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1. Introduction



In the first talk, I explained the formula for correlation functions using A∞
algebras:

⟨Φ⊗n ⟩ = πn f 1 ,

where

f =
1

I+ hm+ iℏhU
.

For a scalar field φ(x), Φ is given by

Φ =

∫
ddxφ(x) c(x) .

For a Dirac field Ψ(x), Φ is given by

Φ =

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) .



It was shown in perturbation theory that correlation functions based on this
formula satisfy the Schwinger-Dyson equations when the inverse of the oper-
ator I+ hm+ iℏhU is defined by

1

I+ hm+ iℏhU
= I+

∞∑
n=1

(−1)n (hm+ iℏhU)n .

It is possible, however, that the inverse of the operator I+hm+iℏhU exists
for finite coupling constants, and in that case our formula may be regarded
as a nonperturbative definition of correlation functions for finite coupling
constants.

In the second talk, we present evidence that this is indeed the case for scalar
field theories in zero dimensions.



The plan of the talk
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2. Scalar field theories in zero dimensions



In the Euclidean case, we consider the action S given by

S =
1

2
m2 φ2 +

1

3
g φ3 +

1

4
λφ4 .

In the path integral formalism, the partition function Z is given by

Z =

∫ ∞

−∞
dφ e−

S
ℏ ,

and the correlation functions ⟨φn ⟩ are given by

⟨φn ⟩ = 1

Z

∫ ∞

−∞
dφφn e−

S
ℏ .



In the Lorentzian case, the action differs by a sign and is given by

S = − 1

2
m2 φ2 − 1

3
g φ3 − 1

4
λφ4 .

The partition function Z is defined by

Z = lim
ϵ→0

∫ ∞

−∞
dφ e

i
ℏSϵ

with

Sϵ = − 1

2
(m2 − iϵ )φ2 − 1

3
g φ3 − 1

4
λφ4 .

Correlation functions ⟨φn ⟩ are similarly defined by

⟨φn ⟩ = 1

Z
lim
ϵ→0

∫ ∞

−∞
dφφn e

i
ℏSϵ .



In the description in terms of quantum A∞ algebras, degrees of freedom are
described by a vector space which we call H.

For theories without gauge symmetries,

H = H1 ⊕H2 .

For gauge theories,

H = H0 ⊕H1 ⊕H2 ⊕H3 .

For string field theories,

H = . . .⊕H−1 ⊕H0 ⊕H1 ⊕H2 ⊕H3 ⊕H4 ⊕ . . . .



The action is described by Φ in H1.

For scalar field theories,

Φ =

∫
ddxφ(x) c(x) .

(
analogous to |Ψ ⟩ =

∫
dxψ(x) |x ⟩

)
For theories with a scalar field and a Dirac field,

Φ =

∫
ddxφ(x) c(x) +

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) .

For string field theories,

Φ =

∫
d26k

(2π)26

[
T (k) c1 | 0; k ⟩+Aµ(k) c1 α

µ
−1 | 0; k ⟩ + . . .

]
.



In the case of scalar field theories in zero dimensions, the vector space H1 is
a one-dimensional vector space, and we denote its single basis vector by c.
We expand Φ in H1 as

Φ = φ c .

The vector space H2 is also a one-dimensional vector space, and we denote
its single basis vector by d.

We define the symplectic form ω which is a map from H ⊗H to a complex
number. In the case of scalar field theories in zero dimensions, we define ω
by (

ω ( c , c ) ω ( c , d )
ω ( d , c ) ω ( d , d )

)
=

(
0 1
− 1 0

)
.



The action described by an A∞ algebra takes a universal form.

In the Euclidean case, the action S is written as

S =
1

2
ω (Φ, QΦ) +

∞∑
n=2

1

n+ 1
ω (Φ ,mn (Φ⊗ . . .⊗ Φ) ) .

In the Lorentzian case, the action S is written as

S = − 1

2
ω (Φ, QΦ)−

∞∑
n=2

1

n+ 1
ω (Φ ,mn (Φ⊗ . . .⊗ Φ) ) .



The kinetic term is described by Q which is a linear map from H to H, and
the cubic interactions are described by m2 which is a linear map from H⊗H
to H. Similarly, the interactions involving n + 1 fields are described by mn

which is a linear from H⊗n to H, where

H⊗n = H⊗H⊗ . . .⊗H︸ ︷︷ ︸
n

.

For the scalar field theory in zero dimensions, we define Q by

Qc = m2 d , Qd = 0 ,

and we define m2 by

m2 ( c⊗ c ) = g d , m2 ( c⊗ d ) = 0 , m2 ( d⊗ c ) = 0 , m2 ( d⊗ d ) = 0 .

Similarly, we define m3 to be nonvanishing only when it acts on c⊗ c⊗ c and
is given by

m3 ( c⊗ c⊗ c ) = λ d .

Since the action is quartic, we take mn to vanish for n > 3 .



It is convenient to consider linear operators acting on the vector space TH
defined by

TH = H⊗0 ⊕H⊕H⊗2 ⊕H⊗3 ⊕ . . . ,

where we also introduced the vector space H⊗0. It is a one-dimensional vector
space given by multiplying a single basis vector 1 by complex numbers. The
vector 1 satisfies

1⊗ Φ = Φ , Φ⊗ 1 = Φ

for any Φ in H.

We denote the projection operator onto H⊗n by πn.



For a map Dn from H⊗n to H with n = 0, 1, 2, . . ., we define an associated
operator Dn acting on TH as follows:

Dn πm = 0 for m < n ,

Dn πn = Dn πn ,

Dn πn+1 = (Dn ⊗ I+ I⊗Dn )πn+1 ,

Dn πn+2 = (Dn ⊗ I⊗ I+ I⊗Dn ⊗ I+ I⊗ I⊗Dn )πn+2 ,

...

Here and in what follows we denote the identity operator on H by I.

An operator acting on TH of this form is called a coderivation.



In this talk, we often introduce a coderivation Φ associated with Φ in H. It
is defined by

Φ1 = Φ ,

Φπ1 = (Φ⊗ I+ I⊗ Φ)π1 ,

Φπ2 = (Φ⊗ I⊗ I+ I⊗ Φ⊗ I+ I⊗ I⊗ Φ)π2 ,

...



We define the coderivation Q associated with Q and the coderivation mn

associated with mn for each n. We then define m by

m =

∞∑
n=2

mn ,

and we define M by
M = Q+m .

When we consider gauge theories, the action described by the coderivation
M is gauge invariant if M satisfies

M2 = 0 .



When we consider projections onto subspaces of H, homotopy algebras have
turned out to provide useful tools.

We consider projections which commute with Q, and we denote the projection
operator by P :

P 2 = P , P Q = QP .

We then promote P on H to P on TH as follows:

Pπ0 = π0 ,

Pπ1 = P π1 ,

Pπ2 = (P ⊗ P )π2 ,

Pπ3 = (P ⊗ P ⊗ P )π3 ,

...

The operators Q and P satisfy

P2 = P , QP = PQ .



A key ingredient is an operator h satisfying

Qh+ hQ = I− P , hP = 0 , P h = 0 , h2 = 0 .

It is called a contracting homotopy, and physically it describes propagators
associated with degrees of freedom which are integrated out.

We then promote h on H to h on TH as follows:

hπ0 = 0 ,

hπ1 = hπ1 ,

hπ2 = (h⊗ P + I⊗ h )π2 ,

hπ3 = (h⊗ P ⊗ P + I⊗ h⊗ P + I⊗ I⊗ h )π3 ,

...



The relations involving Q, P , and h are promoted to the following relations

Qh+ hQ = I−P , hP = 0 , Ph = 0 , h2 = 0 ,

where I is the identity operator on TH.



When we consider correlation functions, we carry out the path integral
completely. This should correspond to the projection with

P = 0 .

The associated operator P corresponds to the projection onto H⊗0:

P = π0 .

When P = 0, the conditions for h are given by

Qh+ hQ = I , h2 = 0 .

In the case of scalar field theories in zero dimensions, h is given by

h d =
1

m2
c , h c = 0 .

The associated operator h is given by

h = hπ1 +

∞∑
n=2

( I⊗(n−1) ⊗ h )πn .



We claim that correlation functions are given by

⟨Φ⊗n ⟩ = πn f 1

with
Φ⊗n = Φ⊗ Φ⊗ . . .⊗ Φ︸ ︷︷ ︸

n

,

where f for Lorentzian theories is

f =
1

I+ hm+ iℏhU

and f for Euclidean theories is

f =
1

I+ hm− ℏhU
.

In the case of scalar field theories in zero dimensions, the operator U is
defined by

U = cd ,

where c and d are coderivations associated with c and d, respectively.



The correlation functions for scalar field theories in d dimensions can be
extracted by expanding ⟨Φ⊗n ⟩ as

⟨Φ⊗n ⟩ = ⟨ Φ⊗ Φ⊗ . . .⊗ Φ︸ ︷︷ ︸
n

⟩

=

∫
ddx1d

dx2 . . . d
dxn ⟨φ(x1)φ(x2) . . . φ(xn) ⟩ c(x1)⊗ c(x2)⊗ . . .⊗ c(xn) .

For scalar field theories in zero dimensions, this simplifies as follows:

⟨Φ⊗n ⟩ = ⟨φn ⟩ c⊗ c⊗ . . .⊗ c︸ ︷︷ ︸
n

.

We can show that correlation functions from our formula satisfy the Schwinger-
Dyson equations as an immediate consequence of the structure

( I+ hm+ iℏhU )
1

I+ hm+ iℏhU
1 = 1 .



The operator f

f =
1

I+ hm+ iℏhU
or

f =
1

I+ hm− ℏhU

is a linear map from TH1 to TH1, where TH1 is defined by

TH1 = H⊗0 ⊕H1 ⊕H⊗2
1 ⊕H⊗3

1 ⊕ . . .

with
H⊗n

1 = H1 ⊗H1 ⊗ . . .⊗H1︸ ︷︷ ︸
n

for n > 0.



For scalar field theories in zero dimensions, a linear map A from TH1 to TH1

with

A1 = A00 1+A01 c+A02 c⊗ c+A03 c⊗ c⊗ c+ . . . ,

A c = A10 1+A11 c+A12 c⊗ c+A13 c⊗ c⊗ c+ . . . ,

A c⊗ c = A20 1+A21 c+A22 c⊗ c+A23 c⊗ c⊗ c+ . . . ,

A c⊗ c⊗ c = A30 1+A31 c+A32 c⊗ c+A33 c⊗ c⊗ c+ . . . ,

...

is represented in the matrix form as

A =


A00 A01 A02 A03 . . .
A10 A11 A12 A13 . . .
A20 A21 A22 A23 . . .
A30 A31 A32 A33 . . .
...

...
...

...
. . .

 .

Therefore, the formula can be expressed as

⟨φn ⟩ = fn0 .



In the matrix form, the operators hm2, hm3 and hU are given by

hm2 =
g

m2



0 0 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
0 0 0 0 0 1 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


, hm3 =

λ

m2



0 0 0 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
0 0 0 0 0 1 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


,

hU =
1

m2



0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
0 0 3 0 0 0 . . .
0 0 0 4 0 0 . . .
...

...
...

...
...

...
. . .


.



We set g = 0 and let us consider φ4 theory in the Euclidean case. We first
verify that f20 reproduces ⟨φ2 ⟩ in perturbation theory. The action S is

S =
1

2
m2 φ2 +

1

4
λφ4 ,

and we further set m2 = 1 and ℏ = 1.

The two-point function ⟨φ2 ⟩ in the path integral formalism is given by

⟨φ2 ⟩ = 1− 3λ+ 24λ2 − 297λ3 + 4896λ4 − 100278λ5 + 2450304λ6

− 69533397λ7 + 2247492096λ8 +O(λ9) .



In perturbation theory, f is defined by

f =
1

I+ hm3 − ℏhU
= I+

∞∑
n=1

(−1)n (hm3 − ℏhU )n .

We calculate f20 to find

f20 = 1− 3λ+ 24λ2 − 297λ3 + 4896λ4 − 100278λ5 + 2450304λ6

− 69533397λ7 + 2247492096λ8 +O(λ9) .

This correctly produces the perturbative expansion of ⟨φ2 ⟩.



0.030 0.032 0.034 0.036 0.038 0.040 0.042 0.044
λ

0.905

0.910

0.915

0.920

0.925

0.930

0.935

exact values

1-loop

2-loop

4-loop

8-loop



It is possible that the inverse of the operator I + hm3 − ℏhU exists non-
perturbatively for finite values of λ. When m = 1 and ℏ = 1, we have

I+ hm3 − ℏhU =



1 0 0 0 0 0 . . .
0 1 0 λ 0 0 . . .
−1 0 1 0 λ 0 . . .
0 −2 0 1 0 λ . . .
0 0 −3 0 1 0 . . .
0 0 0 −4 0 1 . . .
...

...
...

...
...

...
. . .


,

f =
1

I+ hm3 − ℏhU
=



f00 f01 f02 f03 f04 f05 . . .
f10 f11 f12 f13 f14 f15 . . .
f20 f21 f22 f23 f24 f25 . . .
f30 f31 f32 f33 f34 f35 . . .
f40 f41 f42 f43 f44 f45 . . .
f50 f51 f52 f53 f54 f55 . . .
...

...
...

...
...

...
. . .


.



Let us evaluate the inverse of I+hm3 − ℏhU by truncation to an N by N
matrix. When N = 25, f20 and f40 are

f20 =
1 + 140λ+ 6660λ2 + 129360λ3 + 957075λ4 + 1853460λ5

1 + 143λ+ 7065λ2 + 147420λ3 + 1267350λ4 + 3615885λ5 + 1514205λ6
,

f40 =
3 + 405λ+ 18060λ2 + 310275λ3 + 1762425λ4 + 1514205λ5

1 + 143λ+ 7065λ2 + 147420λ3 + 1267350λ4 + 3615885λ5 + 1514205λ6
.

For λ = 0.04, we find

⟨φ2 ⟩ ≃ 0.90653672 ,

f20 ≃ 0.90653666

and

⟨φ4 ⟩ ≃ 2.3365819 ,

f40 ≃ 2.3365834 .



⟨φ2 ⟩ λ = 0.04 λ = 0.2 λ = 1.5 λ = 3

exact 0.9065367244 0.7240590202 0.4066915207 0.3130156270

N λ = 0.04 λ = 0.2 λ = 1.5 λ = 3

10 0.9059745348 0.7024793388 0.2685512367 0.1574468085

25 0.9065366639 0.7237546945 0.3751623774 0.2543859219

50 0.9065367244 0.7240552164 0.4002397294 0.2932452874

100 0.9065367244 0.7240590258 0.4072861268 0.3167705780

⟨φ4 ⟩ λ = 0.04 λ = 0.2 λ = 1.5 λ = 3

exact 2.336581891 1.379704899 0.3955389862 0.2289947910

N λ = 0.04 λ = 0.2 λ = 1.5 λ = 3

10 2.350636631 1.487603306 0.4876325088 0.2808510638

25 2.336583402 1.381226527 0.4165584151 0.2485380260

50 2.336581891 1.379723918 0.3998401804 0.2355849042

100 2.336581891 1.379704871 0.3951425821 0.2277431407



Let us next consider the Lorentzian case. We set g = 0 and consider φ4 the-
ory. The formula for correlation functions in the Lorentzian case is

⟨φn ⟩ = fn0 ,

where

f =
1

I+ hm+ iℏhU
.

When m = 1 and ℏ = 1, the matrix form of I+ hm3 + iℏhU is

I+ hm3 + iℏhU =



1 0 0 0 0 0 . . .
0 1 0 λ 0 0 . . .
i 0 1 0 λ 0 . . .
0 2i 0 1 0 λ . . .
0 0 3i 0 1 0 . . .
0 0 0 4i 0 1 . . .
...

...
...

...
...

...
. . .


.



When N = 25, f20 and f40 are

f20 =
−i− 140λ+ 6660iλ2 + 129360λ3 − 957075iλ4 − 1853460λ5

1− 143iλ− 7065λ2 + 147420iλ3 + 1267350λ4 − 3615885iλ5 − 1514205λ6
,

f40 =
−3 + 405iλ+ 18060λ2 − 310275iλ3 − 1762425λ4 + 1514205iλ5

1− 143iλ− 7065λ2 + 147420iλ3 + 1267350λ4 − 3615885iλ5 − 1514205λ6
.

For λ = 0.04, we find

⟨φ2 ⟩ ≃ 0.1065670− 0.969384893i ,

f20 ≃ 0.1065659− 0.969384873i

and

⟨φ4 ⟩ ≃ −2.6641739− 0.7653777i ,

f40 ≃ −2.6641477− 0.7653782i .



⟨φ2 ⟩ λ = 0.04 λ = 0.5

exact 0.106567− 0.969385i 0.280132− 0.576152i

N λ = 0.04 λ = 0.5

10 0.105205− 0.969450i 0.444071− 0.548360i

25 0.106566− 0.969385i 0.274637− 0.597967i

50 0.106567− 0.969385i 0.277626− 0.574320i

100 0.106567− 0.969385i 0.279980− 0.576085i

⟨φ4 ⟩ λ = 0.04 λ = 0.5

exact −2.66417− 0.76538i −0.560264− 0.847696i

N λ = 0.04 λ = 0.5

10 −2.63013− 0.76374i −0.888141− 0.903280i

25 −2.66415− 0.76538i −0.549273− 0.804066i

50 −2.66417− 0.76538i −0.555251− 0.851360i

100 −2.66417− 0.76538i −0.559961− 0.847830i



We have presented evidence that our formula contains nonperturbative in-
formation.

Our formula, however, requires us to choose a free part of the action.

• This is not satisfactory for a nonperturbative definition of correlation
functions.

• This also raises the question of background independence.



3. Perturbation theory around a nontrivial solution



Let us consider perturbation theory around a nontrivial solution. Consider
the following action:

S = − 1

2
m2 φ2 +

(a+ b)m2

3ab
φ3 − m2

4ab
φ4

with 0 < b < a. The equation of motion is given by

m2

ab
φ (φ− b) (φ− a) = 0 ,

and the solutions are
φ = 0 , b , a .



Let us consider perturbation theory around the nontrivial solution φ = a. In
quantum field theory, we know what to do. We expand φ as

φ = a+ φ̃ ,

and the action in terms of φ̃ is

S = − a2 (2b− a)m2

12b
− (a− b)m2

2b
φ̃ 2 − (2a− b)m2

3ab
φ̃ 3 − m2

4ab
φ̃ 4 .

We then calculate ⟨ φ̃n ⟩, and ⟨φn ⟩ is given by

⟨φn ⟩ = ⟨ ( a+ φ̃ )n ⟩ =
n∑

m=0

n!

m! (n−m)!
an−m ⟨ φ̃m ⟩ .



Let us describe this procedure in terms of A∞ algebras. We first need to
represent the equations of motion in the language of A∞ algebras. The
equations of motion are usually written as

π1M
1

1− Φ
= 0 ,

where
1

1− Φ
=

∞∑
n=0

Φ⊗n = 1+Φ+Φ⊗ Φ+ Φ⊗ Φ⊗ Φ . . .

This can also be written in a form which is more convenient for us. We
introduce the coderivation Φ associated with Φ in H1. We then have

1

1− Φ
= eΦ 1 .

In terms of Φ, the equations of motion are written as

π1M eΦ 1 = 0 .



Suppose that we have a nontrivial solution Φ∗ to the equations of motion.
We denote the corresponding coderivation by Φ∗:

π1M eΦ∗ 1 = 0 .

We expand Φ as
Φ = Φ∗ + Φ̃ ,

and the coderivation M̃ which describes the action in terms of Φ̃ is given by

M̃ = e−Φ∗ M eΦ∗ .

We decompose π1 M̃ as

π1 M̃ = Q̃ π1 +

∞∑
n=2

m̃n πn ,

and we define the coderivation Q̃ associated with Q̃ and the coderivation m̃n

associated with m̃n for each n.



We define m̃ by

m̃ =

∞∑
n=2

m̃n ,

and we define M̃ by
M̃ = Q̃+ m̃ .

We then construct h̃ satisfying

Q̃ h̃+ h̃ Q̃ = I , h̃2 = 0 ,

and h̃ satisfying

Q̃ h̃+ h̃ Q̃ = I−P , h̃P = 0 , P h̃ = 0 , h̃2 = 0

with
P = π0 .



The formula for the correlation functions ⟨ Φ̃⊗n ⟩ is given by

⟨ Φ̃⊗n ⟩ = πn
1

I+ h̃ m̃+ iℏ h̃U
1 .

The formula for the correlation functions ⟨Φ⊗n ⟩ for perturbation theory
around the solution Φ∗ can be written using Φ∗ as

⟨Φ⊗n ⟩ = πn e
Φ∗ 1

I+ h̃ m̃+ iℏ h̃U
1 .

Let us define Q∗, m∗ and h∗ by

Q∗ = eΦ∗ Q̃ e−Φ∗ , m∗ = eΦ∗ m̃ e−Φ∗ , h∗ = eΦ∗ h̃ e−Φ∗ .

The formula for ⟨Φ⊗n ⟩ is then

⟨Φ⊗n ⟩ = πn
1

I+ h∗m∗ + iℏh∗U
P1

with
P = eΦ∗π0 .



Since
M̃ = Q̃+ m̃ = e−Φ∗ M eΦ∗ ,

we find
Q∗ +m∗ = M .

Namely, the sum of Q∗ and m∗ is the same as the sum of Q and m, but Q∗
is different from Q:

Q∗ ̸= Q .

Given the action described by M, we are making different choices for the free
part. If we take Q to be the free part, the correlation functions are given by

⟨Φ⊗n ⟩ = πn
1

I+ hm+ iℏhU
1 .

If we take Q∗ to be the free part, the correlation functions are given by

⟨Φ⊗n ⟩ = πn
1

I+ h∗m∗ + iℏh∗U
P1 .



The operator P plays an important role. The equations of motion can be
written in terms of P as

MP = 0

with
P = eΦ π0 ,

where Φ is the coderivation associated with Φ.



4. New formula



Consider the case where the action described by M and the free part we

chose is described by Q. Suppose that we have a solution Φ
(0)
∗ to the free

theory, and we denote the associated coderivation by Φ
(0)
∗ :

QP(0) = 0

with
P(0) = eΦ

(0)
∗ π0 .

We then use h which satisfies

Qh+ hQ = I−P(0) , P(0) h = 0 , hP(0) = 0 , h2 = 0

to describe the correlation functions as follows:

⟨Φ⊗n ⟩ = πn
1

I+ hm+ iℏhU
P(0) 1 .



Let us transform the formula into a form that does not involve the division
of the free part and the interaction part. Since

I+ hm+ iℏhU = ( I+ hm ) ( I+ iℏ
1

I+ hm
hU ) ,

we obtain
1

I+ hm+ iℏhU
=

1

I+ iℏHU

1

I+ hm
,

where

H =
1

I+ hm
h .

The formula for correlation functions is then

⟨Φ⊗n ⟩ = πn
1

I+ iℏHU
P1

with

P =
1

I+ hm
eΦ

(0)
∗ π0 .



What is the interpretation of P when the solution Φ
(0)
∗ does not solve the

nonlinear equations of motion?

First, we can show that P can be written in the form

P = eΦ∗ π0 ,

where Φ∗ is a coderivation associated with Φ∗ in H1.

Second, we can show that
MP = 0 .

Therefore, Φ∗ in H1 solves the nonlinear equations of motion.

For the operator H, we can show that it satisfies

MH+HM = I−P , HP = 0 , PH = 0 , H2 = 0 .



New formula

Let us denote the coderivation that describes the action by M. We choose a
solution Φ∗ to the equations of motion and we denote the associated coderiva-
tion by Φ∗:

MP = 0

with
P = eΦ∗ π0 .

The formula for correlation functions is given by

⟨Φ⊗n ⟩ = πn
1

I+ iℏHU
P1 ,

where H satisfies

MH+HM = I−P , HP = 0 , PH = 0 , H2 = 0 .

This formula does not involve the division of the free part and the interaction
part.



The operator H can be constructed in the following way. We define M̃ by

M̃ = e−Φ∗ M eΦ∗ .

We decompose π1 M̃ as

π1 M̃ = Q̃ π1 +

∞∑
n=2

m̃n πn ,

and we define the coderivation Q̃ associated with Q̃ and the coderivation m̃n

associated with m̃n for each n. We then define m̃ by

m̃ =

∞∑
n=2

m̃n .



We construct h̃ satisfying

Q̃ h̃+ h̃ Q̃ = I , h̃2 = 0 ,

and h̃ satisfying

Q̃ h̃+ h̃ Q̃ = I− π0 , h̃π0 = 0 , π0 h̃ = 0 , h̃2 = 0 .

The operator H is given by

H = eΦ∗ 1

I+ h̃ m̃
h̃ e−Φ∗

The formula for correlation functions is

⟨Φ⊗n ⟩ = πn
1

I+ iℏHU
P1 = πn e

Φ∗ 1

I+ h̃ m̃+ iℏ h̃U
1 .

While the construction of H is perturbative, this does not imply that the
resulting correlation functions are perturbative, as we have demonstrated
earlier.



What does the formula describe?

• It reproduces perturbation theory.

• The solution Φ∗ does not have to be real.

• The Schwinger-Dyson equations are satisfied.

We claim that the formula describes correlation functions on the Lefschetz
thimble associated with the solution.



Lefschetz thimble

Let us replace the real variable φ of the action S by a complex variable z.
Consider a flow z(t) parametrized by t in the complex z plane which satisfies
the downward flow equation:

dz

dt
= i

∂S

∂z̄
,

dz̄

dt
= − i

∂S

∂z
.

Along the flow, the imaginary part of S increases as t increases:

d ImS

dt
=

1

2i

(
dS

dt
− dS

dt

)
=

1

2i

(
∂S

∂z

dz

dt
− ∂S

∂z̄

dz̄

dt

)
=

∣∣∣∣ ∂S∂z
∣∣∣∣2 > 0 .

A Lefschetz thimble associated with a solution z∗ is defined by a submanifold
of the z plane consisting of points that can be reached at any t by a flow that
starts from z∗ at t = −∞.

The path integral on a Lefschetz thimble is well defined.



Let us denote the Lefschetz thimble associated with zi by Ji, where i labels
solutions. In general, the path integral over the real variable φ should be
understood as being defined by the path integral on C given by

C =
∑
i

ni Ji ,

where ni are integers and there is a procedure to determine ni.

Previously, we considered the action

S = − 1

2
m2 φ2 − 1

4
λφ4

in the Lorentzian case.



The solutions to the equation of motion are

φ = 0 ,± im√
λ
.

In this case, only the Lefschetz thimble associated with the trivial solution
φ = 0 contributes.

We will present evidence that supports our claim for more nontrivial cases.



5. Evidence for the claim



Airy function

Consider the action given by

S = − aφ− 1

3
φ3 .

The partition function is given by

Z =

∫ ∞

−∞
dφ e

i
ℏS .

When we set ℏ = 1, this is expressed in terms of the Airy function Ai (a) as
follows:

Z = 2πAi (a) .



The correlation functions are defined by

⟨φn ⟩ = 1

Z

∫ ∞

−∞
dφφn e

i
ℏS .

They are given by

⟨φn ⟩ = ( iℏ )n
1

Z

dnZ

dan
.

The equation of motion is given by

φ2 + a = 0 .



a > 0

When a > 0, the solutions to the equation of motion are

φ = ±i
√
a .



It is known that only the Lefeschetz thimble associated with the solution
φ = − i

√
a contributes in this case. We expand φ as

φ = − i
√
a+ φ̃ .

The action in terms of φ̃ is

S =
2i

3
a3/2 + i

√
a φ̃ 2 − 1

3
φ̃ 3 .

The solution Φ∗ is
Φ∗ = − i

√
a c ,

and the associated coderivation Φ∗ is

Φ∗ 1 = − i
√
a c .



The operators Q̃ and m̃2 are given by

Q̃ c = − 2i
√
a d ,

m̃2 ( c⊗ c ) = d .

The contracting homotopy h̃ is

h̃ d =
i

2
√
a
c .

The formula for correlation functions are

⟨Φ⊗n ⟩ = πn e
Φ∗ f̃ 1 ,

where

f̃ =
1

I+ h̃ m̃2 + iℏ h̃U
.



The n-point functions with n ≤ 3 are given by

⟨φ ⟩ = − i
√
a+ f̃10 ,

⟨φ2 ⟩ = − a− 2i
√
a f̃10 + f̃20 ,

⟨φ3 ⟩ = ia
√
a− 3a f̃10 − 3i

√
a f̃20 + f̃30 .

For a = 1 with N = 50, we find

⟨φ ⟩ ≃ −1.17632196714 i ,

− i
√
a+ f̃10 ≃ −1.17632196731 i .

For a = 2 with N = 50, we find

⟨φ ⟩ ≃ −1.5201633881848285 i ,

− i
√
a+ f̃10 ≃ −1.5201633881848252 i .



For a = 0.1 with N = 50, we find

⟨φ ⟩ ≃ −0.7811 i ,

− i
√
a+ f̃10 ≃ −0.7822 i .

For a = 0.1 with N = 100, we find

⟨φ ⟩ ≃ −0.781069 i ,

− i
√
a+ f̃10 ≃ −0.781005 i .

For ⟨φ2 ⟩, we have the following exact result:

⟨φ2 ⟩ = − a .

With N = 50, we found

−2i
√
a f̃10 + f̃20 = 0 .

For a = 1 with N = 50, we find

⟨φ3 ⟩ ≃ 0.17632196731 i ,

ia
√
a− 3a f̃10 − 3i

√
a f̃20 + f̃30 ≃ 0.17632196714 i .



a < 0

When a < 0, the solutions to the equation of motion are

φ = ±
√
−a .



It is known that both of the two Lefeschetz thimbles associated with the
solutions φ = −

√
−a and φ =

√
−a contribute in this case.

We denote the partition function associated with the solution φ = −
√
−a

by Z− and the partition function associated with the solution φ =
√
−a by

Z+. We find that

Z− = π (Ai (a) + iBi (a) ) , Z+ = π (Ai (a)− iBi (a) ) .



We denote the n-point function of the theory Z− by ⟨φn ⟩− and the n-point
function of the theory Z+ by ⟨φn ⟩+. The partition function Z of the full
theory is

Z = Z− + Z+ = 2πAi (a) ,

and the n-point function of the full theory ⟨φn ⟩ is given by

⟨φn ⟩ = Z−
Z− + Z+

⟨φn ⟩− +
Z+

Z− + Z+
⟨φn ⟩+ .



The n-point functions with n ≤ 3 are given by

⟨φ ⟩± = ±
√
−a+ f̃10 ,

⟨φ2 ⟩± = − a± 2
√
−a f̃10 + f̃20 ,

⟨φ3 ⟩± = ∓ a
√
−a− 3a f̃10 ± 3

√
−a f̃20 + f̃30 .

For the Lefschetz thimble associated with φ = −
√
−a, we find for a = −1

with N = 50 that

⟨φ ⟩− ≃ −1.06944263 + 0.18869689 i ,

−
√
−a+ f̃10 ≃ −1.06944243 + 0.18869651 i

and

⟨φ3 ⟩− ≃ −1.06944263− 0.81130311 i ,

a
√
−a− 3a f̃10 − 3

√
−a f̃20 + f̃30 ≃ −1.06944243− 0.81130349 i .



For the Lefschetz thimble associated with φ =
√
−a, we find for a = −1 with

N = 50 that

⟨φ ⟩+ ≃ 1.06944263 + 0.18869689 i ,
√
−a+ f̃10 ≃ 1.06944243 + 0.18869651 i

and

⟨φ3 ⟩+ ≃ 1.06944263− 0.81130311 i ,

− a
√
−a− 3a f̃10 + 3

√
−a f̃20 + f̃30 ≃ 1.06944243− 0.81130349 i .



Double well

Consider the action given by

S =
m2

2
φ2 − λ

4
φ4 .

We set m2 = 1. The solutions to the equation of motion are

φ = 0 ,± 1√
λ
.



For the Lefschetz thimble associated with φ = − 1/
√
λ, we find for λ = 1

with N = 30 that

⟨φ ⟩− ≃ −1.204933− 0.26012 i ,

− 1√
λ
+ f̃10 ≃ −1.204981− 0.26008 i

and

⟨φ2 ⟩− ≃ 1.25976 + 0.43764 i ,

− 1

λ
− 2√

λ
f̃10 + f̃20 ≃ 1.25981 + 0.43758 i .



For the Lefschetz thimble associated with φ = 0, we find for λ = 1 with
N = 100 that

⟨φ ⟩0 = 0 ,

f̃10 = 0

and

⟨φ2 ⟩0 ≃ −0.2598 + 0.4376 i ,

f̃20 ≃ −0.2608 + 0.4391 i .



For the Lefschetz thimble associated with φ = 1/
√
λ, we find for λ = 1 with

N = 30 that

⟨φ ⟩+ ≃ 1.204933 + 0.26012 i ,

1√
λ
+ f̃10 ≃ 1.204981 + 0.26008 i

and

⟨φ2 ⟩+ ≃ 1.25976 + 0.43764 i ,

1

λ
+

2√
λ
f̃10 + f̃20 ≃ 1.25981 + 0.43758 i .



The n-point function of the full theory ⟨φn ⟩ is given by

⟨φn ⟩ = Z−
Z− + Z+

⟨φn ⟩− +
Z+

Z− + Z+
⟨φn ⟩+

in the Airy case and by

⟨φn ⟩ = Z−
Z− + Z0 + Z+

⟨φn ⟩− +
Z0

Z− + Z0 + Z+
⟨φn ⟩0

+
Z+

Z− + Z0 + Z+
⟨φn ⟩+

in the double-well case.

We need to know ratios of partition functions on different Lefschetz thimbles.



Consider a pair of actions Si and Sf , and a solution φi to the equation
of motion for Si and a solution φf to the equation of motion of Sf . We
interpolate Si and Sf as S(t) with 0 ≤ t ≤ 1, where

S(0) = Si , S(1) = Sf .

We also interpolate φi and φf as φ(t) with

φ(0) = φi , φ(1) = φf ,

where φ(t) is a solution to the equation of motion for S(t). The partition
function Zi of Si for the Lefschetz thimble associated with φi and the parti-
tion function Zf of Sf for the Lefschetz thimble associated with φf are given
by

Zi =

∫
dφ e

i
ℏ Si , Zf =

∫
dφ e

i
ℏ Sf .

We interpolate Zi and Zf as Z(t):

Z(t) =

∫
dφ e

i
ℏ S(t) .



Since
d

dt
lnZ(t) =

i

ℏ

〈 dS(t)
dt

〉
,

the ratio of the partition functions can be calculated as

Zf

Zi
= exp

[
i

ℏ

∫ 1

0
dt

〈 dS(t)
dt

〉]
.

We can evaluate this using the formula for correlation functions in terms of
A∞ algebras.



6. Conclusions and discussion



For the theory described by the coderivation M, we presented a new form of
the formula for correlation functions associated with a solution Φ∗ described
by the coderivation Φ∗:

⟨Φ⊗n ⟩ = πn
1

I+ iℏHU
P1 ,

where H satisfies

MH+HM = I−P , HP = 0 , PH = 0 , H2 = 0

with
P = eΦ∗ π0 .

This formula does not involve the division of the free part and the interaction
part.



We claim that the formula describes correlation functions on the Lefschetz
thimble associated with the solution, and we presented evidence that the
formula contains nonperturbative information on correlation functions in the
case of scalar field theories in zero dimensions.

We have not found a way to choose appropriate Lefshcetz thimbles in the
language of A∞ algebras.

We have not understood the reason why contributions from different Lef-
schetz thimbles are weighted by partition functions in the language of A∞
algebras.



For theories in d dimensions with d > 0, we can decompose f P as

1

I+ hm+ iℏhU
P =

∏
i

1

I+ himi + iℏhiU
Pi

with
h =

∑
i

hi .

This way we may be able to define correlation functions nonperturbatively.

We then extend our discussion to open superstring field theory, and we may
be able to define string theory nonperturbatively.


