Multidimensional integrable systems

from contact geometry

Artur Sergyeyev

Silesian University in Opava, Czech Republic

Noncommutative Integrable Systems
Online Workhshop

$$
\text { Japan } 2024
$$

Integrable nonlinear systems from linear Lax pairs

A nonlinear partial differential system \mathcal{S} is (Lax) integrable if $\mathcal{S} \Leftrightarrow[L, M]=0$ for a pair of 'nice' linear partial differential operators L and M.

Integrable nonlinear systems from linear Lax pairs

A nonlinear partial differential system \mathcal{S} is (Lax) integrable if $\mathcal{S} \Leftrightarrow[L, M]=0$ for a pair of 'nice' linear partial differential operators L and M.
Then L and M are called Lax operators,
$L \psi=0, M \psi=0$ a Lax pair, and $[L, M]=0$ a Lax-type representation for \mathcal{S} If $[L, M]=0$ only yields differential consequences of \mathcal{S} but not \mathcal{S} itself, so $\mathcal{S} \Rightarrow[L, M]=0$ but not the other way around, we have weak Lax pairs or Lax-type representations.

Integrable nonlinear systems from linear Lax pairs

A nonlinear partial differential system \mathcal{S} is (Lax) integrable if $\mathcal{S} \Leftrightarrow[L, M]=0$ for a pair of 'nice' linear partial differential operators L and M.
Then L and M are called Lax operators,
$L \psi=0, M \psi=0$ a Lax pair,
and $[L, M]=0$ a Lax-type representation for \mathcal{S}
If $[L, M]=0$ only yields differential consequences of \mathcal{S} but not \mathcal{S} itself, so $\mathcal{S} \Rightarrow[L, M]=0$ but not the other way around, we have weak Lax pairs or Lax-type representations.

Under further technical assumptions an \mathcal{S} admitting even a weak Lax pair has infinitely many conservation laws and symmetries and plethoras of exact solutions.

KdV equation: the prototypic integrable system

Let $n \mathrm{D}$ indicate n independent variables a.k.a. n dimensions: 2 D or $(1+1) \mathrm{D}$ for $n=2$ etc.
The 2D Korteweg-de Vries equation for $u=u(x, t)$,

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{1}
\end{equation*}
$$

has a Lax-type representation $[L, M]=0$ with
$L=-\partial_{x}^{2}-u-\lambda, \quad M=\partial_{t}+4 \partial_{x}^{3}+6 u \partial_{x}+3 u_{x}$.
$[L, M]=0 \Rightarrow$ compatibility of Lax pair for $\psi(x, t, \lambda)$:

$$
\begin{equation*}
Q \psi=\lambda \psi, \quad M \psi=0 \tag{2}
\end{equation*}
$$

where $Q=-\partial_{x}^{2}-u$ and λ is the spectral parameter

Nonisospectral Lax pairs: An example

Q Lax operators may contain derivatives w.r.t. variables not present in the associated nonlinear system
Example. The dKP eqn $\left(u_{t}+u u_{x}\right)_{x}+u_{y y}=0$ is known to admit a Lax-type rep with the Lax operators
$L=\partial_{y}+p \partial_{x}-u_{x} \partial_{p}, \quad M=\partial_{t}+\left(p^{2}+u\right) \partial_{x}+\left(u_{y}-p u_{x}\right) \partial_{p}$
containing derivatives w.r.t. p, so they, as well as the associated Lax pair $L \chi=0, M \chi=0$ for $\chi=\chi(x, y, t, p)$, are nonisospectral and p is the variable spectral parameter.
The isomonodromic representations for the Painlevé equations are apparently the first known examples of nonisospectral Lax pairs.

Integrable systems in three independent variables

Many integrable systems for $\boldsymbol{U}=\boldsymbol{U}(x, y, t)$ of general form

$$
A_{1}(\boldsymbol{u}) \boldsymbol{u}_{x}+A_{2}(\boldsymbol{u}) \boldsymbol{u}_{y}+A_{0}(\boldsymbol{u}) \boldsymbol{u}_{t}=0
$$

admit weak Lax pairs with the Lax operators of the form

$$
\begin{equation*}
L=\partial_{y}-\mathcal{X}_{f}, \quad M=\partial_{t}-\mathcal{X}_{g} \tag{*}
\end{equation*}
$$

where $f=f(p, \boldsymbol{u}), g=g(p, \boldsymbol{u})$ are the Lax functions; $\mathcal{X}_{h}=h_{p} \partial_{x}-h_{x} \partial_{p}$ formally looks like a Hamiltonian vector field in one d.o.f. with the Hamiltonian $h(p, \boldsymbol{u})$.

Integrable systems in three independent variables

Many integrable systems for $\boldsymbol{U}=\boldsymbol{U}(x, y, t)$ of general form

$$
A_{1}(\boldsymbol{u}) \boldsymbol{u}_{x}+A_{2}(\boldsymbol{u}) \boldsymbol{u}_{y}+A_{0}(\boldsymbol{u}) \boldsymbol{u}_{t}=0
$$

admit weak Lax pairs with the Lax operators of the form

$$
\begin{equation*}
L=\partial_{y}-\mathcal{X}_{f}, \quad M=\partial_{t}-\mathcal{X}_{g} \tag{*}
\end{equation*}
$$

where $f=f(p, \boldsymbol{u}), g=g(p, \boldsymbol{u})$ are the Lax functions; $\mathcal{X}_{h}=h_{p} \partial_{x}-h_{x} \partial_{p}$ formally looks like a Hamiltonian vector field in one d.o.f. with the Hamiltonian $h(p, \boldsymbol{u})$.
Lax operators $(*)$ involve $\partial_{p} \Rightarrow$ are nonisospectral, so p is called the variable spectral parameter (recall that $\boldsymbol{U}_{p} \equiv 0$).

Integrable systems in three independent variables

Many integrable systems for $\boldsymbol{u}=\boldsymbol{U}(x, y, t)$ of general form

$$
A_{1}(\boldsymbol{u}) \boldsymbol{u}_{x}+A_{2}(\boldsymbol{u}) \boldsymbol{u}_{y}+A_{0}(\boldsymbol{u}) \boldsymbol{u}_{t}=0
$$

admit weak Lax pairs with the Lax operators of the form

$$
\begin{equation*}
L=\partial_{y}-\mathcal{X}_{f}, \quad M=\partial_{t}-\mathcal{X}_{g} \tag{*}
\end{equation*}
$$

where $f=f(p, \boldsymbol{u}), g=g(p, \boldsymbol{u})$ are the Lax functions; $\mathcal{X}_{h}=h_{p} \partial_{x}-h_{x} \partial_{p}$ formally looks like a Hamiltonian vector field in one d.o.f. with the Hamiltonian $h(p, \boldsymbol{u})$.
Lax operators $(*)$ involve $\partial_{p} \Rightarrow$ are nonisospectral, so p is called the variable spectral parameter (recall that $\boldsymbol{U}_{p} \equiv 0$).
Example. For $f=p^{2} / 2+u, g=-p^{3}-u p-v$ we get the dispersionless KP system $u_{y}=v_{x}, v_{y}=-u_{t}-u u_{x}$ (which implies the dKP equation for u from previous slide).

Integrable systems in three independent variables II

Many examples with the Lax operators

$$
L=\partial_{y}-\mathscr{A}, \quad M=\partial_{t}-\mathscr{B},
$$

where \mathscr{A} and \mathscr{B} are diff. operators of the general form

$$
\mathscr{A}=\sum_{j=0}^{n} u_{j} \partial_{x}^{j}, \quad \mathscr{B}=\sum_{k=0}^{m} v_{k} \partial_{x}^{k}
$$

Example. For the KP system
$u_{t}+6 u u_{x}+u_{x x x}+3 \sigma^{2} v_{x}=0, \quad v_{x}-u_{y}=0, \quad \sigma^{2}= \pm 1$
$L=\partial_{y}+\sigma^{-1}\left(\partial_{x}^{2}+u\right), \quad M=\partial_{t}+4 \partial_{x}^{3}+6 u \partial_{x}+3 u_{x}-3 \sigma v$

Integrable systems in four independent variables

Let $n \mathrm{D}$ indicate n independent variables a.k.a. n dimensions: 3D or $(2+1) \mathrm{D}$ for $n=3$ etc.

Einstein's $\mathrm{GR} \Rightarrow$ our spacetime is 4 D , so 4D partial differential systems are of particular relevance for applications

Integrable systems in four independent variables

Let $n \mathrm{D}$ indicate n independent variables a.k.a. n dimensions: 3D or $(2+1) \mathrm{D}$ for $n=3$ etc.

Einstein's $\mathrm{GR} \Rightarrow$ our spacetime is 4 D , so 4D partial differential systems are of particular relevance for applications

For a long time it appeared that, unlike 2 D and 3 D , integrable 4D systems are scarce, and there is no effective construction for them.

Integrable systems in 4D: What was known so far

The most important ones are (anti-)self-dual vacuum Einstein equations and (anti-)self-dual Yang-Mills equations; some other examples are related to them, e.g. the Przanowski equation or the general heavenly equation.

There also is a number of other examples, e.g. the 4D Martínez Alonso-Shabat equation and its modified version, the Dunajski equation etc.

The overwhelming majority of the known integrable 4D systems can be written in dispersionless form, i.e., as quasilinear homogeneous first-order partial differential systems.

Self-dual Yang-Mills eqs on a matrix Lie group

They boil down to a single equation for the Yang matrix J:

$$
\left(J_{y^{-}} J^{-1}\right)_{y^{+}}+\left(J_{z^{-}} J^{-1}\right)_{z^{+}}=0,
$$

and can be rewritten in dispersionless form as

$$
J_{z^{-}} J^{-1}-W_{y^{+}}=0, \quad J_{y^{-}} J^{-1}+W_{z^{+}}=0
$$

The associated Lax pair reads
$\left(\partial_{y^{+}}+\lambda\left(\partial_{z^{-}}-A_{z^{-}}\right)\right) \psi=0, \quad\left(\partial_{z^{+}}-\lambda\left(\partial_{y^{-}}-A_{y^{-}}\right)\right) \psi=0$,
where $A_{y^{-}}=J_{y^{-}} J^{-1}$ and $A_{z^{-}}=J_{z^{-}} J^{-1}$.

Integrable systems: 3D vs 4D

How it appeared

3D effective constructions (central extension, Hamiltonian vec. fields)

+ sporadic examples

4D sporadic examples

Integrable systems: 3D vs 4D

How it appeared

3D effective constructions (central extension, Hamiltonian vec. fields) + sporadic examples

4D sporadic examples

How it really is

effective constructions (central extension, Hamiltonian vec. fields) + sporadic examples
effective construction (contact vec. fields)

+ sporadic examples

New kind of Lax pairs for 4D systems

Let $L=\partial_{y}-X_{f}$ and $M=\partial_{t}-X_{g}$, where

- $f=f(p, \boldsymbol{u}), g=g(p, \boldsymbol{u})$ are the Lax functions;
- $\boldsymbol{u}=\boldsymbol{u}(x, y, z, t)$ is the vector of unknown functions for the associated nonlinear system
- p is the variable spectral parameter $\left(\boldsymbol{U}_{p} \equiv 0\right)$
- $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$ formally looks exactly like the 3D contact vector field w.r.t. $d z+p d x$ with the contact Hamiltonian h

New kind of Lax pairs for 4D systems

Let $L=\partial_{y}-X_{f}$ and $M=\partial_{t}-X_{g}$, where
จ $f=f(p, \boldsymbol{u}), g=g(p, \boldsymbol{u})$ are the Lax functions;

- $\boldsymbol{u}=\boldsymbol{u}(x, y, z, t)$ is the vector of unknown functions for the associated nonlinear system
- p is the variable spectral parameter $\left(\boldsymbol{U}_{p} \equiv 0\right)$
- $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$ formally looks exactly like the 3D contact vector field w.r.t. $d z+p d x$ with the contact Hamiltonian h

The Lax pair $L \chi=0, M \chi=0$ can be rewritten as

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi),
$$

where $\chi=\chi(x, y, z, t, p)$.

Infinitely many new integrable 4D systems

Theorem For all natural m and n and all (f, g) given by
i) $f=p^{n+1}+\sum_{i=0}^{n} u_{i} p^{i}, g=p^{m+1}+\frac{m}{n} u_{n} p^{m}+\sum_{j=0}^{m-1} v_{j} p^{j}$
with $\boldsymbol{u}=\left(u_{0}, \ldots, u_{n}, v_{0}, \ldots, v_{m-1}\right)^{\mathrm{T}}$, and
ii) $f=\sum_{i=1}^{m} \frac{a_{i}}{\left(p-u_{i}\right)}, \quad g=\sum_{j=1}^{n} \frac{b_{j}}{\left(p-v_{j}\right)}$
with $\boldsymbol{U}=\left(a_{1}, \ldots, a_{m}, u_{1}, \ldots, u_{m}, b_{1}, \ldots, b_{n}, v_{1}, \ldots, v_{n}\right)^{\mathrm{T}}$
Lax pairs $\chi_{y}=X_{f}(\chi), \chi_{t}=X_{g}(\chi)$ for $\chi=\chi(x, y, z, t, p)$ with $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$ yield 4D integrable systems for $\boldsymbol{u}=\boldsymbol{u}(x, y, z, t)$ transformable into Cauchy-Kowalevski form.

A simple example

Let $f=p^{2}+w p+u, g=p^{3}+2 w p^{2}+r p+v$, i.e. $m=2, n=1, u_{0} \equiv u, u_{1} \equiv w, v_{0} \equiv v, v_{1} \equiv r$, in class i) of the above thm.

A simple example

Let $f=p^{2}+w p+u, g=p^{3}+2 w p^{2}+r p+v$, i.e. $m=2, n=1, u_{0} \equiv u, u_{1} \equiv w, v_{0} \equiv v, v_{1} \equiv r$, in class i) of the above thm.
The Lax pair $\chi_{y}=X_{f}(\chi), \chi_{t}=X_{g}(\chi)$ then reads

$$
\begin{aligned}
\chi_{y}= & (2 p+w) \chi_{x}+\left(-p^{2}+u\right) \chi_{z} \\
& +\left(w_{z} p^{2}+\left(u_{z}-w_{x}\right) p-u_{x}\right) \chi_{p} \\
\chi_{t}= & \left(r+4 w p+3 p^{2}\right) \chi_{x}+\left(v-2 w p^{2}-2 p^{3}\right) \chi_{z} \\
& +\left(2 w_{z} p^{3}+\left(r_{z}-2 w_{x}\right) p^{2}+\left(v_{z}-r_{x}\right) p-v_{x}\right) \chi_{p} . \\
\text { Recap : } & X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}
\end{aligned}
$$

A simple example II

For $f=p^{2}+w p+u$ and $g=p^{3}+2 w p^{2}+r p+v$ the above Lax pair $\chi_{y}=X_{f}(\chi), \chi_{t}=X_{g}(\chi)$ yields a system

$$
\begin{align*}
& u_{t}-v u_{z}-r u_{x}+u v_{z}+w v_{x}-v_{y}=0, \\
& 2 u_{z}+w_{x}+2 w w_{z}-r_{z}=0, \tag{3}\\
& 2 r_{x}-3 u_{x}-2 w w_{y}+2 w u_{z}-v_{z}-2 w w_{x}+2 u w_{z}=0, \\
& w_{t}-r_{y}+2 v_{x}-4 w u_{x}+w r_{x}-r w_{x}-v w_{z}+u r_{z}=0 .
\end{align*}
$$

A simple example II

For $f=p^{2}+w p+u$ and $g=p^{3}+2 w p^{2}+r p+v$ the above Lax pair $\chi_{y}=X_{f}(\chi), \chi_{t}=X_{g}(\chi)$ yields a system

$$
\begin{align*}
& u_{t}-v u_{z}-r u_{x}+u v_{z}+w v_{x}-v_{y}=0, \\
& 2 u_{z}+w_{x}+2 w w_{z}-r_{z}=0, \tag{3}\\
& 2 r_{x}-3 u_{x}-2 w w_{y}+2 w u_{z}-v_{z}-2 w w_{x}+2 u w_{z}=0, \\
& w_{t}-r_{y}+2 v_{x}-4 w u_{x}+w r_{x}-r w_{x}-v w_{z}+u r_{z}=0 .
\end{align*}
$$

Proposition System (3) is, up to a simple change of variables, an integrable generalization to the case of four independent variables for the well-known dK equation

$$
\left(u_{t}+6 u u_{x}\right)_{x}-3 u_{y y}=0 .
$$

Another example (A.J. Pan-Collantes, QTDS, to appear)

For $f=u+v / p, g=r p^{2}+w p+s+q / p+c v^{2} / p^{2}$, where c is a constant the compatibility condition for the Lax pair $\chi_{y}=X_{f}(\chi), \chi_{t}=X_{g}(\chi)$ leads to a system

$$
\begin{aligned}
u_{t} & =2 r v_{x}+v r_{x}+s u_{z}-u s_{z}+w u_{x}-2 v w_{z}+s_{y}, \\
v_{t} & =2 q u_{z}-u q_{z}+s v_{z}-2 v s_{z}+v w_{x}+w v_{x}+q_{y}, \\
w_{y} & =-2 r u_{x}+r v_{z}+2 v r_{z}+u w_{z}, \\
r_{y} & =r u_{z}+u r_{z}, \\
q_{x} & =2 c v u_{x}+c v v_{z}+(q / v) v_{x}, \\
s_{x} & =(q / v) u_{x}-3 c v u_{z}-2 c v_{y}+(2 c u v-2 q) v_{z} / v+2 q_{z},
\end{aligned}
$$

which is a (3+1)-dimensional integrable generalization of $(2+1)$-dimensional dispersionless Davey-Stewartson system.

Compatibility condition for the Lax pairs

Proposition For $L=\partial_{y}-X_{f}$ and $M=\partial_{t}-X_{g}$ the condition $[L, M]=0$ holds iff

$$
f_{t}-g_{y}+\{f, g\}=0
$$

where $\{$,$\} is the contact bracket$

$$
\{f, g\} \stackrel{\mathrm{df}}{=} f_{p} g_{x}-g_{p} f_{x}-p\left(f_{p} g_{z}-g_{p} f_{z}\right)+f g_{z}-g f_{z}
$$

In turn, $[L, M]=0$ implies compatibility of the Lax pair

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi)
$$

Reminder: $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$

Lax pairs: dynamical systems interpretation

The function χ in the Lax pair

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi)
$$

has a straightforward interpetation: it is a joint integral of motion for the following pair of contact dynamical systems

$$
\begin{array}{rlrl}
d x / d y & =-f_{p}, & d x / d t=-g_{p} \\
d z / d y & =p f_{p}-f, & d z / d t=p g_{p}-g \\
d p / d y=f_{x}-p f_{z}, & d p / d t=g_{x}-p g_{z},
\end{array}
$$

which are compatible if we substitute there a sufficiently smooth solution $\boldsymbol{U}=\boldsymbol{u}(x, y, z, t)$ of the associated nonlinear system
Reminder: $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$

Relation to previously known 3D construction

Consider an integrable nonlinear 4D system with a Lax pair

$$
\begin{equation*}
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi) \tag{*}
\end{equation*}
$$

and impose a reduction $\boldsymbol{U}_{z}=0$ and $\chi_{z}=0$.
Then $(*)$ boils down to a 3D Lax pair of a well-known type,

$$
\chi_{y}=\mathcal{X}_{f}(\chi), \chi_{t}=\mathcal{X}_{g}(\chi),
$$

where $\mathcal{X}_{h}=h_{p} \partial_{x}-h_{x} \partial_{p}$ formally looks like a Hamiltonian vector field with one degree of freedom (recall that $\left.X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}\right)$.

Lax functions polynomial in p

Let m and n be arbitrary natural numbers, $\boldsymbol{u}=\left(u_{0}, \ldots, u_{n}, v_{0}, \ldots, v_{m-1}\right)^{\mathrm{T}}$,

$$
f=p^{n+1}+\sum_{i=0}^{n} u_{i} p^{i}, \quad g=p^{m+1}+\frac{m}{n} u_{n} p^{m}+\sum_{j=0}^{m-1} v_{j} p^{j} .
$$

Lax functions polynomial in p

Let m and n be arbitrary natural numbers,
$\boldsymbol{u}=\left(u_{0}, \ldots, u_{n}, v_{0}, \ldots, v_{m-1}\right)^{\mathrm{T}}$,

$$
f=p^{n+1}+\sum_{i=0}^{n} u_{i} p^{i}, \quad g=p^{m+1}+\frac{m}{n} u_{n} p^{m}+\sum_{j=0}^{m-1} v_{j} p^{j} .
$$

The associated Lax pair

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi)
$$

where $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$, yields a system shown at the next slide.

Lax functions polynomial in p: Part II

$$
\begin{aligned}
& \left(u_{k}\right)_{t}-\left(v_{k}\right)_{y}+m\left(u_{k-m-1}\right)_{z}-n\left(v_{k-n-1}\right)_{z} \\
& +(n+1)\left(v_{k-n}\right)_{x}-(m+1)\left(u_{k-m}\right)_{x} \\
& +\sum_{i=0}^{n}\left\{(k-i-1) v_{k-i}\left(u_{i}\right)_{z}-(i-1) u_{i}\left(v_{k-i}\right)_{z}\right. \\
& \left.-(k+1-i) v_{k+1-i}\left(u_{i}\right)_{x}+i u_{i}\left(v_{k+1-i}\right)_{x}\right\}=0 .
\end{aligned}
$$

Here $k=0, \ldots, n+m, u_{i} \stackrel{\text { def }}{=} 0$ for $i>n$ and $i<0, v_{j} \stackrel{\text { def }}{=} 0$ for $j>m$ and $j<0 ; v_{m} \stackrel{\text { def }}{=}(m / n) u_{n}$.
This is an evolution system in disguise: it can be solved w.r.t. the z-derivatives $\left(u_{i}\right)_{z}$ and $\left(v_{j}\right)_{z}$ for all i and j.

Lax functions rational in p

$$
\forall m, n \in \mathbb{N} \text { let } f=\sum_{i=1}^{m} \frac{a_{i}}{\left(p-u_{i}\right)}, \quad g=\sum_{j=1}^{n} \frac{b_{j}}{\left(p-v_{j}\right)},
$$

$$
\boldsymbol{u}=\left(a_{1}, \ldots, a_{m}, u_{1}, \ldots, u_{m}, b_{1}, \ldots, b_{n}, v_{1}, \ldots, v_{n}\right)^{\mathrm{T}} .
$$

The associated Lax pair

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi)
$$

where, as before, $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$, yields a system for \boldsymbol{U} shown at the next slide that can be brought into Cauchy-Kowalevski form e.g. by passing from t to $T=y+t$ with all other variables intact

Lax functions rational in p: Part II

$$
\begin{aligned}
& \left(u_{i}\right)_{t}+\sum_{j=1}^{n}\left\{\left(\frac{b_{j}}{v_{j}-u_{i}}\right)_{x}-\left(\frac{b_{j} u_{i}}{v_{j}-u_{i}}\right)_{z}-\frac{2 b_{j}\left(u_{i}\right)_{z}}{v_{j}-u_{i}}\right\}=0, \quad i=1, \ldots, m, \\
& \left(v_{j}\right)_{y}+\sum_{i=1}^{m}\left\{-\left(\frac{a_{i}}{v_{j}-u_{i}}\right)_{x}+\left(\frac{a_{i} v_{j}}{v_{j}-u_{i}}\right)_{z}+\frac{2 a_{i}\left(v_{j}\right)_{z}}{v_{j}-u_{i}}\right\}=0, \quad j=1, \ldots, n, \\
& \left(a_{i}\right)_{t}+\sum_{j=1}^{n}\left\{\left(\frac{a_{i} b_{j}}{\left(v_{j}-u_{i}\right)^{2}}\right)_{x}+\left(\frac{a_{i} b_{j}\left(v_{j}-2 u_{i}\right)}{\left(v_{j}-u_{i}\right)^{2}}\right)_{z}\right. \\
& \left.\quad+\frac{3 a_{i}\left(b_{j}\right)_{z}}{v_{j}-u_{i}}+\frac{3 a_{i} b_{j}\left(v_{j}\right)_{z}}{\left(v_{j}-u_{i}\right)^{2}}\right\}=0, \quad i=1, \ldots, m, \\
& \left(b_{j}\right)_{y}+\sum_{i=1}^{m}\left\{\left(\frac{a_{i} b_{j}}{\left(v_{j}-u_{i}\right)^{2}}\right)_{x}+\left(\frac{a_{i} b_{j}\left(v_{j}-2 u_{i}\right)}{\left(v_{j}-u_{i}\right)^{2}}\right)_{z}\right. \\
& \left.\quad+\frac{3 a_{i}\left(b_{j}\right)_{z}}{v_{j}-u_{i}}+\frac{3 a_{i} b_{j}\left(v_{j}\right)_{z}}{\left(v_{j}-u_{i}\right)^{2}}\right\}=0, \quad j=1, \ldots, n .
\end{aligned}
$$

Lax functions algebraic in p : an example

Let $\boldsymbol{u}=(u, v, a, b, r, s)^{\mathrm{T}}$,

$$
\begin{aligned}
& f=\sqrt{p^{2}+2 u p+2 v} \\
& g=a+b p+(r+s p) \sqrt{p^{2}+2 u p+2 v}
\end{aligned}
$$

The compatibility condition for the associated Lax pair

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi),
$$

where $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$, yields a system shown at the next slide.

Lax functions algebraic in p : an example

Let $\boldsymbol{u}=(u, v, a, b, r, s)^{\mathrm{T}}$,

$$
\begin{aligned}
& f=\sqrt{p^{2}+2 u p+2 v} \\
& g=a+b p+(r+s p) \sqrt{p^{2}+2 u p+2 v}
\end{aligned}
$$

The compatibility condition for the associated Lax pair

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi)
$$

where $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$, yields a system shown at the next slide.
This is the first known example of a 4D integrable system with a nonisospectral Lax pair whose Lax operators are algebraic in the spectral parameter p.

Lax functions algebraic in p : an example cont'd

$$
\begin{aligned}
a_{y}= & -s v_{x}+u r_{x}+2 v r_{z}, \\
b_{y}= & -s u_{x}+s v_{z}+r_{x}+u r_{z}+u s_{x}+2 v s_{z}, \\
r_{y}= & -2 w u_{x}-s u_{y}-2 u w u_{z}+w v_{z}-u w_{x} \\
& +2\left(v-u^{2}\right) w_{z}+b_{x}+u b_{z}, \\
s_{y}= & w u_{z}+w w_{x}+u w_{z}, \\
u_{t}= & b u_{x}-4 u w u_{x}+r u_{y}-2 u s u_{y} \\
& +\left(-4 u^{2} w+2 v w+a\right) u_{z}+2 w v_{x}+s v_{y} \\
& +2 u w v_{z}+2 v w_{x}-2 u^{2} w_{x}+\left(-4 u^{3}+6 u v\right) w_{z} \\
& -a_{x}-u a_{z}+u b_{x}+\left(2 u^{2}-2 v\right) b_{z}, \\
v_{t}= & -4 v w u_{x}-2 v s u_{y}-4 u v w u_{z}+b v_{x}+r v_{y} \\
& +(2 v w+a) v_{z}-2 u v w_{x}+4 v\left(v-u^{2}\right) w_{z}-u a_{x} \\
& -2 v a_{z}+2 v b_{x}+2 u v b_{z} .
\end{aligned}
$$

More details in AS, Appl. Math. Lett. 92 (2019), 196-200, arXiv:1812.02263

Open questions

(C) Find examples of Lax functions $f(p, \boldsymbol{u})$ and $g(p, \boldsymbol{u})$ transcendental in p such that the associated Lax pair

$$
\begin{equation*}
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi) \tag{*}
\end{equation*}
$$

where $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$, yields a 4D integrable system for $\boldsymbol{u}(x, y, z, t)$

Open questions

(C) Find examples of Lax functions $f(p, \boldsymbol{u})$ and $g(p, \boldsymbol{u})$ transcendental in p such that the associated Lax pair

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi),
$$

where $X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$, yields a 4D integrable system for $\boldsymbol{u}(x, y, z, t)$
(3) For a given natural N, where $\left.\boldsymbol{u}=\left(u^{1}, \ldots, u^{N}\right)^{\mathrm{T}}\right)$, classify all pairs of Lax functions $f=f(p, \boldsymbol{u})$ and $g=g(p, \boldsymbol{u})$ such that $(*)$ yield 4D integrable systems
(3) Can we find noncommutative generalizations of integrable systems with Lax pairs (*) ?

Summary of main results

8 Far more integrable 4D systems than it appeared before： infinitely many new ones with Lax pairs of the form

$$
\chi_{y}=X_{f}(\chi), \quad \chi_{t}=X_{g}(\chi)
$$

where $\chi=\chi(x, y, z, t, p), f=f(p, \boldsymbol{u}), g=g(p, \boldsymbol{u})$ ， $\boldsymbol{u}=\boldsymbol{u}(x, y, z, t), X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}$
8 The first known example of a 4D integrable system with a nonisospectral Lax pair whose Lax operators are algebraic in the spectral parameter p

Main ref．：AS，Lett．Math．Phys． 108 （2018），359－376（arXiv：1401．2122）
どうもありがとうございます

