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Introduction

® We are interested in the stringy nature of spacetime

® [he worldsheet instantons contribute to the string scattering amplitude as non-

perturbative effects of o’

@ T-fold is a space in which local charts are patched together with T-duality

Our message in this talk is as follows:

1. The worldsheet instantons on T-fold are multi-valued and ill-defined due to
the T-duality monodromies

2. The Born sigma model is a two-dimensional sigma model with T-duality of the
target space as a manifest symmetry

3. Since doubled instantons in Born sigma models are described by T-duality
covariant, the worldsheet instantons on T-fold are well-defined by using

doubled formalism



Introduction — T-duality

® The transverse geometry of the KK-monopole in type Il string theories is known
as the four-dimensional Euclidean Taub-NUT space

® The T-duality transformation along the S! isometry direction in the Taub-NUT
space yields the H-monopole
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Introduction — worldsheet instantons

® The H-monopole is also obtained by periodically aligning and smearing NS5-branes to

make the S! isometry
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Introduction — worldsheet instantons

® The H-monopole is also obtained by periodically aligning and smearing NS5-branes to

make the S! isometry

® In contrast, the NS5-brane is obtained by localizing the S! direction of the H-monopole

® The localization of the H-monopole in S! is identified by the worldsheet instanton effects

[Tong, '02]

NS5-brane

W.S. instanton
[Tong '02]
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T-dual
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Introduction — worldsheet instantons

® \When we consider the worldsheet instanton correction to the KK-monopole, the

S! isometry in the Taub-NUT is not broken and localized in the “winding space”
[Harvey-Jensen, '05]

® The “winding coordinate” is a Fourier conjugate to the string winding number, and
is a T-dual to the coordinate conjugate to the momentum

Localized
NS5-brane oeale
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w.s. Instanton w.s. Instanton

[Tong '02] [Harvey-Jensen, '05]
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String worldsheet instantons -
[Wen-Witten '86]

® Worldsheet instantons are configurations that minimize the Euclidean action of
the fundamental string in a given topological sector

® We now focus on the tree-level worldsheet T = S?

® The worldsheet instanton is a mapping from the worldsheet with S? topology to a
2-cycle in the target space

spacetime

X*(o) ’

ﬁ
mapping c

> =2 C, ~ §?
string worldsheet 2-cycle in spacetime

@ This map is classified by the homotopy group 7,(S?) = Z



Worldsheet instanton equations

The string worldsheet sigma model is given by

1
S=2 / (gu AX* A %dX” 4 B, dX* A dX")

We focus on the metric term in the action
In the following, spacetime and the worldsheet have the Euclidean signature

Since the metric is positive-definite, we have the Bogomol'nyi bound of the action

1
Sp = T / 9w (def + M, dXé) A*(dXY £ J 5 xdX7) £ 2w, dX* A dXY]
! t N
> 5 /W/w dX* AdX" complex structure w=-—-gl

The bound is saturated when the map X satisfies

dXH + J’MU ¥dXY = (0 <« W.S. |r_15tanton
equation

worldsheet instantons require a complex structure on the target space



Worldsheet instanton effects

® [he worldsheet instantons contribute to the string scattering amplitude
_g A

e Slnst. ~U eXp |:__/

Q

2

where a’ is the square of the string length a’ = £

® The contribution of the worldsheet instantons shows the non-perturbative effects
of o’

—Jp the stringy nature of spacetime



Introduction — T-fold

® Smearing the KK-monopole and introducing another isometry, the solution is called the
KK-vortex

®
®
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[Tong '02] [Harvey-Jensen, '05]
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Introduction — T-fold

® Smearing the KK-monopole and introducing another isometry, the solution is called the
KK-vortex

® For the KK-vortex, the T-duality transformation along the isometry originated from the KK-
monopole yields the defect NS5-brane

o
Localized
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w.s. Instanton w.s. Instanton
[Tong '02] [Harvey-Jensen, '05]
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Introduction — T-fold

® Smearing the KK-monopole and introducing another isometry, the solution is called the
KK-vortex

® For the KK-vortex, the T-duality transformation along the isometry originated from the KK-
monopole yields the defect NS5-brane

® [he defect NS5-brane is a smeared solution of the H-monopole

Localized
NS5-brane
KK-monopole
w.S. Instanton w.S. Instanton
[Tong '02] [Harvey-Jensen, '05]
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Introduction — T-fold

® Smearing the KK-monopole and introducing another isometry, the solution is called the
KK-vortex

® The T-duality transformation along the newly introduced isometry of the KK-vortex
yields the 5%—brane [de Boer-Shigemori, '10, '12]

@ A T-fold is a space where local charts are patched by T-duality, and the 5§-brane is one of the examples

Localized
NS5-brane ocalle
KK-monopole
w.S. Instanton w.S. Instanton
[Tong '02] [Harvey-Jensen, '05]
H | KK-monopole
-monopole
Taub-NUT
T-dual (Tau )
periodic arraying periodic arraying
and smearing and smearing
52-b
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T-dual T-dual




T-fold: 57-brane

[de Boer-Shigemori, 1004.2521, 1209.6056]

KK-vortex geometry ds’=H dx1223 + H _l(dxf + A dx")?

U
H = hy+ olog <—> (hy, o and p are constants)

p

dA = *,dH (p? = (xH)? + (x2)%, 0 = arctan(x?/x"))
T-duality transformation (Buscher rule) along y = x>
B EiySjy ~ Binjy ol = @ g/ = i
ij — 8ij 2, ’ iy 2, ’ yy 2,y
B; g, — g.B; 8i
, ySjy — Siy©jy / y ,
b; =B, — ; b;, = —, ¢ =¢——logg,,.
gyy g)’y
5%—brane geometry
2 2 2 3 3 4 2¢ 2¢ H
ds® = Hdx;, + dxs,, B=-— dx’ ANdx”, e ? = e~ :
H? + A% H? + A% H? + A%



T-fold: 57-brane

[de Boer-Shigemori, 1004.2521, 1209.6056]

, , H , Py H 1
ds =de12+H2+A32 dxs, =0: JTERY =—
H=H(p), A;=—00, o0 =const. | H2+A?  H?+ (7o)

® [|he geometry of 5%—brane IS

torus fibered

® [ he torus radii do not match
at @ =0 and 2«

® This geometry has a

monodromy

® This monodromy is neither a
diffeo. nor a B-field gauge

transformation

=g T-duality




T-fold: 55-brane

[de Boer-Shigemori, 1004.2521, 1209.6056]
@ Ihe 5% monodromy is clearly evaluated in the doubled formalism
® The doubled formalism is the T-duality O(D, D) covariant formulation

® The metric and B-fields are combined into an O(D, D) covariant quantity called

g — Bg_lB Bg_1
H = —1 —1
—g B g

the generalized metric:

p generalized metric for 55 at 8 = 0:

HS 0 0 0

0 H'§ 0 0

HE=0)=| , 0 H-§ 0
0 0 0 H¢

) generalized metric for 55 at 0 = 2x:

Ho 0 0 0
0 H 1§ 0 ImoH le
H(O=2m)= [ g 0 H 0

0 H 1'% 0 (H + (2mo)*H~1)6



T-fold: 55-brane

[de Boer-Shigemori, 1004.2521, 1209.6056]

@ Ihe 5% monodromy is clearly evaluated in the doubled formalism

® The doubled formalism is the T-duality O(D, D) covariant formulation

® The metric and B-fields are combined into an O(D, D) covariant quantity called

2 (g—Bng Bgl)

the generalized metric:
-g~'B  g7!

p generalized metric for 55 at 8 = 0:

Ho 0 0 0
0 H 16 0 0
RO=00=109 o H1 o
0 0 0 Ho
) generalized metric for 55 at 0 = 2x:
) 0 0O O Ho 0 0 0 o 0 O 0
0 ) 0 O 0 H Y 0 0 0 & 0 2moe
HO=2m) =10 ¢ 4 ¢ 0 0 H% 0 006 O
0 —2moe 0 ¢ 0 0 0 Ho 0O 0 O

T— O(D, D) matrix known as the f-shift —T T-duality



Introduction — T-fold

® The worldsheet instantons on the T-fold were analyzed using the GLSM technique
[Kimura-Sasaki, '13][Kimura-Sasaki-KS, '18]
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Introduction — T-fold

® | he worldsheet instantons on the T-fold were ana

lyzed using the GLSM technique

[Kimura-Sasaki, '13][Kimura-Sasaki-KS, '18]
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Introduction — T-fold

® The worldsheet instantons on the T-fold were analyzed using the GLSM technique
[Kimura-Sasaki, '13][Kimura-Sasaki-KS, '18]

® The picture of the worldsheet instantons in NLSM is still not well understood

® In this talk, we will discuss the worldsheet instantons on T-fold using the doubled

formalism
. . 2
NSE-brane Localized Loc;.allzed252
KK-monopole with w
. . W.S. instanton
W.S. Instanton W.S. Instanton Ki S i
T [Tong '02] T [Harvey-Jensen, '05] /[Klsmuiag_] A5kl
H-monopole KK-monopole Localized 5%
- Taub-NUT ith w!
T-dual ( ) "
periodic arraying periodic arraying w.s. instanton
and smearing and smearing [Kimura-Sasaki, '13]
52.b
defect NS5 KK-vortex yorane
(T-fold)

T-dual

T-dual




Complex structures on T-fold



T-duality b/w (J,,»,) and (J, ., ®, )

® The KK-vortex has the hyperkahler structure that originates from the Taub-NUT space

(0 0 —AHT' —H (0 0 A5 1
0 0 -1 0 0 0 H 0
1% _ =
D% =10o 0 o | Ww=|_a5 B 0 of
\H —4; 0 0 \-1 0 0 o0
(0 0 1 0 (0 0 —-H 0
0 0 —A3H' —H! 0 0 Az 1
woo_ _
\4s H 0 0 \0 -1 0 0
0 —1 0 0 0 H 0 0
1 0 0 0 ~H 0 0 0
poo_
<J3) "~ 10 0 —AgH_l _H1 ) (w3>/ﬂ/ 0 0 0 11°
0 0 H+AJH™' AzH! 0 0 -1 0

~duali ion f he h kahl
T-duality transformation from the hyperkahler (J , ®,) (Hassan '05][Kimura-Sasaki-KS '22)

to the bi-hypercomplex structure (J, 4, @, 1):

[Blair-Hulik-Sevrin-Thompson '22]

Uy A

(Jc/l’i)l] = (Ja)l] — A ’ (Ja,i) y = + 4 ’
g)’y gyy

(@,)iy8yj + 8in(@Wy)y (®,);

(@) = (@) ———————, (@) =F——
g)’y gyy

(Jc/l,i)yj ==x (a)a)yja (Jc/l,i)yy — 09




Bi-hypercomplex structure on T-fold

@ Using the Buscher-like rule, we obtain the bi-hypercomplex structure of the 5%

-brane from the hyperkahler structure of the KK-vortex

[Kimura-Sasaki-KS, to appear]

( 0 0 AsK~! —HK—l\ (0 0 —AsK ! —HK™!
0 0 HK! AsK-1 0 0 —HK' AgK™!
J1’+ - —A3 —H 0 0 7 JL_ B A3 H 0 0 7
\ H -A45 0 0 ) \H —4s 0 0 )
_ (0 0 —HE' —AK 1\ [0 0 HE' —AK
bi-hypercomplex [0 0o Asxt —HE! [0 0 —Asx! —HE!
L=y _a, 0 0 =1 _pg 4, 0 0 )
structure \ds H 0 0 ) \4s H 0 0 )
0 -1 0 0 0 -1 0 0
L (1 0 0 0 L (1 0 0 0
3+~ 1o o0 o0 1]’ =710 0 1 K=H*+A?
\0 0 -1 0 \0 0 1 0
( 0 0 —As H \ ( 0 0 As H \
o 0 —m -4 o 0o B -—a4
Wit = HE \A?, H 0 0 ) w,- = HE \—A3 -H 0 0 )
“H A; 0 0 “H A; 0 0
associated (0 0 H A ( 0 0 —H A
o 0o -4y H | oo 0 A, H
fundamental wor =HK| g0 g0 o | wa-=HET [ g 0 T o]
_ A, —-H _ A, —H
2-forms \—4s 0 0 K 3 00
0O H 0 0 0 H 0 0
“H 0 0 0 -2 o 0 0
w3, + 0 0 0 —HK'|> “B=T1 0 o0 0 HEK!
0 0 HEK! 0 0 0 —HK' 0



Bi-hypercomplex structure on T-fold

e We focus on the six complex structures on T-fold (the 55-brane)

® The complex structures also differ between @ = 0 and 8 = 2z, similar to the metric, B-field,

and dilaton

six complex

structures
at 0 =0:
at @ = 21 :

0 0 0 —H1 0O O 0 —H !
J 0 0 H1 0 7 - 0 0 —H! 0
Ho 0 —H 0 0 =7 lo H 0 0 ’
H 0 0 0 H 0 0 0
0 0 —H! 0 0 0 H! 0
(0 0o 0 —H / 0o 0 0 —H Jéol # Jff)
Ly=lg o o o |* 2T |-m o o 0o |’ > h’_ ’_3
\0 H 0 0 \ 0 H 0 0 (where a # 3)
(0 -1 0 0 (o -1 0 0
Ju = 1 0 0O O Je — 1 0 0 O
10 0 0 1] =710 0 0 -1
\0 0 -1 0 \0 0 1 0
2o H 2mo H
0 0 _H2—|}_§2770')2 - H24(270)2 0 0 H2+(270)? - H24(270)2
0 0 e —___2mo 0 0 _ H . 2o
Jq 4= H2+(270)? H2+(270)? : J _ = H2+(270)? H2+(270)?
’ 2noc —H 0 0 ’ 20 H 0 0
H 270 0 0 H 2o 0 0
H 2wo H 2wo
0 0 - H24(270)2 H2+(270)? 0 0 H?2+(270)? H2+(27o0)?
0 0 . 2o o H 0 0 2o . H
J2 L= H2+(270)? H?+(270)? : J2 = H2+(270)? H?+(270)?
’ H 210 0 0 ’ —H 270 0 0
—2nc H 0 0 —2no H 0 0
O -1 0 O O -1 0 O
1 0 0O O 1 0 0 0
Bae=1o 0o o 1] Ba-=10 0o 0o -1
O 0 -1 0 O 0 1 0




Monodromies of geometric strcs. on T-fold

e [he monodromies of J, . and w, . are clearly evaluated in the doubled formalism

® J,.. w,. and B are combined into an O(D, D) covariant quantity called the

generalized hyperkahler structure
o (1 O (JarEe —(worFwil) (1 0
»* 7 \-B 1) \Wat FWa— —(Ji,xJ:))\B 1

@ We explicitly obtain the monodromies of the bi-hypercomplex structure of the 5%—brane as

follows [Kimura-Sasaki-KS, to appear]
70 Q700 T — 0000, T80 — 0 g0,
\7(,2_@ = —27rj1(70_)927n \7(277) —27T\72(70_)Q27T7 j(?_ﬂ = j(,o_)-
00 0 0
- (b))
0 0 —210 0

where Q,_is the O(D, D) matrix for the f-shift » T-duality monodromy



Worldsheet instantons in T-fold

® We consider the worldsheet instantons on the T-fold
® Recall: the worldsheet instanton equations require a complex structure

® The complex structures of T-fold have monodromies, so the worldsheet instantons
will be multivalued = ill-defined

dx* + (JOy *dx*=0 | £ | dX* () *dX* =0

® The monodromies on T-fold appear as the T-duality O(D, D) transformation

® We reformulate the worldsheet instantons in the O(D, D)-covariant doubled
formalism



Doubled instantons in Born sigma models



[Tseytlin "90][Hull '07][Copland "11][Arvanitakis-Blair '18]

Born sigma model | | !
[Sakatani-Uehara '20][Marotta-Szabo 22| &c.

® Born sigma model : string sigma model with manifest T-duality

® Target space : 2D-dim. "hypercomplex’ geometry

1 P
S = Z/ (HMN dXM A xdXYN — Qun dXM A dXN) XM = (X*H, X,)
generalized metric topological term Qunv = —Qnum

® Structures of “hypercomplex” geometry :

generalized metric neutral metric fundamental two-form
~ (g—Bg'B Bg! (0 1 (2B -1
= ( —g !B g1 - \1 O “=\l1 0
I=H'w JT=n'"H K=n'lv _I2=70%2=K2=1

with

generalized hyperkahler structure
T+ Ta,+To,+ = —0aplap + Eape T+, Ja,—To,— = —0aplap + caveTe,+)
@ ja,—kjb,— — 5abg + 5abcjc,—7 ja,—jb,—l— - 5abg + gabcjc,—a



. [Tseytlin "90][Hull '07][Copland "11][Arvanitakis-Blair '18]
Born S|gma mOdeI [Sakatani-Uehara '20][Marotta-Szabo 22| &c.

® Born sigma model : string sigma model with manifest T-duality

® Target space : 2D-dim. "hypercomplex geometry”

1 ~
S = Z/ (HMN dXM A xdXYN — Qun dXM A dXN) XM = (X*H, X,)
generalized metric topological term Qun = —QNum

By imposing the chiral condition, a D-dim. subspace of the 2D-dim.
target space is selected

XM + (nMPpy) * dXN = 0 XM = (X", X))

chiral condition choosing T-dual frame

® The Born sigma model is then reduced to a string sigma model

1
S =3 / (91 dX¥ A +dXY + By, dX" A dX*)



Instantons in Born sigma model

[Kimura-Sasaki-KS '22]
The Bogomol'nyi completion of the Born sigma model action is as follows.

generalized (hyper)Kahler strc.
/

/HMN dXMﬂtji p*dXP)/\* N

1

T Z /(wi)MN dXM N\ dXN

1
Z ﬂEZ /(wi)MN dXM /N\ dXN

The following instanton eq. is obtained as a cond. for saturating this bound.

dXM jip*dxp 0

dou bled instanton equation

Since the Born sigma model is an O(D, D) covariant formulation,
this instanton eq. is also T-duality covariant.



Consistency check

dXM £ M pxdXP =0 dX* + JV, «dX" =0

doubled instantons worldsheet instantons

1 ) 1
Born
Born _ 1 e Sinst. = =
inst. A |/w:|: / t. 9

4
action bound

. . . . action bound
imposing chiral condition

choosing a polarization

Examples of polarization :

(X1, X2 X3 X* X1, X2, X5,X,) : NS5 frame polarization

XM=(Xt X)) =< T, L
(X, X, X7, Xy X9, X9, X3,X") : TN frame polarization

The doubled instantons include the worldsheet instantons in different T-duality frames



From doubled inst. to worldsheet inst.

Indeed, changing the polarization of the T-duality frame yields the following instanton actions
from the doubled instanton action

1 ' . partition function
st = 1| s+ [0

l 7 = / DX =5 7" (X)

TN frame X* l
TN _ 1 4 %/ B, dX" AdX" 7 = /D)N(/DX e=5 (X)

inst. = 2

/ W dXH A dXY
Ca

I vol. D-dim.
NS5 frame X* ”

1
SNS5 — / W' dX'P A dX"Y

+%/ B dX'* NdX" | Z = /DX’/DX’ g5 (X)
Cs i

| vol. D-dim.
T-fold frame X “ E

Siig-s{;old _ 1 / w”VdX”“ /\dX”V

|
+%/ BZVdX//M /\dX//V Z:/DX///DX/, e—ST_fOId(X”)
Ca : R | .

vol. D-dim.



Doubled instantons on T-fold

® The six complex structures on the T-fold are embedded in the generalized
hyperkahler structure on the doubled space

® The monodromy of the doubled instanton equation on the T-fold is as follows

(AXEM 4 (jfw))MP £ (AXE)P =g (jio) is at 0 =0 and jfﬁ) is at 0 = 27)

& (dXCNM 4 (Q_ o )M (TE) K L(Qar)E P+ (AXED)P =0
® The doubled instantons X have the monodromy
(dX(Zw))M _ (Q_QW)MN(dX(O))N

® Then the doubled instanton equation is covariant to the non-trivial T-duality
monodromy, and the worldsheet instanton on the T-fold is well-defined

(Q2m)M w | (@XO)N £ (7{")V g # (aX)?| = 0

well dieffired
— T he worldsheet instantons on T-fold have to be treated in an O(D, D)
covariant doubled formalism



Summary



Summary

® We explicitly showed the non-trivial T-duality monodromies of the complex
structures on the T-fold using the doubled formalism

® The doubled instantons in the Born sigma model include the worldsheet
instantons in each T-duality frame

® The worldsheet instantons acting on the T-fold are well-defined by using the
doubled instanton equation in the Born sigma model

Future directions

® More details on the worldsheet instanton effects in the T-fold geometry
® Finding a concrete solution to the doubled instanton equation on the T-fold

® U-duality extensions — membrane instantons






Backup



Monodromy of codim 2 branes

defect NSb5-brane

o 0 O O\ (H(S 0 0 0 0 0 0 O
;|06 0 Ae| [0 HS 0 0 0 & 0 0
10 0 6 O 0 0 H 1Y 0 0 0 o 0
000 6/\N0 0 0 H'W \0O —As 0 &
T— O(D, D) matrix known as the B-shift (gauge symmetry) —T
KK-vortex
AT 0 i 0 A 0 o 0 O Ho O 0
H: 0 A_l 0 -1 0 A_T A= 0 1 0 go — 0 H 0
o Jo /N 0 As 1 0 0 H!
T I O(D, D) matrix corresponding to diffeomorphism
5%—brane
) 0 0 O Ho 0 0 0 o 0 0 0
0 ) 0 O 0 H 1'% 0 0 0 0 0 2moe
RO=2m=19 o s o|llo o &HW o0]loo0s o
0 —2moe 0 ¢ 0 0 0 Ho 0 0

T— O(D, D) matrix known as the f-shif —T

non-geometry!




Bi-hypercomplex structure

® Let M be a 4n-dimensional differentiable manifold

e [he bi-hypercomplex structure on M is (J ., o, ., g) satisfying the following

conditions

» Each J, . is an integrable almost complex structure on M
» Each of {J, } and {J, _} satisties a quaternion algebra

» J,, and J, _ are commutative: [J, ,,J, | =0

p & Is a metric where each J . is preserved

» @, is a fundamental 2-form satisfying condition w, , = — gJ .



T-duality b/w (J,w) and (J, ®,)

T-duality transformation b/w bi-hypercomplex structures (J, ., @, 1) © (J; +, @, 4):

B . (Ja,i)i (g / i B ) . (Ja,i)i
(Jc/l’i)l] — (Ja,i)lj _ y Y] Y] ] (]é’i)ly — $ y,
8yy Eyy
J, )", (g, F B,) B, (J, )"
(Jo ) = £ (@,4),; + By ((Ja,i)kj - ASCCNE S | Ly, =F =222
g)’y gyy
/ _ (@,.2)iy(8y; F By) + (8iy * Byy) (@, 1), , _ (@4, +)iy
(a)a,i)zj - (a)a,i)ij o ’ (a)a,i)iy — + .
Eyy Eyy




Born geometry

Born structure (Z, J, /) on 2D-dimensional manifold M=P

7° = —J° = - K? = -1 TJTK = —1

para-quaternion

algebra

; {Z,J}={J, K} ={K, 2} =0
[ : almost complex structure T=H1'0=-Q'H
J  : chiral structure J = 77_17-[ — 7—[_177

JC  : almost para-complex structure K = 77_1@ — Q_lﬁ

metrics in Born geometry

H  : generalized metric ]

Tl . O(D, D) invariant metric J DFT quantities

() : fundamental two-form



