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1. Introduction



String theory has provided us with clues to quantum gravity.

When we explore quantum aspects of string theory such as mass renormal-
ization and vacuum shift, we need to go beyond the world-sheet perturbation
theory based on the integration of on-shell vertex operators over the moduli
space of Riemann surfaces.

String field theory provides such a framework.



String field theory may also be useful when we attempt to define string theory
nonperturbatively.

While closed string theory contains quantum gravity, it would not be promis-
ing to use closed string field theory for a nonperturbative definition of closed
string theory.

This is because gauge invariance in the classical theory is anomalous and we
need correction terms at every loop order to recover gauge invariance.



The most promising approach to the nonperturbative definition of closed
string theory would be the AdS/CFT correspondence, but the world-sheet
picture is gone in the strict low-energy limit of the gauge theory on D-branes.

It might be useful to consider the theory on D-branes before taking the low-
energy limit.

We may think that such a theory would be open-closed string field theory,
but my claim is that it can be described by open string field theory with the
source term for gauge-invariant operators.

This seems to be the case at least for the bosonic string as a consequence of
a few nontrivial facts.



1. Unlike closed string field theory, gauge invariance of open bosonic string
field theory is not anomalous, and we do not need correction terms to the
classical action.

2. It is in general difficult to construct gauge-invariant operators in string
field theory, but a class of gauge-invariant operators are constructed in open
bosonic string field theory.

hep-th/0111092, Hashimoto and Itzhaki
hep-th/0111129, Gaiotto, Rastelli, Sen and Zwiebach

We can construct a gauge-invariant operator for each on-shell closed string
state, and peculiarly it is linear in the open string field.



3. Open string field theory with the source term for gauge-invariant operators
can be obtained in a special limit of open-closed string field theory, and it
generates all Feynman diagrams which contain at least one boundary.

hep-th/9202015, Zwiebach

Purely closed-string diagrams without boundaries are not generated, but
their contributions vanish in the low-energy limit we are interested in.



It is crucially important whether or not this scenario can be extended to open
superstring field theory.

The long-standing problem of constructing an action involving the Ramond
sector has been overcome in superstring field theory.

Kunitomo and Okawa, arXiv:1508.00366
Sen, arXiv:1508.05387

While the formulations of open superstring field theory need to be devel-
oped further, we consider that we are in a position to discuss how we use
open superstring field theory to understand the mechanism which realizes
the AdS/CFT correspondence.



So what should we do?

Instead of scattering amplitudes, we should consider correlation functions of
gauge-invariant operators in open string field theory.

We evaluate correlation functions in the 1/N expansion and turn it into the
genus expansion of closed string theory.

This step would be the most difficult part and we need to generalize the
world-sheet derivation of the large N duality of the topological string by
Ooguri and Vafa to the superstring.

hep-th/0205297, Ooguri and Vafa



While string field theory in the classical theory has been useful in describing
nonperturbative physics such as tachyon condensation, now we need to study
quantum aspects of string field theory.

String field theory is a space-time field theory involving infinitely many fields,
and conceptually it is the same as ordinary field theory to some extent.
However, string field theory is highly complicated compared to ordinary field
theory, and we need efficient tools to study quantum aspects of string field
theory.

Homotopy algebras can be useful for this purpose.

We have used homotopy algebras such as A∞ algebras and L∞ algebras in
the construction of gauge-invariant actions of string field theory.

However, we might not have fully appreciated the power of homotopy alge-
bras, and they can be also useful in solving the theory.



Furthermore, the description in terms of homotopy algebras is universal.

Before working on string field theory, we should apply the description in
terms of homotopy algebras to simpler theories to gain insight.

With this motivation, we are currently developing technologies of homotopy
algebras for simpler quantum field theories.



In the first talk, I will explain a formula for correlation functions of scalar field
theories based on A∞ algebras. It was originally proposed in arXiv:2203.05366,
and then it was refined to a form which is analogous to string field the-
ory and extended to Dirac fields in arXiv:2305.11634 with Konosu and in
arXiv:2305.13103 by Konosu.

It was shown in perturbation theory that correlation functions based on this
formula satisfy the Schwinger-Dyson equations.

In the second talk, I will present evidence that the formula based on homotopy
algebras describes nonperturbative correlation functions!
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2. A∞ algebra



Open bosonic string field theory is described in terms of string field, which
is a state of the boundary conformal field theory.

The Hilbert space H can be decomposed based on the ghost number as

H = . . .⊕H−1 ⊕H0 ⊕H1 ⊕H2 ⊕ . . . ,

and the classical action is written in terms of Φ in H1.

Consider an action of the form:

S = − 1

2
⟨Φ, V1(Φ) ⟩ −

g

3
⟨Φ, V2(Φ,Φ) ⟩ −

g2

4
⟨Φ, V3(Φ,Φ,Φ) ⟩+O(g3) ,

where ⟨A1, A2 ⟩ is the BPZ inner product of A1 and A2, Vn is an n-string
product “多弦積,” and g is the string coupling constant.



This action is invariant up to O(g3) under the gauge transformation with the
gauge parameter Λ in H0 given by

δΛΦ = V1(Λ) + g (V2(Φ,Λ)− V2(Λ,Φ) )

+ g2 (V3(Φ,Φ,Λ)− V3(Φ,Λ,Φ) + V3(Λ,Φ,Φ) ) +O(g3)

if the multi-string products satisfy the following relations:

V1(V1(A1)) = 0 ,

V1(V2(A1, A2))− V2(V1(A1), A2)− (−1)A1V2(A1, V1(A2)) = 0 ,

V1(V3(A1, A2, A3)) + V3(V1(A1), A2, A3)

+ (−1)A1V3(A1, V1(A2), A3) + (−1)A1+A2V3(A1, A2, V1(A3))

− V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3)) = 0 .

These relations can be extended to higher orders and called A∞ relations.
(In this talk all the discussions on cyclic properties are omitted.)



Let us simplify the description of A∞ relations in three steps.

Step 1: Degree

We introduce degree defined by

deg(A) = ϵ(A) + 1 mod 2 ,

where ϵ(A) is the Grassmann parity of A, and we define

ω(A1, A2) = (−1)deg(A1)⟨A1, A2 ⟩ ,
M1(A1) = V1(A1) ,

M2(A1, A2) = (−1)deg(A1) V2(A1, A2) ,

M3(A1, A2, A3) = (−1)deg(A2) V3(A1, A2, A3) ,

...



Step 2: Tensor products of H

We denote the tensor product of n copies of H by H⊗n. For an n-string
product Dn(A1, A2, . . . , An) we define a corresponding operator Dn which
maps H⊗n into H by

Dn (A1 ⊗A2 ⊗ . . .⊗An) ≡ Dn(A1, A2, . . . , An) .

We also introduce the vector space for the zero-string space denoted by H⊗0.
It is a one-dimensional vector space given by multiplying a single basis vector
1 by complex numbers. The vector 1 satisfies

1⊗A = A , A⊗ 1 = A

for any string field A.



The A∞ relations are written as

M1M1 = 0 ,

M1M2 +M2 (M1 ⊗ I+ I⊗M1 ) = 0 ,

M1M3 +M3 (M1 ⊗ I⊗ I+ I⊗M1 ⊗ I+ I⊗ I⊗M1 )

+M2 (M2 ⊗ I+ I⊗M2 ) = 0 ,

...

where we denoted the identity map from H to H by I .



Step 3: Coderivations

It is convenient to consider linear operators acting on the vector space TH
defined by

TH = H⊗0 ⊕H⊕H⊗2 ⊕H⊗3 ⊕ . . . .

We denote the projection operator onto H⊗n by πn.

For a map Dn from H⊗n to H, we define an associated operator Dn acting
on TH as follows.

Dn πm = 0 for m < n ,

Dn πn = Dn πn ,

Dn πn+1 = (Dn ⊗ I+ I⊗Dn )πn+1 ,

Dn πn+2 = (Dn ⊗ I⊗ I+ I⊗Dn ⊗ I+ I⊗ I⊗Dn )πn+2 ,

...



An operator acting on TH of this form is called a coderivation.

We define M by
M = M1 +M2 +M3 + . . .

for coderivations Mn associated with Mn. Then the A∞ relations can be
compactly expressed as

M2 = 0 .



When we consider projections onto subspaces of H, homotopy algebras have
turned out to provide useful tools.

• Projection onto on-shell states → on-shell scattering amplitudes
Kajiura, math/0306332

• Projection onto the physical sector
→ mapping between covariant and light-cone string field theories

Erler and Matsunaga, arXiv:2012.09521

• Projection onto the massless sector → the low-energy effective action
Sen, arXiv:1609.00459
Erbin, Maccaferri, Schnabl and Vošmera, arXiv:2006.16270
Koyama, Okawa and Suzuki, arXiv:2006.16710

Let us decompose M as
M = Q+m ,

where Q describes the free theory and m is for interactions. We consider
projections which commute with Q.



We denote the projection operator by P :

P 2 = P , P Q = QP .

We then promote P on H to P on TH as follows:

Pπ0 = π0 ,

Pπ1 = P π1 ,

Pπ2 = (P ⊗ P )π2 ,

Pπ3 = (P ⊗ P ⊗ P )π3 ,

...

The operators Q and P satisfy

P2 = P , QP = PQ .



In the context of the projection onto the massless sector, the propagator h
for massive fields is given by

h =
b0
L0

( I− P ) .

In general we consider h satisfying the following relations:

Qh+ hQ = I− P , hP = 0 , P h = 0 , h2 = 0 .

We then promote h on H to h on TH as follows:

hπ0 = 0 ,

hπ1 = hπ1 ,

hπ2 = (h⊗ P + I⊗ h )π2 ,

hπ3 = (h⊗ P ⊗ P + I⊗ h⊗ P + I⊗ I⊗ h )π3 ,

...



The relations involving Q, P , and h are promoted to the following relations

Qh+ hQ = I−P , hP = 0 , Ph = 0 , h2 = 0 ,

where I is the identity operator on TH.

The important point is that the theory after the projection inherits the A∞
structure from the theory before the projection as follows:

Q+m → PQP+Pm
1

I+ hm
P ,

which is known as the homological perturbation lemma.



On-shell scattering amplitudes at the tree level can be calculated from this
formula with the projection onto on-shell states.

On-shell scattering amplitudes at the loop level can also be calculated by
extending A∞ algebras to quantum A∞ algebras (to be discussed later).

The formula from quantum A∞ algebras has not been explored much.

In addition to scattering amplitudes we are also interested in correlation
functions.



Actually, when actions are written in terms of homotopy algebras, expressions
of on-shell scattering amplitudes are universal for both string field theories
and ordinary field theories.

Let us study scalar field theories in terms of quantum A∞ algebras to gain
insights into quantum aspects of string field theories.

We also find that correlation functions of scalar field theories can also be
described in terms of homotopy algebras.

Okawa, arXiv:2203.05366



3. Formula for correlation functions



Let us consider φ3 theory in d dimensions:

S =

∫
ddx

[
− 1

2
∂µφ(x) ∂

µφ(x)− 1

2
m2 φ(x)2 +

1

6
g φ(x)3

]
.

When we use A∞ algebras to describe theories without gauge symmetries,
we only need two sectors for the vector space H, and in our convention that
is analogous to open string field theory they are denoted by H1 and H2:

H = H1 ⊕H2 .

In my previous paper arXiv:2203.05366, I chose each of H1 and H2 to be the
vector space of functions of x.



In my paper arXiv:2305.11634 with Keisuke Konosu, we denoted the basis
vector of H1 by c(x), where the label x represents coordinates of Minkowski
spacetime in d dimensions, and we define c(x) to be degree even.

The important point is that we do not identify c(x) with the scalar field
which appears in the action. The element Φ of H1 can be expanded as

Φ =

∫
ddxφ(x) c(x) ,

and we identify φ(x) in this expansion with the scalar field which appears in
the action. We define φ(x) to be degree even.



The relation between these two descriptions is analogous to the relation be-
tween wave functions and states in quantum mechanics.

The state |Ψ ⟩ in quantum mechanics can be expanded in terms of position
eigenstates |x ⟩ as

|Ψ ⟩ =
∫
dxψ(x) |x ⟩ ,

and the wave function ψ(x) appears as coefficients in this expansion. The
basis vector c(x) plays the role of |x ⟩ in this analogy.



The two descriptions are not so different when we only consider a single scalar
field φ(x).

However, the description in terms of Φ can be extended to incorporate a
Dirac field Ψα(x) as follows:

Φ =

∫
ddxφ(x) c(x) +

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) ,

where θα(x) and its Dirac adjoint θα(x) are degree-odd basis vectors.

We expect that the description in terms of Φ can be further generalized to
gauge theories including string field theories.



For the vector space H2, we denote the basis vector by d(x), and we define
d(x) to be degree odd. We then define Q by

Qc(x) = (− ∂2 +m2 ) d(x) , Q d(x) = 0 .

The symplectic form ω is defined by(
ω ( c(x1) , c(x2) ) ω ( c(x1) , d(x2) )
ω ( d(x1) , c(x2) ) ω ( d(x1) , d(x2) )

)
=

(
0 δd(x1 − x2)

− δd(x1 − x2) 0

)
.

The cubic interaction can be described by m in the following form:

m ( c (x1)⊗ c (x2) ) = − g

2

∫
ddx δd(x− x1) δ

d(x− x2) d (x) ,

m ( c (x1)⊗ d (x2) ) = 0 , m ( d (x1)⊗ c (x2) ) = 0 , m ( d (x1)⊗ d (x2) ) = 0 .



The A∞ structure of the classical action is described by Q + m. The A∞
relations are trivially satisfied for this theory without gauge symmetries.

When we consider on-shell scattering amplitudes, we use the projection onto
on-shell states. In the case of the projection onto on-shell states, PQP
vanishes and on-shell scattering amplitudes at the tree level can be calculated
from

Pm
1

I+ hm
P .

When we discuss the quantum theory, we need to include counterterms, and
the counterterms are included in m. On-shell scattering amplitudes including
loop diagrams can be calculated from

Pm
1

I+ hm+ iℏhU
P .



The operator U is defined by

U =

∫
ddx c(x)d(x) ,

where c(x) is a degree-even coderivation with π1 c(x) given by

π1 c(x)1 = c(x) , π1 c(x)πn = 0 ,

for n > 0 and d(x) is a degree-odd coderivation with π1 d(x) given by

π1 d(x)1 = d(x) , π1 d(x)πn = 0

for n > 0 . The two coderivations c(x) and d(x) commute so that their order
in U does not matter.



The operator U is normalized such that

(ω ⊗ I ) ( I⊗ U ) = I

is satisfied, where U is a map from H⊗0 to H⊗2 given by

U = π2Uπ0

and ω is a map from H⊗2 to H⊗0 with

ω (Φ1 ⊗ Φ2 ) = ω (Φ1 , Φ2 )1

for Φ1 and Φ2 in H.

A∞ algebras are extended to quantum A∞ algebras in the quantum theory.
The quantum A∞ relations are again trivially satisfied for this theory without
gauge symmetries.



If we recall that the projection onto the massless sector corresponds to inte-
grating out massive fields, carrying out the path integral completely should
correspond to the projection with

P = 0 .

The associated operator P corresponds to the projection onto H⊗0:

P = π0 .

This may result in a trivial theory in the classical case, but it can be nontrivial
for the quantum case and in fact it is exactly what we do when we calculate
correlation functions.



When P = 0, the conditions for h are given by

Qh+ hQ = I , h2 = 0 .

To define the path integral of the free theory in Minkowski space, we use the
iϵ prescription and as a result we obtain the Feynman propagator given by

∆(x− y) =

∫
ddk

(2π)d
eik (x−y)

k2 +m2 − iϵ

As we define correlation functions in Minkowski space as vacuum expectation
values associated with the unique vacuum in the quantum theory, we use the
Feynman propagation to define the operator h as follows:

h c(x) = 0 , h d(x) =

∫
ddy∆(x− y) c(y) .

Since P = 0, the associated operator h is given by

h = hπ1 +

∞∑
n=2

( I⊗(n−1) ⊗ h )πn .



We define f by

f =
1

I+ hm+ iℏhU
,

and we write

Pm
1

I+ hm+ iℏhU
P = Pmf P .

While Pmf P vanishes, f is nonvanishing and this operator plays a central
role in generating Feynman diagrams.

We claim that information on correlation functions is encoded in f 1 associ-
ated with the case where P = 0.



More explicitly, we claim that correlation functions are given by

⟨Φ⊗n ⟩ = πn f 1

with
Φ⊗n = Φ⊗ Φ⊗ . . .⊗ Φ︸ ︷︷ ︸

n

and

f =
1

I+ hm+ iℏhU
.



Since the left-hand side can be expanded as

⟨Φ⊗n ⟩ = ⟨ Φ⊗ Φ⊗ . . .⊗ Φ︸ ︷︷ ︸
n

⟩

=

∫
ddx1d

dx2 . . . d
dxn ⟨φ(x1)φ(x2) . . . φ(xn) ⟩ c(x1)⊗ c(x2)⊗ . . .⊗ c(xn) ,

the formula states that the correlation functions appear as coefficients when
we expand the right-hand side:

πn f 1

=

∫
ddx1d

dx2 . . . d
dxn ⟨φ(x1)φ(x2) . . . φ(xn) ⟩ c(x1)⊗ c(x2)⊗ . . .⊗ c(xn) .



Since
ω ( c(x′) , d(x) ) = δd(x′ − x) ,

the correlation functions ⟨φ(x1)φ(x2) . . . φ(xn) ⟩ can be extracted from ⟨Φ⊗n ⟩
as

⟨φ(x1)φ(x2) . . . φ(xn) ⟩ = ωn ( ⟨Φ⊗n ⟩ , d(x1)⊗ d(x2)⊗ . . .⊗ d(xn) ) ,

where

ωn (Φ1 ⊗ Φ2 ⊗ . . .⊗ Φn , Φ̃1 ⊗ Φ̃2 ⊗ . . .⊗ Φ̃n ) =
n∏

i=1

ω (Φi , Φ̃i ) .

Then the formula can be expressed as

⟨φ(x1)φ(x2) . . . φ(xn) ⟩ = ωn (πn f 1 , d(x1)⊗ d(x2)⊗ . . .⊗ d(xn) ) .



Let us first demonstrate that correlation functions of the free theory are
correctly reproduced. We denote correlation functions of the free theory by
⟨φ(x1)φ(x2) . . . φ(xn) ⟩(0). The two-point function can be calculated from
π2 f 1 :

π2 f 1 = − iℏπ2 hU1 .

The operator U acting on 1 generates the following element of H⊗H:

U1 =

∫
ddx ( c(x)⊗ d(x) + d(x)⊗ c(x) ) .

The action of h on H⊗H is given by

hπ2 = ( I⊗ h )π2 ,

so we have

hU1 =

∫
ddx c(x)⊗ h d(x) .



We thus find

π2 f 1 = − iℏπ2 hU1

= − iℏ
∫
ddx

∫
ddy [ c(x)⊗∆(x− y) c(y) ] ,

and ω2 (π2 f 1 , d(x1)⊗ d(x2) ) is given by

ω2 (π2 f 1 , d(x1)⊗ d(x2) ) = − iℏ∆(x1 − x2 ) .

This correctly reproduces the two-point function of the free theory:

⟨φ(x1)φ(x2) ⟩(0) =
ℏ
i
∆(x1 − x2 ) .



The four-point function can be calculated from π4 f 1 :

π4 f 1 = − ℏ2 π4 hUhU1

= − ℏ2
∫
ddx

∫
ddx′ ( c(x′)⊗ c(x)⊗ h d(x)⊗ h d(x′)

+ c(x)⊗ c(x′)⊗ h d(x)⊗ h d(x′)

+ c(x)⊗ h d(x)⊗ c(x′)⊗ h d(x′) )

= − ℏ2
∫
ddx

∫
ddx′

∫
ddy

∫
ddy′ F (x, y, x′, y′) ,

where

F (x, y, x′, y′) = c(x′)⊗ c(x)⊗∆(x− y) c(y)⊗∆(x′ − y′) c(y′)

+ c(x)⊗ c(x′)⊗∆(x− y) c(y)⊗∆(x′ − y′) c(y′)

+ c(x)⊗∆(x− y) c(y)⊗ c(x′)⊗∆(x′ − y′) c(y′) .



The symplectic form ω4 (π4 f 1 , d(x1)⊗ d(x2)⊗ d(x3)⊗ d(x4) ) is

ω4 (π4 f 1 , d(x1)⊗ d(x2)⊗ d(x3)⊗ d(x4) )

= − ℏ2 [∆(x2 − x3)∆(x1 − x4) + ∆(x1 − x3)∆(x2 − x4)

+ ∆(x1 − x2)∆(x3 − x4) ] ,

so the four-point function is given by

⟨φ(x1)φ(x2)φ(x3)φ(x4) ⟩(0)

= ⟨φ(x2)φ(x3) ⟩(0) ⟨φ(x1)φ(x4) ⟩(0) + ⟨φ(x1)φ(x3) ⟩(0) ⟨φ(x2)φ(x4) ⟩(0)

+ ⟨φ(x1)φ(x2) ⟩(0) ⟨φ(x3)φ(x4) ⟩(0) .

We have thus reproduced Wick’s theorem for four-point functions, and it is
not difficult to extend the analysis to six-point functions and further.



Let us next consider φ3 theory. The action including counterterms is given
by

S =

∫
ddx

[
− 1

2
Zφ ∂µφ(x) ∂

µφ(x)− 1

2
Zmm

2 φ(x)2+
1

6
Zg g φ(x)

3+Y φ(x)

]
,

where Y , Zφ, Zm, and Zg are constants. We expand Y , Zφ, Zm, and Zg in
g as follows:

Y = gℏY (1) +O(g3) ,

Zφ = 1 + g2ℏZ(1)
φ +O(g4) ,

Zm = 1 + g2ℏZ(1)
m +O(g4) ,

Zg = 1 + g2ℏZ(1)
g +O(g4) .

The one-point function is given by

⟨φ(x1) ⟩ = ⟨φ(x1) ⟩(1) +O(g2) ,

⟨φ(x1) ⟩(1) =
gℏ
m2

[
− i

2

∫
ddp

(2π)d
1

p2 +m2 − iϵ
+ Y (1)

]
.



We have reproduced the contribution from the one-loop tadpole diagram:

Note that the correct symmetry factor appeared.

The two-point function is given by

⟨φ(x1)φ(x2) ⟩ = ω2 (π2 f 1 , d(x1)⊗ d(x2) )

= ⟨φ(x1)φ(x2) ⟩(0) + ⟨φ(x1)φ(x2) ⟩(1)C

+ ⟨φ(x1) ⟩(1) ⟨φ(x2) ⟩(1) +O(g3) .



The connected part is given by

⟨φ(x1)φ(x2) ⟩(1)C

= ig2ℏ2
∫

ddp

(2π)d
e−ip (x1−x2)

( p2 +m2 − iϵ )2

×
[
i

2

∫
ddℓ

(2π)d
1

(ℓ+ p)2 +m2 − iϵ

1

ℓ2 +m2 − iϵ
+ Z(1)

φ p2 + Z(1)
m m2

]
− ig2ℏ2

∫
ddp

(2π)d
e−ip (x1−x2)

m2 ( p2 +m2 − iϵ )2

[
− i

2

∫
ddℓ

(2π)d
1

ℓ2 +m2 − iϵ
+ Y (1)

]
.



Through the process of renormalization, we found the description of the 1PI
effective action in terms of A∞ algebras.

Okawa and Shibuya, in preparation

We can show that correlation functions from our formula satisfy the Schwinger-
Dyson equations as an immediate consequence of the structure

( I+ hm+ iℏhU )
1

I+ hm+ iℏhU
1 = 1 .

We can extend the proof to correlation functions involving Dirac fields.
Konosu and Okawa, arXiv:2305.11634
Konosu, arXiv:2305.13103



4. Renormalization group



The construction of h from h is not unique. In addition to P for P = 0, let
us introduce PΛ for the projection onto modes below the energy scale Λ, and
use h given by

h = hH + hL ,

where the propagator hH for high-energy modes satisfy

QhH + hH Q = I−PΛ , hH PΛ = 0 , PΛ hH = 0 , h2
H = 0

and the propagator hL for low-energy modes satisfy

QhL +hLQ = PΛ −P , hL ( I−PΛ ) = 0 , ( I−PΛ )hL = 0 , h2
L = 0 .



Then we can write f P as

1

I+ hm+ iℏhU
P

=
1

I+ hH m+ iℏhH U

(
I+ hL (m+ iℏU )

1

I+ hH m+ iℏhH U

)−1

P

=
1

I+ hH m+ iℏhH U
PΛ

1

I+ hLmΛ + iℏhLU
P ,

where

mΛ = PΛ

[
(m+ iℏU )

1

I+ hH m+ iℏhH U
− iℏU

]
PΛ .

The operator mΛ describes the Wilsonian effective action at the energy scale
Λ, and correlation functions are calculated from a product of the operator
for high-energy modes and the operator for low-energy modes.



We can further introduce a sequence of projections and write f P as

1

I+ hm+ iℏhU
P =

∏
i

1

I+ himi + iℏhiU
Pi

with
h =

∑
i

hi .



5. Summary



We proposed the formula for correlation functions using A∞ algebras:

⟨Φ⊗n ⟩ = πn f 1 ,

where

f =
1

I+ hm+ iℏhU
.

For a scalar field φ(x), Φ is given by

Φ =

∫
ddxφ(x) c(x) .

For a Dirac field Ψ(x), Φ is given by

Φ =

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) .

We proved that correlation functions from our formula satisfy the Schwinger-
Dyson equations as an immediate consequence of the structure

( I+ hm+ iℏhU )
1

I+ hm+ iℏhU
1 = 1 .



Our ultimate goal is to provide a framework to prove the AdS/CFT corre-
spondence using open string field theory with source terms for gauge-invariant
operators. The quantum treatment of open string field theory must be cru-
cial for this program, and we hope that quantum A∞ algebras will provide
us with powerful tools in this endeavor.

Future directions

• 1PI effective action

• LSZ reduction formula

• duality


