
Into multiplier Hopf ∗-graph algebras, and beyond

Farrokh Razavinia

Azarbaijan Shahid Madani University

International Seminar-Type Online Workshop on
Noncommutative Integrable Systems

March 11, 2024



This is based on the following joint work with

Prof. Ghorbanali Haghighatdoost;

Razavinia, Farrokh, and Haghighatdoost, Ghorbanali. From
Quantum Automorphism of (Directed) Graphs to the
Associated Multiplier Hopf Algebras. Mathematics, 2024,
12.1: 128.

And is supported by the author ′s
postdoctoral grant with contract No.

117.d.22844-08.07.2023.



From non-unital to unital algebras

▶ For any field K and a finite group G , take A = K(G ). Then
we have

A⊗ A
∼=−→ K(G × G )

f ⊗ g 7→ (f ⊗ g)(p, q) = f (p)⊗ g(q) := f (p)g(q),

which is crucial in defining the co-multiplication.

▶ But this no longer works while working over infinite
dimensional underlying group.

▶ As in this case K(G )⊗K(G ) will be a proper subset of
K(G × G ).

▶ In 1994, A. Van Daele came up with a solution to this issue as
follows:
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From non-unital to unital algebras
▶ Take A to be the set

Kf (G ) = {f : G → K | G is any group and f has finite support}

▶ Then it is not to difficult to see that

M(A) = K(G ) = {f : G → K | G is any group}.

▶ Then we can identify A⊗ A with Kf (G × G )

A⊗A→ Kf (G×G ) : f1⊗f2 7→ (f1⊗f2)(g1, g2) := f1(g1)f2(g2),

▶ hence by defining

∆ :Kf (G )→ Kf (G )⊗Kf (G ) ∼= Kf (G × G ) ⊆ K(G × G )

f 7−→ ∆(f )(g1, g2) := f (g1g2)
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From non-unital to unital algebras

▶ and by looking at Kf (G × G ) as a subspace of K(G × G ),

▶ we can equip it with an algebra structure by using pointwise
multiplication,

▶ and by using the fact that M(A⊗ A) = K(G × G ), and
considering ∆ in K(G × G ),

▶ we can have the following definition
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From non-unital to unital algebras

▶ For A a unital or non-unital algebra over C with a
non-degenerate product, and ∆ : A→ M(A⊗ A) a
homomorphism, assume that ∆(a)(1⊗ b) and (a⊗ 1)∆(b)
belong to A⊗ A for all a and b in A.

▶ Then we say that ∆ is co-associative if for all a, b and c in A,
and i : A→ A and 1 the unit element of M(A), we have

(a⊗1⊗1)(∆⊗i)(∆(b)(1⊗c)) = (i⊗∆)((a⊗1)∆(b))(1⊗1⊗c),

▶ then ∆ will be called a comultiplication on A,

▶ and A will be called a multiplier Hopf algebra if the linear
maps T1,T2 : A⊗ A→ A⊗ A, defined by

T1(a⊗ b) = ∆(a)(1⊗ b), T2(a⊗ b) = (a⊗ 1)∆(b)

are bijective.
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Quantum permutation group S+
n

▶ A compact quantum group G is a pair (A,∆), for A a
C ∗-algebra and ∆ a unital ∗-homomorphism from A to A⊗ A,
called comultiplication, satisfying the coassociativity relation

(∆⊗ id) ◦∆ = (id ⊗∆) ◦∆

▶ and the cancellation properties

∆(A)(1⊗ A) = {∆(a)(1⊗ b)|a, b ∈ A}
∆(A)(A⊗ 1) = {∆(a)(b ⊗ 1)|a, b ∈ A},

dense in A⊗ A, due to Woronowicz.
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Quantum permutation group S+
n , continuation

▶ But our concern is more about the compact quantum groups
arising from the (semi-)group algebras.

▶ For the compact group G , we can see CG as the group
C ∗-algebra associated with G , consisting of the set of finite
linear combinations

∑
g∈G cgg , for cg ∈ C, with the

multiplication adopted from the group multiplication and
equipped with the involution (

∑
cgg)

∗ :=
∑

cgg
−1

▶ isomorphic with the universal C ∗-algebra

C ∗ (cg |cg unitary, cgch = cgh, c
∗
g = cg−1

)
.
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Quantum permutation group S+
n , continuation

▶ Following the above discussion, and in order to provide an
answer to a question by Connes, asking

‘‘if there are quantum permutation groups,

and what would be they look like?’’

▶ in the late nineties, Wang came with an answer, saying that

“the quantum permutation group S+
n

could be defined as the largest compact

quantum group acting on the set {1, . . . ,N}”
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Quantum permutation group S+
n , continuation

▶ by looking at it as the compact set XN := {x1, . . . , xN}
consisting of a finite set of points (pointwise isomorphic) and
studying its function space

C (XN) ≡ C ∗
(
p1, · · · , pN projections |

∑N
i=1 pi = 1

)
.

▶ This has led him to define C (S+
n ) as the following universal

C ∗-algebra

C ∗

(
uij , i , j = 1, · · · , n | uij = u∗ij = u2ij ,

n∑
k=1

ukj =
n∑

k=1

uik = 1

)
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Quantum permutation group S+
n , continuation

▶ and calling S+
n = (C (S+

n ), u) the quantum symmetric
(permutation) group as the quantum automorphism group of
XN , and proving that it satisfies the relations of being a
compact (matrix) quantum group in the sense of Woronowicz.

▶ The main ingredients in defining C (S+
n ), meaning that the

uijs, are very important in our construction of the
(∗-)multiplier Hopf graph algebras, and we have the following
definition:

▶ Matrix u = (uij)i ,j with entries uijs from a non-trivial unital
C ∗-algebra satisfying relations uij = u∗ij = u2ij and∑n

k=1 ukj =
∑n

k=1 uik = 1, will be called a magic unitary.
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Quantum permutation group S+
n , continuation

▶ Recently, Rollier and Vaes put one step forward and applied
the above constructions to the connected locally finite graphs,
and more than that, they used this association in order to
make a bridge between the already known abstract concept of
the multiplier Hopf algebras, introduced and studied by Van
Daele, to a more intuitive field of Graph Theory, in the form
of the following theorem

▶ For Π a locally connected finite graph with vertex set I , there
exist a (necessarily unique) universal nondegenerate ∗-algebra
A generated by the elements uij satisfying the relations of the
magic unitary matrix in definition of the quantum
permutation group, and a unique nondegenerate
∗-homomorphism ∆ : A → M(A⊗A) taking uij to∑

k∈I (uik ⊗ ukj) for all i , j ∈ I , such that the pair (A,∆) is a
multiplier Hopf ∗-algebra in the sense of Van Daele.
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Quantum matrix algebra

▶ Let K[Mq(n)] be the associative algebra over K generated by
n2 elements Xij , i , j = 1, 2, . . . , n, with relations

▶

XriXrj = q−1XrjXri , ∀i < j ;

XriXsi = q−1XsiXri , ∀r < s;

XriXsj = XsjXri , if r < s and i > j ; (1)

XriXsj − XsjXri = q̂XsiXrj , if r < s and i < j ,

where we have q̂ = q−1 − q.

▶ Now, let us associate a directed structure to the above set of
relations by using the following rules:
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Quantum matrix algebra

▶ We have
uij
−→∼ukℓ if and only if the following conditions are satisfied

▶

1. i = k and j < ℓ,
2. i < k and j = ℓ,
3. i < k and j > ℓ,

▶ and we have uij
←→∼ ukℓ if and only if i > k and j < ℓ.
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▶ For example, for K[Mq(2)] we can associate the following
directed graph on which we call Π2:

▶

x11

x12

x22

x21

Figure 1: Directed locally connected graph related to K (Mq(2))
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▶ Note that the only commuting matrix with Π2 satisfying
relations of being a magic unitary matrix will be

π2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



▶ and by continuing of finding the commuting matrices, the
algorithm will be as follows, for any n, that, the entries
associated with the row related to xij , will be 1 in (ij)(ji)
position and 0 elsewhere, and the associated graph, for
example for π2 will be
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Figure 2: Directed 2-connected graph related to π2



(Quantum) Graph Algebra

▶ Following the theorem by Rollier and Vaes, and by using the
(n2 − 2)-connected locally finite graphs
Gi = {G(πi ) | i ∈ {1, · · · n}} associated with the adjacency
matrices Πi of K[Mq(n)] and their commuting matrices πi , for
i ∈ I = {1, · · · , n},

▶ recently we showed that the set Gi possesses a nondegenerate
∗-monoid algebra structure equiped with the following binary
operations

πi + πj := (Vi ∪ Vj ,Ei ∪ Ej)

πi → πj := (Vi ∪ Vj ,Ei ∪ Ej) , (2)

and the identity element π2.
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Different kinds of graph algebras

▶ There are three elementary ways of constructing graph
algebras:

▶ One way is by using the algebra constructed based on the set
of vertices of the graph together with the extra vertex 0 (not
in the set of vertices).

▶ In this way, the algebra will not be nondegenerate and almost
useless for our case.

▶ The other way is by looking at the entries of the commuting
matrices with the adjacency matrices, on which if they are
magic unitaries, and if that is so, then we get a multiplier
Hopf algebra structure, but not exactly a multiplier Hopf
graph algebra structure, because of the nondegeneracy!

▶ The third approach is to directly work on the graph structures
and put an algebra structure on the set of specific graphs, as
we have done on the set of Gi s, illustrated bellow
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Different kinds of graph algebras

Figure 3: Illustration of the set of n − 1 graphs Gi



Cuntz-Krieger Algebras

▶ Cuntz algebras On have been introduced by Cuntz in 1977 as
a class of simple purely infinite C ∗-algebras generated by
isometries (S is an isometry if S∗S = id) S1,S2, · · · , Sn
satisfying in the following relations

S∗
1S1 = S∗

2S2 = · · · = S∗
nSn = id,

n∑
i=1

SiS
∗
i = id,

▶ Following the above definition, to a directed graph Γ, one can
associate a C ∗-algebra C ∗(Γ0, Γ1) := C ∗(Γ) by associating to
its set of edges Γ1 a set of partial isometries and to its set of
vertices Γ0 a set of pairwise orthogonal projections (Hilbert
spaces) satisfying in some specific relations, studied first by
Cuntz and Krieger in 1980, as a generalization of the Cuntz
algebras.



Cuntz-Krieger Algebras

▶ Cuntz algebras On have been introduced by Cuntz in 1977 as
a class of simple purely infinite C ∗-algebras generated by
isometries (S is an isometry if S∗S = id) S1,S2, · · · , Sn
satisfying in the following relations

S∗
1S1 = S∗

2S2 = · · · = S∗
nSn = id,

n∑
i=1

SiS
∗
i = id,

▶ Following the above definition, to a directed graph Γ, one can
associate a C ∗-algebra C ∗(Γ0, Γ1) := C ∗(Γ) by associating to
its set of edges Γ1 a set of partial isometries and to its set of
vertices Γ0 a set of pairwise orthogonal projections (Hilbert
spaces) satisfying in some specific relations, studied first by
Cuntz and Krieger in 1980, as a generalization of the Cuntz
algebras.



Cuntz-Krieger Γ-family and the C ∗-graph algebra

▶ An n × n matrix A will be called a partially isometric matrix
(partial isometry), if AA∗A = A satisfies.

▶ An n × n matrix P will be called an orthogonal projection, if
P simultaneously is Hermitian and idempotent, meaning that
if we have P = P∗ and P2 = P.

▶ A is a partial isometry if and only if A∗ is a partial isometry.

▶ If P is an orthogonal projection, then P is a partial isometry.

▶ Any unitary matrix is a partial isometry, and any invertible
partial isometry is unitary.

▶ A is a partial isometry if and only if A∗A and AA∗ are
orthogonal projections.
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Graph C ∗-algebra of a finite directed graph

▶ For a finite directed graph Γ, and a finite or infinite
dimensional Hilbert space H, the set of mutually orthogonal
projections pv ∈ H for all v ∈ Γ0 together with partial
isometries se ∈ H for all e ∈ Γ1 satisfying the relations

▶ 1. s∗e se = pr(e) for all edges e ∈ Γ1,
2. pv =

∑
s(e)=v ses

∗
e for the case when v ∈ Γ0 is not a sink,

▶ will be called a Cuntz-Krieger Γ-family in C ∗-algebra C,
▶ and we have the following definition:

▶ For finite directed graph Γ = (Γ0, Γ1), the graph C ∗-algebra
C∗(Γ) is the universal C ∗-algebra generated by a
Cuntz-Krieger Γ-family {Pv ,Se}.
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Graph C ∗-algebra of a finite directed graph

▶ Now let us consider those n× n matrices with entries in {0, 1}
by considering

s∗i si =
n∑

j=1

aijsjs
∗
j . (3)

▶ In the literature, in order to define a Cuntz-Krieger algebra
the assumption of working with a nondegenerate matrix
(having no sources and sinks) is assumed essential. But here,
we won’t make any further hypotheses on our matrices, and
we have the following definition

▶ For n × n matrix Π ∈ Mn(0, 1), the Cuntz-Krieger algebra KΠ

will be defined as the (nondegenerate) C ∗-algebra generated
by a universal Cuntz-Krieger Γ-family Si for i ∈ {1, · · · , n}
satisfying in s∗i si =

∑n
j=1 aijsjs

∗
j .
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Graph C ∗-algebra of a finite directed graph

▶ let us recall a very important fact concerning the
Cuntz-Krieger algebras and their relations.

▶ For any finite locally connected (directed) graph
E = (E 0,E 1), it is well known that we have

PvH =
(∑

{e∈E1|r(e)=v} SeS
∗
e

)
H = ⊕{e∈E1|r(e)=v}SeH.

▶ Now let us consider the very initial part of our toy example.
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Graph C ∗-algebra of a finite directed graph
▶ For graph G(Π2) associated with K[Mq(2)], consider its set of

vertices and edges as
G0 = {x11 := u, x12 := v , x22 := k , x21 := w} and
G1 = {x11−→∼x12 := e, x11

−→∼x21 := f , x12
−→∼x22 :=

h, x21
−→∼x22 := g , x12

−→∼x21 := i , x21
−→∼x12 := j}, we have the

following Proposition.

▶ For Π2 as before, and G(Π2) = (G0,G1) the associated
adjacency matrix, and let H := ℓ2(N) be the underlying
infinite dimensional Hilbert space. Then the set

S = {Se :=
∞∑
n=1

E6n,3n−2,Sf :=
∞∑
n=1

E6n−4,3n−2,Sh :=
∞∑
n=1

E6n−3,3n,

Sg :=
∞∑
n=1

E6n−4,3n−1,Si :=
∞∑
n=1

E6n−1,3n,Sj :=
∞∑
n=1

E6n−3,3n−1}

(4)

is a Cuntz-Krieger G-family and gives us a graph C ∗-algebra
structure C∗(Π2).
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Graph C ∗-algebra of a finite directed graph

▶ For graph G(π2) associated with π2, as before consider its set
of vertices and edges as
G0 = {x11 := v1, x12 := v2, x22 := v3, x21 := v4} and
G1 = {x11−→∼x11 := e11, x12

−→∼x21 := e24, x21
−→∼x12 :=

e42, x22
−→∼x22 := e33}, we have the following Proposition.

▶ For G2 := G(π2) = (G0,G1) as above, consider H be the
underlying Hilbert space, that can be finite or infinite. Then
the set

S = {Se11 := E2,1,Se24 := E4,1,

Se42 := E1,4,Se33 := E3,1} (5)

is a Cuntz-Krieger G2-family and gives us a graph C ∗-algebra
structure C∗(π2) := M4(C).
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Multiplier Hopf ∗-graph algebras

▶ As I already said, from the different kind of graph algebras,
the one that we are interested should be nondegenerate, and
the ∗-monoid algebra with an identity element considered by

the graph associated with the matrix π2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and

illustrated above, and extendable to K[Mq(n)] for any n ≥ 2,
by the rule of assigning 1 to the entries located in the (ij)(ji)
position and 0 elsewhere, in the row related to xij , is the one
which we are looking for, and we have the following
proposition.



Multiplier Hopf ∗-graph algebras

▶ For Π, a locally finite connected graph associated with
coordinate algebra K (Mq(n)) with vertex set
{x11, x12, · · · , xij} for i , j ∈ {1, 2, · · · , n} and the index set
I := {11, 12, · · · , ij}, there exists a unique universal
nondegenerate ∗-algebra A generated by elements (uhh′)h,h′∈I ,
satisfying the relations of quantum permutation groups, and a
unique nondegenerate ∗-homomorphism ∆ : A → M(A⊗A)
satisfying ∆(uhh′) =

∑
k∈I (uhk ⊗ ukh′) for all h, h

′ ∈ I , such
that the pair (A,∆) is a multiplier Hopf ∗-algebra in the sense
of Van Daele, and since it admits a positive faithful
left-invariant (resp. right-invariant) functional, it is an
algebraic quantum group in the sense of Van Daele.



Multiplier Hopf ∗-graph algebras

▶ Let us call the algebra structure on the vector space of the
(n2 − 1)-connected locally finite graphs Gi , simply G. This is a
unital ∗-algebra, and in order to have a ∗-multiplier Hopf
algebra, we need to define a map ∆ on G to M(G ⊗ G),
resembling the co-product and satisfying the co-associativity
condition

▶

(πi ⊗ 1⊗ 1)(∆⊗ id)(∆(πj)(1⊗ πk))

=

(id⊗∆)((πi ⊗ 1)∆(πj))(1⊗ 1⊗ πk),
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Multiplier Hopf ∗-graph algebras

▶ in a way that ∆(πi )(1⊗ πj) and (πi ⊗ 1)∆(πj) belong in
G ⊗ G, for any πi , πj , πk ∈ G.

▶ But now the question is that

▶ How can we define such a map for a graph algebra consisting
of graphs?

▶ As the previous constructions suggest, the idea is to
implement the graph C ∗-algebra C ∗(S ,P) associated with
πi s. In this case we will obtain n different multiplier Hopf
∗-graph algebras.
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