Qusideterminants. Lecture 3

Various applications

Orthogonal polynomials

Recall that if $\mu(t)$ is a non-decreasing function on the real numbers. If $\int f(t) d \mu(t)$ is finite for any polynomial $f(t)$, one can define an inner product on pairs of polynomials

$$
\langle f, g\rangle=\int f(t) g(t) d \mu(t)
$$

The sequence of orthogonal polynomials $\left(P_{n}\right)_{n \geq 0}$ is defined by the relations $\operatorname{deg} P_{n}=n$ and $\left\langle P_{n}, P_{m}\right\rangle=0$ if $m \neq n$.
Such polynomials can be constructed via determinants of matrices of moments

$$
c_{n}=\int t^{n} d \mu(t), \quad n \geq 0 .
$$

Noncommutative generalization.

Let C_{0}, C_{1}, \ldots be elements of a ring R. Define orthogonal polynomials $P_{n}(t) \in R[t]$ as

$$
P_{n}(t)=\left|\begin{array}{ccccc}
C_{0} & C_{1} & \ldots & C_{n-1} & 1 \\
C_{1} & C_{2} & \ldots & C_{n} & t \\
& & \ldots & & \\
C_{n} & C_{n+1} & \ldots & C_{2 n-1} & t^{n}
\end{array}\right|
$$

In this definition elements C_{i} play a role of abstract (noncommutative) moments.
Polynomials $P_{n}(t)$ are polynomilas of degree n.

They are orthogonal in the following sense.
Let $r \mapsto \bar{r}$ be an anti-involution on R such that $\bar{C}_{i}=C_{i}$.
Define the scalar product on $R[t]$ by formula

$$
\left\langle a t^{i}, b t^{j}\right\rangle=a \cdot C_{i+j} \cdot \bar{b}
$$

Then

$$
\left\langle t^{i}, P_{n}(t)\right\rangle=\left\langle P_{n}(t), t^{i}\right\rangle=0 \text { for } i \leq n-1
$$

Therefore,

$$
\left\langle P_{m}(t), P_{n}(t)\right\rangle=0 \text { for } m \neq n
$$

Recurrence relations

Let $H(n)$ be the Hankel matrix with the first row C_{0}, \ldots, C_{n}. Let q_{k} be the SouthEast quasideterminant of $H(k)$ and let p_{k} be the South-East quasideterminant of the submatrix of $H(k+1)$ with k-th row and $(k+1)$-th column removed.
Set $a_{n}=p_{n} q_{n}^{-1}-p_{n-1} q_{n-1}^{-1}, b_{n}=p_{n} p_{n-2}^{-1}$

Then $P_{n+1}(t)=\left(t-a_{n}\right) P_{n}(t)-b_{n} P_{n-1}(t)$.
This is the classical recurrence relations for orthogonal polynomials if R is a field.

Iterated Darboux transformations.

Let R be an algebra with a derivation D : $R \rightarrow R$ and $\phi \in R$ be an invertible element. Recall that we denote $D(g)=g^{\prime}$ and $D^{k}(g)=g^{(k)}$.

Define Darboux transformation of $f \in R$ as

$$
\mathcal{D}(\phi ; f)=f^{\prime}-\phi^{\prime} \phi^{-1} f=\left|\begin{array}{cc}
f & \phi \\
f^{\prime} & \phi^{\prime}
\end{array}\right|
$$

Define inductively the iterated Darboux transformation $\mathcal{D}\left(\phi_{k}, \ldots, \phi_{1} ; f\right)$ inductively by formula

$$
\mathcal{D}\left(\mathcal{D}\left(\phi_{k}, \ldots, \phi_{2} ; f\right) ; \mathcal{D}\left(\phi_{1} ; f\right)\right)
$$

(provided all appropriate expressions are defined and invertible).
In this case

$$
\mathcal{D}\left(\phi_{k}, \ldots, \phi_{1} ; f\right)=\left|\begin{array}{cccc}
f & \phi_{1} & \ldots & \phi_{k} \\
f^{\prime} & \phi_{1}^{\prime} & \ldots & \phi_{k}^{\prime} \\
\ldots & \ldots & \ldots & \ldots \\
f^{(k)} & \phi_{1}^{(k)} & \ldots & \phi_{k}^{(k)}
\end{array}\right|
$$

In commutative case, the iterated Darboux transformation is a ratio of two Wronskians:

$$
\mathcal{D}\left(\phi_{k}, \ldots, \phi_{1} ; f\right)=\frac{W\left(\phi_{k}, \ldots, \phi_{1}, f\right)}{W\left(\phi_{k}, \ldots, \phi_{1}\right)}
$$

Noncommutative Toda lattice.

In the previous notations set

$$
\phi_{n}=\left|\begin{array}{cccc}
\phi & D \phi & \ldots & D^{n-1} \phi \\
D \phi & D^{2} \phi & \ldots & D^{n} \phi \\
\ldots & \ldots & \ldots & \ldots \\
D^{n-1} \phi & D^{n} \phi & \ldots & D^{2 n-2} \phi
\end{array}\right|
$$

Elements ϕ_{n} satisfy the following system of equations:

$$
\begin{gathered}
D\left(\left(D \phi_{1}\right) \phi_{1}^{-1}\right)=\phi_{2} \phi_{1}^{-1} \\
D\left(\left(D \phi_{n}\right) \phi_{n}^{-1}\right)=\phi_{n+1} \phi_{n}^{-1}-\phi_{n} \phi_{n-1}^{-1}, n \geq 2
\end{gathered}
$$

Determinants and cyclic vectors

Let R be a unital algebra and $A: R^{m} \rightarrow$ R^{m} be a linear map of right vector spaces.

A vector $v \in R^{m}$ is an A-cyclic vector if $v, A v, \ldots, A^{m-1} v$ form a basis in R^{m} regarded as a right R-module. In this case there exist $\Lambda_{i}(v, A) \in R, i=1, \ldots, m$ such that

$$
\begin{aligned}
& (-1)^{m} v \cdot \Lambda_{m}(v, A)+(-1)^{m-1}(A v) \cdot \Lambda_{m-1}(v, A)+ \\
& \quad+\cdots-\left(A^{m-1} v\right) \cdot \Lambda_{1}(v, A)+A^{m} v=0
\end{aligned}
$$

We call $\Lambda_{m}(v, A)$ the determinant of (v, A) and $\Lambda_{1}(v, A)$ the trace of (v, A).

When R is commutative $\Lambda_{m}(v, A)$ is the determinant of A and $\Lambda_{1}(v, A)$ is the trace of A.

When R is noncommutative, the expressions $\Lambda_{i}(v, A) \in R$ depend on vector v. However, they provide some information about A. For example, if the determinant $\Lambda(v, A)=0$ for
a cyclic vector v, then the map A is not invertible.

Example: Computation of $\Lambda_{m}(v, A)$. Let $A=\left(a_{i j}\right)$ be $m \times m$-matrix and $v=e_{1}=$ $(1,0, \ldots, 0)^{t}$. Denote by $a_{i j}^{(k)}$ the corresponding entry of A^{k}. Then
$\Lambda_{m}(v, A)=(-1)^{m-1}\left|\begin{array}{cccc}\begin{array}{c}(m) \\ a_{11}^{(m)}\end{array} & a_{12}^{(m)} & \ldots & a_{1 m}^{(m)} \\ a_{11}^{(m-1)} & a_{12}^{(m-1)} & \ldots & a_{1 m}^{(m-1)} \\ & \ldots & \ldots & \\ a_{11} & a_{12} & \ldots & a_{1 m}\end{array}\right|$
For $m=2$ "noncommutative trace":
$\Lambda_{1}\left(e_{1}, A\right)=a_{11}+a_{12} a_{22} a_{12}^{-1}$
and "noncommutative determinant":
$\Lambda_{2}\left(e_{1}, A\right)=a_{12} a_{22} a_{12}^{-1} a_{11}-a_{12} a_{21}$
When A is a quantum matrix then $\Lambda_{m}\left(e_{i}, A\right)$ for every i equals, up to a power of q, to quantum determinant $\operatorname{det}_{q}(A)$.

Quasideterminants and characterisric functions of graphs.

Let $A=\left(a_{i j}\right), 1 \leq i, j \leq n$ where $a_{i j}$ are free variables. Fix $p, q \in\{1, \ldots, n\}$ and $J \subset\{1, \ldots, \hat{p}, \ldots, n\} \times\{1, \ldots, \hat{q}, \ldots, n\}$ such that $|J|=n-1$ and projections of J onto $\{1, \ldots, \hat{p}, \ldots, n\}$ and $\{1, \ldots, \hat{q}, \ldots, n\}$ are surjective.

Introduce new variables $b_{k \ell}$ by setting

$$
\begin{aligned}
b_{k \ell} & =a_{k \ell} \text { for }(k, \ell) \notin J \\
b_{k \ell} & =a_{k \ell}^{-1} \text { for }(k, \ell) \in J
\end{aligned}
$$

Quasideterminant $|A|_{i j}$ is defined in the ring of formal series in variables $b_{k \ell}$ and is given by the formula

$$
|A|_{i j}=b_{i j}-\sum(-1)^{s} b_{i i_{1}} b_{i_{1} i_{2}} \ldots b_{i_{s} j}
$$

the sum is taken over all sequences i_{1}, \ldots, i_{s} such that $i_{k} \neq i, j$ for all k.

The inverse to $|A|_{i j}$ is given by the same formula where the sum is taken over all sequences i_{1}, \ldots, i_{s}.

All relations between quasideterminants, including the noncommutative Sylvester identity, can be deduced from above formulas.
The above formal series can be interpreted in terms of graphs. Let Γ_{n} be a complete oriented graph with vertices $1, \ldots, n$ and edges $e_{k \ell}$. Introduce a bijective correspondence between edges of the graph and elements $b_{k \ell}$ by formula $e_{k \ell} \mapsto b_{k \ell}$.

Then there exist a bijective correspondence between the monomials $b_{i_{1}} b_{i_{1} i_{2}} \ldots b_{i_{s} j}$ and paths from the vertex i to the vertex j.

Noncommutative Catalan numbers

 (joint with A. Berenstein)Catalan numbers $c_{n}=\frac{1}{n+1}\binom{(2 n}{n}, n \geq 0$ are important combinatorial objects which satisfy a number of remarkable properties such as:

- recursion $c_{n+1}=\sum_{k=0}^{n} c_{k} c_{n-k}$ for all $n \geq 0$ (with $c_{0}=c_{1}=1$).
- determinantal identities

$$
\begin{aligned}
& \quad\left|\begin{array}{cccc}
c_{m} & c_{m+1} & \ldots & c_{m+n} \\
c_{m+1} & c_{m+2} & \ldots & c_{m+n+1} \\
& & \ldots & \\
c_{m+n} & c_{m+n+1} & \ldots & c_{m+2 n}
\end{array}\right|=1 \\
& \text { for } n \geq 0 m \in\{0,1\} \text {. }
\end{aligned}
$$

Introduce formal variables $x_{k}, k \geq 0$ and define noncommutative Catalan numbers as solutions of the quasideterminant equations

$$
\left|\begin{array}{cccc}
C_{m} & C_{m+1} & \ldots & C_{m+n} \\
C_{m+1} & C_{m+2} & \ldots & C_{m+n+1} \\
& & \ldots & \\
C_{m+n} & C_{m+n+1} & \ldots & C_{m+2 n}
\end{array}\right|=1
$$

for $n \geq 0 m \in\{0,1\}$.
It turns out that solutions of the equations are Laurent polynomials:

$$
\begin{aligned}
& C_{0}=x_{0}, C_{1}=x_{1}, C_{2}=x_{2}+x_{1} x_{0}^{-1} x_{1}, \\
& \qquad C_{3}=x_{3}+x_{2} x_{1}^{-1} x_{2}+ \\
& +x_{2} x_{0}^{-1} x_{1}+x_{1} x_{0}^{-1} x_{2}+x_{1} x_{0}^{-1} x_{1} x_{0}^{-1} x_{1} \\
& \text { and so on. }
\end{aligned}
$$

Let F be the free group generated by x_{k}, $k \geq 0$ and F_{n} be the subgroup of F generated by x_{0}, \ldots, x_{n}. Noncommutative Catalan number C_{n} is an element of the group $\operatorname{ring} \mathbf{Z} F_{n}$. Also, $\bar{C}_{n}=C_{n}$ for the canonical anti-involution on F.

Recursion. For $n \geq 0$
$C_{n+1}=\sum_{k=0}^{n} C_{k} x_{0}^{-1} T\left(C_{n-k}\right)=\sum_{k=0}^{n} T\left(C_{k}\right) x_{0}^{-1} C_{n-k}$
where T is an endomorphism of the group ring given by $T\left(x_{k}\right)=x_{k+1}$.

Combinatorial description of noncommutative Catalan numbers

Let P be a monotonic lattice path in $[0, n] \times[0, n]$ from $(0,0)$ to (n, n).

We say that P is Catalan if for each point $p=\left(p_{1}, p_{2}\right) \in P$ one has $c(p) \geq 0$, where $c(p):=p_{1}-p_{2}$. The number of such paths is exactly the Catalan number c_{n}.

We say that a point $p=\left(p_{1}, p_{2}\right)$ of P is a southeast (resp. northwest) corner of P if $\left(p_{1}-1, p_{2}\right) \in P$ and $\left(p_{1}, p_{2}+1\right) \in P($ resp. $\left(p_{1}, p_{2}-1\right) \in P$ and $\left.\left(p_{1}+1, p_{2}\right) \in P\right)$.

To each Catalan path P from $(0,0)$ to (n, n) we assign an element $M_{P} \in F_{n}$ by

$$
M_{P}=\vec{\prod} x_{c(p)}^{\mathrm{sgn}(p)}
$$

where the product is over all corners $p \in P$ (taken in the natural order) and

$$
\operatorname{sgn}(p)= \begin{cases}1 & \text { if } p \text { is southeast } \\ -1 & \text { if } p \text { is northwest }\end{cases}
$$

Then

$$
C_{n}=\sum_{P} M_{P}
$$

where the sum is taken over all Catalan paths P from $(0,0)$ to (n, n).

Under the counit homomorphism
$\varepsilon: \mathbf{Z} F \rightarrow \mathbf{Z}$ where $x_{k} \mapsto 1$ the image $\varepsilon\left(C_{n}\right)$ is the ordinary Catalan number.

Other papers related to this talk

Generalized adjoint actions
(Berenstein, R.); arXiv:1506.07071
The reciprocal of $\sum_{n \geq 0} a^{n} b^{n}$ for non-commuting a and b, Catalan numbers and non-commutative quadratic equations
(Berenstein, R., Reutenauer, Zeilberger) arXiv:1206.4225
"Lie algebras and Lie groups over noncommutative rings" (Berenstein, R) arxiv: math/0701399

