}{\partial(\delta \phi)} \frown \Delta .
$$

E.g., for electrical networks $\mathcal{L}[\phi]$ is invariant under $\phi \mapsto \phi-t, t \in \mathbb{R}$. The conserved current is $j=-\delta \phi$.

Reference

园 S., Discrete field theory: symmetries and conservation laws, Math. Phys. Anal. Geom. 26:19 (2023).

Thanks

THANKS!

