Noncommutative exterior product in lattice integrable systems

M. Skopenkov¹

¹King Abdullah University of Science and Technology

Noncommutative Integrable Systems, 11.03.2024

Overview

イロト イ団ト イヨト イヨト

ъ.

$-\mathrm{div}\to\partial$

Ξ.

Discretization

Domain \rightarrow Grid (or a triangulation):

a grid of tubes with sources at the boundary, pumping fluid in and out.
a grid of unit resistors with current sources at the boundary.

A *conserved current j* is a real-valued function defined on the set of edges satisfying

Discrete conservation law

A *conserved current j* is a real-valued function defined on the set of edges satisfying

$$\partial j = 0,$$

M. Skopenkov

ϕ - function on faces

$[\partial\phi](\textcircled{)}) = \phi(\textcircled{)}) - \phi(\textcircled{)}) + \phi(\textcircled{)}) - \phi(\textcircled{)})$

$\mathbf{d} \to \delta$

M. Skopenkov Discrete field theory

イロト イヨト イヨト イヨト

æ

$j(ab) = \phi(a) - \phi(b),$ where ϕ is a function on vertices

$$j = -\delta\phi,$$

where ϕ is a function on vertices and $[\delta \phi](ab) = \phi(b) - \phi(a)$

▲ □ ▶ ▲ □ ▶ ▲

$$j=-\delta\phi,$$

where ϕ is a function on vertices and

$$[\delta\phi](ab) = \phi(b) - \phi(a)$$

- discrete (exterior) derivative (de Rham)

$\sum_{\text{edges } e} [\delta \phi](e)^2 \to \min,$

values on the boundary fixed

Discretization of differential forms

Discretization of differential forms

k-form \rightarrow function on k-dimensional faces $F_{12} dx_1 \wedge dx_2 + F_{02} dx_0 \wedge dx_2 + F_{01} dx_0 \wedge dx_1$

Scanned with CamScanner

Coboundary operator

ϕ - function on faces

$[\delta\phi](\textcircled{P}) = \phi(\textcircled{P}) - \phi(\textcircled{P}) + \phi(\textcircled{P}) + \phi(\textcircled{P}) - \phi(\textcircled{P})$

< 同 > < 三 > < 三 >

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Cup-product: anticommutative vs associative

Cup product anticommutative associative

M. Skopenkov Discrete field theory

・ロト ・部ト ・ヨト ・ヨト

æ

Dual: cap product

3

$\partial(\psi \frown \phi) = (-1)^{\dim \phi} (\partial \psi \frown \phi - \psi \frown \delta \phi)$

Ξ.

▲御▶ ▲陸▶ ▲陸▶

 $\int \rightarrow \epsilon$

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Potential flow revisited

$$S := \sum_{\substack{\text{edges } e}} [\delta\phi](e)^2 \to \min$$
$$S = \sum_{\substack{\text{vertices } v \\ \varepsilon}} [\delta\phi \frown \delta\phi](v)$$
$$\mathcal{L}[\phi]$$

 $[\delta\phi\frown\delta\phi](\mathbf{v}) = \delta\phi(\mathbf{3})\delta\phi(\mathbf{3}) + \delta\phi(\mathbf{4})\delta\phi(\mathbf{4})$

Spacetime *M* is an arbitrary finite simplicial or cubical complex with fixed vertices ordering. For a cubical complex, we require that the minimal and the maximal vertex of each 2-face are opposite.

A k-dimensional field or k-cochain ϕ is a real-valued function defined on the set of k-dimensional faces. Notation: $C^k(M; \mathbb{R}) = C_k(M; \mathbb{R})$.

A Lagrangian is a function

$$\mathcal{L}\colon C^k(M;\mathbb{R})\to C_0(M;\mathbb{R}).$$

 ϕ is stationary if $\frac{\partial}{\partial t} \epsilon \mathcal{L}[\phi + t\Delta] = 0 \ \forall \Delta \in C^k(M; \mathbb{R}).$

In a Lagrangian, replace									
continuum operation		\rightarrow	discrete one						
exterior derivative	d		coboundary	δ					
exterior product	\wedge		cup product	\smile					
interior product			cap product	\frown					
connection 1-form	А		connection	Α					
curvature 2-form	F		curvature	F					

æ

白とくヨとく

	Continuum		Discrete					
Field theory	Field	Lagrangian	Lagrangian	Equation of motion	Conserved current	Energy-momentum tensor	Reference	
Electric network	ℝ-valued 0-form φ	$\frac{1}{2}d\varphi \lrcorner d\varphi - s \lrcorner \varphi$	$\frac{1}{2}\delta\phi\frown\delta\phi-s\frown\phi$	$\partial \delta \phi = s$	$\delta \phi$	$\delta\phi \times \delta\phi$	§2.1	
Electrodynamics	ℝ-valued 1-form A	$-\frac{1}{2}$ $dA \lrcorner dA - j \lrcorner A$	$-\frac{1}{2}$ # $\delta A \frown \delta A - j \frown A$	$-\partial \# \delta A = j$	j	$-\#\delta A \times \delta A$	§2.2	
Gauge theory	connection 1-form A	$\begin{aligned} -\text{ReTr}[\frac{1}{2} & \ F^* \lrcorner F + j \lrcorner A], \\ F &= dA + A \land A \end{aligned}$	$-\operatorname{ReTr}[\frac{1}{2}\#F^* \frown F + j \frown A],$ $F = \delta A + A \smile A$	$\begin{array}{l} \Pr_{T_UG} D^*_A \# F \\ = - \Pr_{T_UG} j \end{array}$	j	$-\operatorname{ReTr}[\#F \times F]$	§2.3	
Klein–Gordon field	C-valued 0-form φ	$\sharp \mathrm{d} \varphi \lrcorner \mathrm{d} \varphi^* - m^2 \varphi \lrcorner \varphi^*$	$\#\delta\phi\frown\delta\phi^*-m^2\phi\frown\phi^*$	$\partial \# \delta \phi = m^2 \phi$	$-2\mathrm{Im}[\#\delta\phi^*\frown\phi]$	$\begin{array}{l} 2 \mathrm{Re} [\# \delta \phi^* \times \delta \phi \\ - m^2 \phi^* \times \phi] \end{array}$	§A.2	
Boson in a gauge field	$\mathbb{C}^{1 \times n}$ -valued k-form ϕ	$D_A \varphi \lrcorner (D_A \varphi)^* -m^2 \varphi \lrcorner \varphi^*$		$D_A^* \# D_A \phi \\= m^2 \phi$	$-2\phi^* \smile \#D_A\phi$	unknown	§A.2	

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

æ

æ

Informal definitions

A Lagrangian \mathcal{L} is *local*, if its value at a vertex v depends only on the values of ϕ and $\delta \phi$ at the faces for which v is maximal. $\mathcal{L}[\phi](v) = L(\phi(v), \delta\phi(3), \delta\phi(4)).$ *Partial derivatives* $\frac{\partial \mathcal{L}}{\partial \phi}$ and $\frac{\partial \mathcal{L}}{\partial (\delta \phi)}$ are fields of dimension k and k+1 respectively, obtained by differentiating \mathcal{L} as if ϕ and $\delta \phi$ were independent variables. $\frac{\partial \mathcal{L}}{\partial \phi}(v) = \frac{\partial \mathcal{L}(x,y,z)}{\partial x}\Big|_{x=\phi(v),y=\delta\phi(3),z=\delta\phi(4)}$. $\frac{\partial \mathcal{L}}{\partial \phi}$ $\partial \mathcal{L}$ Lagrangian $\mathcal{L}[\phi]$ $\frac{\frac{1}{2}\delta\phi\frown\delta\phi}{\frac{1}{2}\delta\phi\frown\delta\phi+\frac{1}{2}m^{2}\phi\frown\phi} \quad \begin{array}{c} \mathbf{0} \\ \mathbf{m}^{2}\phi\end{array}$ $\delta\phi$ δd

 $j \in C_1(M; \mathbb{R})$ is a *conserved current*, if $\partial j = 0$. The *Noether theorem* gives a conserved current for each continuous symmetry of the Lagrangian.

Theorem (Discrete Nöther's theorem, S)

Let $\mathcal{L}: C^{k}(M; \mathbb{R}) \to C_{0}(M; \mathbb{R})$ be a local Lagrangian and $\phi \in C^{k}(M; \mathbb{R})$ be a stationary field. The Lagrangian is invariant under an infinitesimal transformation $\Delta \in C^{k}(M; \mathbb{R})$, i.e.,

$$\frac{\partial}{\partial t}\mathcal{L}[\phi+t\Delta]\big|_{t=0}=0,$$

iff the following current is conserved:

$$j[\phi] = \frac{\partial \mathcal{L}[\phi]}{\partial (\delta \phi)} \frown \Delta.$$

E.g., for *electrical networks* $\mathcal{L}[\phi]$ is invariant under $\phi \mapsto \phi - t$, $t \in \mathbb{R}$. The conserved current is $j = -\delta \phi$.

 S., Discrete field theory: symmetries and conservation laws, Math. Phys. Anal. Geom. 26:19 (2023).

THANKS!

æ

▲御▶ ▲ 副▶