Qusideterminants. Lecture 3
Various applications
Orthogonal polynomials

Recall that if p(t) is a non-decreasing func-
tion on the real numbers. If [ f(¢)du(t) is
finite for any polynomial f(t), one can define
an inner product on pairs of polynomials

(f. ) = / F(t)g(t)dutt

The sequence of orthogonal polynomials
(Py)n>0 is defined by the relations

deg P, = n and (B,, P,,) = 0if m # n.

Such polynomials can be constructed via de-
terminants of matrices of moments

cn = [t"du(t), n >0.
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Noncommutative generalization.

Let Cy, (Y, ... be elements of a ring R. De-
fine orthogonal polynomials P,(t) € R[t] as

Co Cp ... Cp,q1 1

Po(t) = c, Cy ... C, t

Cn Cn—i—l C2n—1 t"

In this definition elements C; play a role of
abstract (noncommutative) moments.

Polynomials P,(t) are polynomilas of degree
n.

They are orthogonal in the following sense.

Let r — 7 be an anti-involution on R such

that C; = C;.
Define the scalar product on R|t] by formula

(ati, bt‘7> = a- CZ'_H' : B

Then
({t', P,(t)) = (P,(t),t") =0fori <n —1



Therefore,

(Pn(t), Py(t)) =0 for m #n

Recurrence relations

Let H(n) be the Hankel matrix with the
first row Cy, ..., C,. Let g be the South-
Fast quasideterminant of H(k) and let py
be the South-East quasideterminant of the

submatrix of H(k + 1) with k-th row and
(k + 1)-th column removed.

Set @y = pngt = Pue14 1, by = papi L,

Then Pyy1(t) = (t — an) Pa(t) — by Py1(t) -

This is the classical recurrence relations for
orthogonal polynomials if R is a field.

Iterated Darboux transformations.

Let R be an algebra with a derivation D :
R — R and ¢ € R be an invertible ele-
ment. Recall that we denote D(g) = ¢’ and

D¥(g) = g%\
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Define Darboux transformation of f € R as

f
f/ ¢l
Define inductively the iterated Darboux trans-

formation D(¢y, ..., ¢1; f) inductively by
formula

D(g;f)=f—d¢'f= '

D(D(¢x, - - -, ¢2; f); D(1; f))

(provided all appropriate expressions are de-
fined and invertible).

In this case

D(G,--- 915 f) =

In commutative case, the iterated Darboux
transformation is a ratio of two Wronskians:

W(¢k7'°'7¢17f)

D(pk, ..., 01, f) = Wik, ...,o1)




Noncommutative Toda lattice.
In the previous notations set
1) D¢ ... D" 1o

D D?¢ ... D"
5 _| Do D% b

D"l D¢ ... D" ¢

Elements ¢, satisfy the following system of
equations:

D((Dg1)p1") = ooy
D((D¢n>¢;l) — ¢n—|—1¢;1 — ¢n¢;il, n > 2
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Determinants and cyclic vectors

Let R be a unital algebra and A : R™ —
R™ Dbe a linear map of right vector spaces.

A vector v € R™ is an A-cyclic vector it
v, Av, ..., A"t form a basis in R™ re-
garded as a right R-module. In this case
there exist A;(v, A) € R, i =1,...,m such
that

(—1)™0-Ayp (v, A)+(=1)""H Av)-Apy_1 (v, A)+

o= (A" ) Ay (v, A) + AM =0

We call A,,(v, A) the determinant of (v, A)
and A(v, A) the trace of (v, A).

When R is commutative A,,(v, A) is the de-
terminant of A and Ay(v, A) is the trace of
A.

When R is noncommutative, the expressions
Ai(v, A) € R depend on vector v. However,
they provide some information about A. For
example, if the determinant A(v, A) = 0 for
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a cyclic vector v, then the map A is not
invertible.

Example: Computation of A,,(v, A). Let
A = (a;j) be m x m-matrix and v = e; =
(1,0,...,0)". Denote by az(f) the correspond-
ing entry of A¥. Then

?ﬁ?)) ?gg)> ?%)>

m—1 m—1 m—1

Ap(v, A) = (=)™ H|a — ag " . Ay,
11 ap ... Qain

For m = 2 “noncommutative trace”:

A1<61, A) = a1 + a12a22a1_21

and “noncommutative determinant”:
No(er, A) = a12a22a1_21a11 — 120921

When A is a quantum matrix then A;,(e;, A)

for every ¢ equals, up to a power of ¢, to
quantum determinant det,(A).
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Quasideterminants and characteris-
ric functions of graphs.

Let A = (a;5),1 < 4,5 < n where a;; are

free variables. Fix p,q € {1,...,n} and

JCAL....p,...,n} x{1,...,q,...,n}
such that |J| = n — 1 and projections of J
onto{1,...,p,...,ntand{1,....q,...,n}
are surjective.

Introduce new variables by, by setting
bre = aype for (k,0) & J
bre = a;) for (k,0) € J

Quasideterminant |A|;; is defined in the ring
of formal series in variables by, and is given
by the formula

Alij = bij — Y _(=1)*bigybisy - - bij

the sum is taken over all sequences 71, . .., 75
such that 75 # ¢, 7 for all k.

The inverse to |A|;; is given by the same
formula where the sum is taken over all se-
quences 1, . . . , 5.
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All relations between quasideterminants, in-
cluding the noncommutative Sylvester iden-
tity,, can be deduced from above formulas.

The above formal series can be interpreted
in terms of graphs. Let I',, be a complete
oriented graph with vertices 1,...,n and
edges epp. Introduce a bijective correspon-
dence between edges of the graph and ele-
ments by, by formula egs +— byy.

Then there exist a bijective correspondence
between the monomials b;;, 05,4, ... b;,; and
paths from the vertex ¢ to the vertex j.
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Noncommutative Catalan numbers
(joint with A. Berenstein)

Catalan numbers ¢, = #1(2;:)7 n > 0 are
important combinatorial objects which sat-
isty a number of remarkable properties such
as: .
e recursion ¢, 1 = Y ¢xC,_j forallm >0
k=0
(with ¢ =1 = 1).

e determinantal identities

Cm Cm+1  --+  Cmin
Cm+1 Cm4+2 -+ Cmgn+l| 1
Cm+n Cm4n+1 -+ Cm42n

forn > 0m € {0,1}.

Introduce formal variables x., k& > 0 and
define noncommutative Catalan numbers
as solutions of the quasideterminant equa-
tions
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Cm Cm_|_1 .« .. Cm+n
C1m+1 Cm+2 I Cm+n+1 1
Cm—|—n Cm+n—|—1 “ e Cm—|—2n

forn > 0m e {0,1}.

[t turns out that solutions of the equations
are Laurent polynomials:

1
Co = xg, C1 = 21, Cy = T2 + 1175 21,

—1
03 = T3+ LoXq To+

—1 —1 —1 —1
+Toxy T1 + T1xy X2+ X1Ty T1Xy L1

and so on.

Let F' be the free group generated by x;,
k > 0 and F;, be the subgroup of F' gener-
ated by xg, ..., r,. Noncommutative Cata-
lan number C), is an element of the group
ring ZF,,. Also, C,, = C,, for the canonical
anti-involution on F'.
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Recursion. For n > 0

Cni1 = ZCMO Ch—k) ZTCk% n—k

where T is an endomorphism of the oroup
ring given by T'(xy) = xp1.

Combinatorial description of non-
commutative Catalan numbers

Let P be a monotonic lattice path in

0, n] x [0,n] from (0,0) to (n,n).

We say that P is Catalan if for each point
p = (p1,p2) € P one has ¢(p) > 0, where
c(p) := p1 — p2. The number of such paths
is exactly the Catalan number c,.

We say that a point p = (p1,p2) of P is a
southeast (resp. nmorthwest) corner of P if
(p1 —1,p2) € P and (p1,p2+1) € P (resp.
(p1,p2— 1) € Pand (p; + 1,p) € P).
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To each Catalan path P from (0, 0) to (n,n)
we assign an element Mp € F), by

_>
_ sgu(p)
Mp = ch(p) ’
where the product is over all corners p € P
(taken in the natural order) and

() 1 if p is southeast
sgn(p) =
GNP —1 if p is northwest

Then

Cp=» Mp
P
where the sum is taken over all Catalan paths
P from (0,0) to (n,n).

Under the counit homomorphism
e . ZLF — Z where x; — 1 the image ¢(C,,)
is the ordinary Catalan number.
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Other papers related to this talk

Generalized adjoint actions
(Berenstein, R.); arXiv:1506.07071

The reciprocal of } - a"b" for non-commuting
a and b, Catalan numbers and non-commutative
quadratic equations

(Berenstein, R., Reutenauer, Zeilberger)
arXiv:1206.4225

“Lie algebras and Lie groups over noncom-
mutative rings” (Berenstein, R)

arxiv: math /0701399



