
Noncommutative exterior product in

lattice integrable systems

M. Skopenkov1

1King Abdullah University of Science and Technology

Noncommutative Integrable Systems,

11.03.2024

M. Skopenkov Discrete field theory



Overview

1 −div → ∂

2 d → δ

3 ∧ →⌣

4 ⌟ →⌢

5

∫
→ ϵ
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Step 1

−div → ∂
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Discretization

Domain → Grid (or a triangulation):

a grid of tubes with sources at the

boundary, pumping fluid in and out.

a grid of unit resistors with current

sources at the boundary.
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Discrete conservation law

A conserved current j is a real-valued

function defined on the set of edges satisfying

v
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1

−j(1)− j(2) + j(3) + j(4) = 0
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Discrete conservation law

A conserved current j is a real-valued

function defined on the set of edges satisfying

∂j = 0,

where

∂j(v) =
∑

e ending at v

j(e)−
∑

e starting at v

j(e).
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−j(1)− j(2) + j(3) + j(4) = 0
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Boundary operator

ϕ - function on faces

[∂ϕ]( ) = ϕ( )−ϕ( ) +ϕ( )−ϕ( )
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Step 2

d → δ
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Potential flow

a b

ab

j(ab) = ϕ(a)− ϕ(b),

where ϕ is a function on vertices
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Potential flow

a b

ab

j = −δϕ,

where ϕ is a function on vertices and

[δϕ](ab) = ϕ(b)− ϕ(a)
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Potential flow

a b

ab

j = −δϕ,

where ϕ is a function on vertices and

[δϕ](ab) = ϕ(b)− ϕ(a)

— discrete (exterior) derivative (de Rham)
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Variational formulation

∑
edges e

[δϕ](e)2 → min,

values on the boundary fixed
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Discretization of differential forms

0-form = scalar function

ϕ(x0, x1, x2)

↓
function on vertices
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Discretization of differential forms

1-form =∗ vector function

j0 dx0 + j1 dx1 + j2 dx2
↓

function on edges

Take edges with a common endpoint!
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Discretization of differential forms

k-form → function on k-dimensional faces

F12 dx1 ∧ dx2 + F02 dx0 ∧ dx2 + F01 dx0 ∧ dx1
↓

Take faces with a common maximal point!
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Coboundary operator

ϕ - function on faces

[δϕ]( ) =

ϕ( )−ϕ( )−ϕ( )+ϕ( )+ϕ( )−ϕ( )
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Step 3

∧ →⌣
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative

Kolmogorov–Alexander

a b

ab

[ϕ ⌣ j ](ab) = ϕ(a)+ϕ(b)
2

j(ab)
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative

Kolmogorov–Alexander Whitney

a b

ab

[ϕ ⌣ j ](ab) = ϕ(a)+ϕ(b)
2

j(ab) [ϕ ⌣ j ](ab) = ϕ(a)j(ab)
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative

Kolmogorov–Alexander Whitney

a b

ab

[ϕ ⌣ j ](ab) = ϕ(a)+ϕ(b)
2

j(ab) [ϕ ⌣ j ](ab) = ϕ(a)j(ab)

[j ⌣ ϕ](ab) = j(ab)ϕ(a)+ϕ(b)
2

[j ⌣ ϕ](ab) = j(ab)ϕ(b)
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative

Kolmogorov–Alexander Whitney

a b

ab

[ϕ ⌣ j ](ab) = ϕ(a)+ϕ(b)
2

j(ab) [ϕ ⌣ j ](ab) = ϕ(a)j(ab)

[j ⌣ ϕ](ab) = j(ab)ϕ(a)+ϕ(b)
2

[j ⌣ ϕ](ab) = j(ab)ϕ(b)

requires orientation requires vertices ordering
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative

Kolmogorov–Alexander Whitney

[i ⌣ j ](abc) = 1
6
i(ab)j(bc)− . . . [i ⌣ j ](abc) = i(ab)j(bc)

requires orientation requires vertices ordering
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative

Kolmogorov–Alexander Whitney

a b

ab

[ϕ ⌣ j ](ab) = ϕ(a)+ϕ(b)
2

j(ab) [ϕ ⌣ j ](ab) = ϕ(a)j(ab)

[j ⌣ ϕ](ab) = j(ab)ϕ(a)+ϕ(b)
2

[j ⌣ ϕ](ab) = j(ab)ϕ(b)

requires orientation requires vertices ordering
common in DEC common in topology
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative

Kolmogorov–Alexander Whitney

a b

ab

[ϕ ⌣ j ](ab) = ϕ(a)+ϕ(b)
2

j(ab) [ϕ ⌣ j ](ab) = ϕ(a)j(ab)

[j ⌣ ϕ](ab) = j(ab)ϕ(a)+ϕ(b)
2

[j ⌣ ϕ](ab) = j(ab)ϕ(b)

requires orientation requires vertices ordering
common in DEC common in topology

— curvature F = δA+ A⌣ A
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Cup-product: anticommutative vs associative

Cup product
anticommutative associative

(for a commutative ring) (for an associative ring)

Kolmogorov–Alexander Whitney

a b

ab

[ϕ ⌣ j ](ab) = ϕ(a)+ϕ(b)
2

j(ab) [ϕ ⌣ j ](ab) = ϕ(a)j(ab)

[j ⌣ ϕ](ab) = j(ab)ϕ(a)+ϕ(b)
2

[j ⌣ ϕ](ab) = j(ab)ϕ(b)

requires orientation requires vertices ordering
common in DEC common in topology

— curvature F = δA+ A⌣ A
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Step 4

⌟ →⌢
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Dual: cap product

a b

ab

[j ⌣ ϕ](ab) = j(ab)ϕ(b)

[j ⌢ ϕ](ab) = j(ab)ϕ(a)

v
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1

[j ⌢ j ](v) = j(3)j(3) + j(4)j(4)
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Leibnitz rule

∂(ψ ⌢ ϕ) = (−1)dimϕ(∂ψ ⌢ ϕ− ψ ⌢ δϕ)
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Step 5

∫
→ ϵ
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Potential flow revisited

S :=
∑
edges e

[δϕ](e)2 → min

S =
∑

vertices v︸ ︷︷ ︸
ε

[δϕ ⌢ δϕ]︸ ︷︷ ︸
L[ϕ]

(v)

v

3
4

2

1

[δϕ ⌢ δϕ](v) = δϕ(3)δϕ(3) + δϕ(4)δϕ(4)
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Basic definitions

Spacetime M is an arbitrary finite simplicial or
cubical complex with fixed vertices ordering. For a
cubical complex, we require that the minimal and
the maximal vertex of each 2-face are opposite.

A k-dimensional field or k-cochain ϕ is a real-valued
function defined on the set of k-dimensional faces.
Notation: C k(M ;R) = Ck(M ;R).
A Lagrangian is a function

L : C k(M ;R) → C0(M ;R).

ϕ is stationary if ∂
∂t ϵL[ϕ+ t∆] = 0 ∀∆ ∈ C k(M ;R).
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Discretization algorithm

In a Lagrangian, replace

continuum operation → discrete one

exterior derivative d coboundary δ
exterior product ∧ cup product ⌣
interior product ⌟ cap product ⌢
connection 1-form A connection A
curvature 2-form F curvature F
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Examples
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Informal definitions

A Lagrangian L is local, if its value at a vertex v
depends only on the values of ϕ and δϕ at the faces
for which v is maximal. L[ϕ](v) = L(ϕ(v), δϕ(3), δϕ(4)).

Partial derivatives ∂L
∂ϕ and ∂L

∂(δϕ) are fields of
dimension k and k + 1 respectively, obtained by
differentiating L as if ϕ and δϕ were independent
variables. ∂L

∂ϕ (v) =
∂L(x ,y ,z)

∂x

∣∣∣
x=ϕ(v),y=δϕ(3),z=δϕ(4)

.

Lagrangian L[ϕ] ∂L
∂ϕ

∂L
∂(δϕ)

1
2δϕ ⌢ δϕ 0 δϕ

1
2δϕ ⌢ δϕ+ 1

2m
2ϕ ⌢ ϕ m2ϕ δϕ

v

3
4
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Conservation laws

j ∈ C1(M ;R) is a conserved current, if ∂j = 0.

The Noether theorem gives a conserved current for
each continuous symmetry of the Lagrangian.
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Discrete Nöther’s theorem

Theorem (Discrete Nöther’s theorem, S)

Let L : C k(M ;R) → C0(M ;R) be a local
Lagrangian and ϕ ∈ C k(M ;R) be a stationary field.
The Lagrangian is invariant under an infinitesimal
transformation ∆ ∈ C k(M ;R), i.e.,

∂
∂tL[ϕ+ t∆]

∣∣
t=0

= 0,

iff the following current is conserved:

j [ϕ] = ∂L[ϕ]
∂(δϕ) ⌢ ∆.

E.g., for electrical networks L[ϕ] is invariant under
ϕ 7→ϕ− t, t∈R. The conserved current is j=−δϕ.
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Thanks

THANKS!
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