
Qusideterminants. Lecture 3

Various applications

Orthogonal polynomials

Recall that if µ(t) is a non-decreasing func-
tion on the real numbers. If

∫
f (t)dµ(t) is

finite for any polynomial f (t), one can define
an inner product on pairs of polynomials

〈f, g〉 =

∫
f (t)g(t)dµ(t)

The sequence of orthogonal polynomials
(Pn)n≥0 is defined by the relations

degPn = n and 〈Pn, Pm〉 = 0 if m 6= n.

Such polynomials can be constructed via de-
terminants of matrices of moments

cn =
∫
tndµ(t), n ≥ 0.
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Noncommutative generalization.

Let C0, C1, . . . be elements of a ring R. De-
fine orthogonal polynomials Pn(t) ∈ R[t] as

Pn(t) =

∣∣∣∣∣∣∣∣
C0 C1 . . . Cn−1 1
C1 C2 . . . Cn t

. . .
Cn Cn+1 . . . C2n−1 tn

∣∣∣∣∣∣∣∣ .
In this definition elements Ci play a role of
abstract (noncommutative) moments.

Polynomials Pn(t) are polynomilas of degree
n.

They are orthogonal in the following sense.

Let r 7→ r be an anti-involution on R such
that C i = Ci.

Define the scalar product onR[t] by formula

〈ati, btj〉 = a · Ci+j · b
Then

〈ti, Pn(t)〉 = 〈Pn(t), ti〉 = 0 for i ≤ n− 1
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Therefore,

〈Pm(t), Pn(t)〉 = 0 for m 6= n

Recurrence relations

Let H(n) be the Hankel matrix with the
first row C0, . . . , Cn. Let qk be the South-
East quasideterminant of H(k) and let pk
be the South-East quasideterminant of the
submatrix of H(k + 1) with k-th row and
(k + 1)-th column removed.

Set an = pnq
−1
n − pn−1q−1n−1, bn = pnp

−1
n−2

Then Pn+1(t) = (t− an)Pn(t)− bnPn−1(t) .

This is the classical recurrence relations for
orthogonal polynomials if R is a field.

Iterated Darboux transformations.

Let R be an algebra with a derivation D :
R → R and φ ∈ R be an invertible ele-
ment. Recall that we denote D(g) = g′ and
Dk(g) = g(k).
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Define Darboux transformation of f ∈ R as

D(φ; f ) = f ′ − φ′φ−1f =

∣∣∣∣ f φ

f ′ φ′

∣∣∣∣
Define inductively the iterated Darboux trans-
formation D(φk, . . . , φ1; f ) inductively by
formula

D(D(φk, . . . , φ2; f );D(φ1; f ))

(provided all appropriate expressions are de-
fined and invertible).

In this case

D(φk, . . . , φ1; f ) =

∣∣∣∣∣∣∣∣
f φ1 . . . φk
f ′ φ′1 . . . φ′k
. . . . . . . . . . . .

f (k) φ
(k)
1 . . . φ

(k)
k

∣∣∣∣∣∣∣∣
In commutative case, the iterated Darboux
transformation is a ratio of two Wronskians:

D(φk, . . . , φ1; f ) =
W (φk, . . . , φ1, f )

W (φk, . . . , φ1)
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Noncommutative Toda lattice.

In the previous notations set

φn =

∣∣∣∣∣∣∣∣
φ Dφ . . . Dn−1φ
Dφ D2φ . . . Dnφ
. . . . . . . . . . . .

Dn−1φ Dnφ . . . D2n−2φ

∣∣∣∣∣∣∣∣
Elements φn satisfy the following system of
equations:

D((Dφ1)φ
−1
1 ) = φ2φ

−1
1

D((Dφn)φ−1n ) = φn+1φ
−1
n − φnφ−1n−1, n ≥ 2
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Determinants and cyclic vectors

Let R be a unital algebra and A : Rm →
Rm be a linear map of right vector spaces.

A vector v ∈ Rm is an A-cyclic vector if
v, Av, . . . , Am−1v form a basis in Rm re-
garded as a right R-module. In this case
there exist Λi(v,A) ∈ R, i = 1, . . . ,m such
that

(−1)mv·Λm(v, A)+(−1)m−1(Av)·Λm−1(v,A)+

+ · · · − (Am−1v) · Λ1(v, A) + Amv = 0

We call Λm(v, A) the determinant of (v, A)
and Λ1(v, A) the trace of (v, A).

When R is commutative Λm(v, A) is the de-
terminant of A and Λ1(v, A) is the trace of
A.

WhenR is noncommutative, the expressions
Λi(v, A) ∈ R depend on vector v. However,
they provide some information aboutA. For
example, if the determinant Λ(v, A) = 0 for
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a cyclic vector v, then the map A is not
invertible.

Example: Computation of Λm(v,A). Let
A = (aij) be m ×m-matrix and v = e1 =

(1, 0, . . . , 0)t. Denote by a
(k)
ij the correspond-

ing entry of Ak. Then

Λm(v, A) = (−1)m−1

∣∣∣∣∣∣∣∣∣
a
(m)
11 a

(m)
12 . . . a

(m)
1m

a
(m−1)
11 a

(m−1)
12 . . . a

(m−1)
1m

. . . . . .
a11 a12 . . . a1m

∣∣∣∣∣∣∣∣∣
For m = 2 “noncommutative trace”:

Λ1(e1, A) = a11 + a12a22a
−1
12

and “noncommutative determinant”:

Λ2(e1, A) = a12a22a
−1
12 a11 − a12a21

WhenA is a quantum matrix then Λm(ei, A)
for every i equals, up to a power of q, to
quantum determinant detq(A).
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Quasideterminants and characteris-
ric functions of graphs.

Let A = (aij), 1 ≤ i, j ≤ n where aij are
free variables. Fix p, q ∈ {1, . . . , n} and
J ⊂ {1, . . . , p̂, . . . , n} × {1, . . . , q̂, . . . , n}
such that |J | = n − 1 and projections of J
onto {1, . . . , p̂, . . . , n} and {1, . . . , q̂, . . . , n}
are surjective.

Introduce new variables bk` by setting

bk` = ak` for (k, `) /∈ J
bk` = a−1k` for (k, `) ∈ J

Quasideterminant |A|ij is defined in the ring
of formal series in variables bk` and is given
by the formula

|A|ij = bij −
∑

(−1)sbii1bi1i2 . . . bisj

the sum is taken over all sequences i1, . . . , is
such that ik 6= i, j for all k.

The inverse to |A|ij is given by the same
formula where the sum is taken over all se-
quences i1, . . . , is.
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All relations between quasideterminants, in-
cluding the noncommutative Sylvester iden-
tity,, can be deduced from above formulas.

The above formal series can be interpreted
in terms of graphs. Let Γn be a complete
oriented graph with vertices 1, . . . , n and
edges ek`. Introduce a bijective correspon-
dence between edges of the graph and ele-
ments bk` by formula ek` 7→ bk`.

Then there exist a bijective correspondence
between the monomials bii1bi1i2 . . . bisj and
paths from the vertex i to the vertex j.
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Noncommutative Catalan numbers
(joint with A. Berenstein)

Catalan numbers cn = 1
n+1

(
2n
n

)
, n ≥ 0 are

important combinatorial objects which sat-
isfy a number of remarkable properties such
as:

• recursion cn+1 =
n∑
k=0

ckcn−k for all n ≥ 0

(with c0 = c1 = 1).

• determinantal identities∣∣∣∣∣∣∣∣
cm cm+1 . . . cm+n

cm+1 cm+2 . . . cm+n+1

. . .
cm+n cm+n+1 . . . cm+2n

∣∣∣∣∣∣∣∣ = 1

for n ≥ 0 m ∈ {0, 1}.

Introduce formal variables xk, k ≥ 0 and
define noncommutative Catalan numbers
as solutions of the quasideterminant equa-
tions



11∣∣∣∣∣∣∣∣
Cm Cm+1 . . . Cm+n

Cm+1 Cm+2 . . . Cm+n+1

. . .
Cm+n Cm+n+1 . . . Cm+2n

∣∣∣∣∣∣∣∣ = 1

for n ≥ 0 m ∈ {0, 1}.

It turns out that solutions of the equations
are Laurent polynomials:

C0 = x0, C1 = x1, C2 = x2 + x1x
−1
0 x1,

C3 = x3 + x2x
−1
1 x2+

+x2x
−1
0 x1 + x1x

−1
0 x2 + x1x

−1
0 x1x

−1
0 x1

and so on.

Let F be the free group generated by xk,
k ≥ 0 and Fn be the subgroup of F gener-
ated by x0, . . . , xn. Noncommutative Cata-
lan number Cn is an element of the group
ring ZFn. Also, Cn = Cn for the canonical
anti-involution on F .
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Recursion. For n ≥ 0

Cn+1 =

n∑
k=0

Ckx
−1
0 T (Cn−k) =

n∑
k=0

T (Ck)x
−1
0 Cn−k

where T is an endomorphism of the group
ring given by T (xk) = xk+1.

Combinatorial description of non-
commutative Catalan numbers

Let P be a monotonic lattice path in
[0, n]× [0, n] from (0, 0) to (n, n).

We say that P is Catalan if for each point
p = (p1, p2) ∈ P one has c(p) ≥ 0, where
c(p) := p1 − p2. The number of such paths
is exactly the Catalan number cn.

We say that a point p = (p1, p2) of P is a
southeast (resp. northwest) corner of P if
(p1− 1, p2) ∈ P and (p1, p2 + 1) ∈ P (resp.
(p1, p2 − 1) ∈ P and (p1 + 1, p2) ∈ P ).
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To each Catalan path P from (0, 0) to (n, n)
we assign an element MP ∈ Fn by

MP =

−→∏
x
sgn(p)
c(p) ,

where the product is over all corners p ∈ P
(taken in the natural order) and

sgn(p) =

{
1 if p is southeast

−1 if p is northwest

Then

Cn =
∑
P

MP

where the sum is taken over all Catalan paths
P from (0, 0) to (n, n).

Under the counit homomorphism
ε : ZF → Z where xk 7→ 1 the image ε(Cn)
is the ordinary Catalan number.
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Other papers related to this talk

Generalized adjoint actions
(Berenstein, R.); arXiv:1506.07071

The reciprocal of
∑

n≥0 a
nbn for non-commuting

a and b, Catalan numbers and non-commutative
quadratic equations
(Berenstein, R., Reutenauer, Zeilberger)
arXiv:1206.4225

“Lie algebras and Lie groups over noncom-
mutative rings” (Berenstein, R)
arxiv: math/0701399


