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• Cycles on the graph play an important role in gauge and string 
theory 

‣ Wilson loops in lattice gauge theory: 
 
 
 
 
 

‣ Gauge invariant operators in quiver gauge theory:
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• Cycles on the graph can be counted by a kind of zeta function 

‣ Ihara introduced a Selberg zeta function of p-adic fields (1966) 

‣ Serre pointed out a relation to graph theory (1980) 

‣ Sunada gave a definition of Ihara zeta function for the regular graph and a 
graph theoretical proof for Ihara’s theorem (1986) 

‣ Hashimoto gave a determinant expression by the edge matrix (1990) 

‣ Bass proved Ihara’s theorem via the determinant expression for generic 
graphs (1992) 

‣ Bartholdi introduced two parameter extension of Ihara zeta function 
(1999) 

• Question: Can we utilize the zeta function on the graph (Ihara zeta function) 
for problems on gauge or string theory?
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• Kazakov-Migdal model is defined by unitary matrices  on links 
(edges) and hermite matrices  on sites (vertices) as D-
dimensional lattice gauge theory [Kazakov and Migdal (1992)]: 
 
 

• After eliminating , we get 
 
 
 
where  is a induced action given by 
 
 

Uμ(x)
Φ(x)

Φ(x)

Sind

Kazakov-Migdal Model

S = ∑
x

NTr m2
0Φ(x)2 − ∑

μ=1,2,⋯D

Φ(x)Uμ(x)Φ(x + μ)U†
μ(x)

∫ DUDΦ e−S[U,Φ] ∝ ∫ DU e−Sind[U]

Sind[U] =
1
2

Tr log δx,y − m−2
0 ∑

μ

Uμ(x) ⊗ U†
μ(x)δx+μ,y



• The induced action has the following expansion: 
 
 
 
where 
             : lattice loops 
       : length of the loops 
     : ordered loop product of  (Wilson loop) along  

• It had been expected that the induced action reduces to the Yang-Mills 
action (induced QCD) in the continuum limit, but 

‣  contains “bad” (collapsed) Wilson loops 

‣  does not count the net length of the loop 
e.g.  for 
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• A graph  consists of the vertices  and the edges ;  

• Each edge connects two vertices between  and , 
where ,  

• Graph theory gives a mapping from the graph structure to matrices; 
e.g. double triangle 
 
 
 
 
 
 
 
 
 
 

G V E G = (V, E)

s(e) t(e)
e ∈ E s(e), t(e) ∈ V

Graph Theory
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incidence matrix: 
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Avv′ = { ♯ of edges
connecting v and v′ }

 charge matrix of 
     quiver gauge theory, 
     Dirac operator on the graph, 
     index theorem on the graph 
     [S. Matsuura and KO (2021)]

⇒



• We consider the generalized Kazakov-Migdal model defined on the graph 
 
 
 
where 
         : a set of vertices (sites) of the graph 
         : a set of edges (links) of the graph 
     : a source of the edge  
     : a target of the edge  

• We can also integrate out the scalar field  , then get 
 
 
 
where  is the weighted adjacency matrix 

• For the general couplings, the induced action still generates the “bad” (collapsed) 
Wilson loops, but we will show that they can be removed by a coupling tuning

V
E

s(e) e
t(e) e

Φv

A[U]

Kazakov-Migdal model on the graph

ZgKM = ∫ ∏
v∈V

dΦv∏
e∈E

dUe exp {−βTr ( 1
2 ∑

v∈V

m2
v Φ2

v − q∑
e∈E

Φs(e)UeΦt(e)U†
e )}

ZgKM ∝ ∫ ∏
e∈E

dUe exp {−
1
2

Tr log (m2
v δvv′ ⊗ 1N2 − qA[U])}



• At least, the flat plane can be discretized by using the graphs 
 
 
 
 
 
 
 
 
 

• The continuum limit and emergence of the dimensionality are 
difficult problem

Discretization as the graph

Triangle lattice Square lattice 
(Original KM model) Hexagon lattice



• The Ihara zeta function of the graph  is defined as follows [Ihara (1966)]: 
 
 
 
 
where the product is taken over the prime cycles, which are 

✓  Neither backtracking nor tail (reduced cycle) 

✓  Not written by a power of the reduced cycle (primitive cycle) 

✓  Defined by a equivalence classes (a fixed cyclic ordering)  

• By definition, the Ihara zeta function counts “good” (non-collapsing) cycles only 
 A coefficient of  are a number of the reduced cycles of the total length of   

• Recall that the Riemann zeta function (Euler product) is defined by a infinite product of all prime 
numbers 
 
 
 
 
The graph zeta function is an analogy to this (or Selberg zeta function)

G

C ∼ C′ 

⇒ qk k

Graph Zeta Function

ζG(q) ≡ ∏
[C]: prime cycles

1
1 − qℓ(C)
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p: prime numbers

1
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=
∞
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n=1

1
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×
×
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• A triangle graph is known as a cycle graph  or  quiver diagram (Dynkin 
diagram) 

• We have two prime cycles: 
 
     
     
 
then 
 
     
 
 
 
 
 
 
Easy?  For more general graph, the prime cycles are rather complicated (infinite)

C3
̂A2

[C] = {e1e2e3, e2e3e1, e3e1e2}
[C̄] = {ē3ē2ē1, ē1ē3ē2, ē2ē1ē3}

⇒

Example1: triangle graph
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• For the double triangle (DT) graph, there are infinitely many prime loops 
 
 
 
 
 
 
 
 
 

• Then, the Euler product expression of the graph zeta function becomes the 
infinite product in general 
 

• But we have another determinant (a reciprocal of a polynomial) expression 
of the graph zeta function

Example2: double triangle graph

….

ζDT(q) =
1

(1 − q3)4

1
(1 − q4)2

1
(1 − q6)2

1
(1 − q7)4

⋯



• For a given graph , the Ihara zeta function is given by the 
following determinant formula 
 
 
 
 
where 
     : the number of the vertices 
     : the number of the edges 
       :  identity matrix 
      : the degree matrix (  of the edges attached with the vertex) 
      : the adjacency matrix 
 

G

nV
nE
I nV × nV
D ♯
A

Ihara’s theorem

ζG(q) =
1

(1 − q2)nE−nV det (I − qA + q2 (D − I))

Avv′ = {♯ of edges connecting v and v′ }



• Using an identity for the determinant between vertex and 
edge adjacency matrices, we can show that 
 
 
 
where 
     : the edge adjacency matrix without bumps 
 

• Then, we obtain 

W

A Brief Proof

(1 − q2)nV+nE det (I2nE
− qW) = (1 − q2)2nE det (InV

− qA + q2(D − InV
))

ζG(q) =
1

det (I2nE
− qW)

= exp {
∞

∑
k=1

qk

k
TrWk} =

1

(1 − q2)nE−nV det (InV
− qA + q2(D − InV

))

 forWee′ = 1 e e′ But,  forWeē = 0
e

ē

Hashimoto expression Ihara expression



• For the triangle graph,  and 
 
 
 
then we have 
 
 

• This agrees with the previous simple observation from the 
graph

nV = nE = 3

Example1: triangle graph

D = (
2 0 0
0 2 0
0 0 2), A = (

0 1 1
1 0 1
1 1 0)

ζC3
(q) =

1
det (I − qA − q2 (D − I))

=
1

(1 − q3)2

1

2 3



• For the double triangle (DT) graph, ,  and 
 
 
 
 
 
 
 

• For first few terms, the counting is as follows: 

nV = 4 nE = 5

Example2: double triangle graph

D =

3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

, A =

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

ζDT(q) =
1

(1 − q2) det (I − qA − q2 (D − I ))
=

1
(1 − q4)(1 + q2 − 2q3)(1 − q2 − 2q3)

= 1 + 4q3 + 2q4 + 12q6 + 12q7 + 3q8 + ⋯



• Recall the partition function of the graph Kazakov-Migdal model 
 
 
 
 
 
 
 
where  is a unitary matrix weighted adjacency matrix 

• The determinant looks like the determinant formula of the Ihara 
zeta function. In fact, by setting , we get 
 
 

A[U]

m2
v = 1 + (deg v − 1)q2

Back to the graph Kazakov-Migdal model

ZgKM = ∫ ∏
v∈V

dΦv∏
e∈E

dUe exp −βTr ( 1
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m2
v Φ2

v − q∑
e∈E

Φs(e)UeΦt(e)U†
e )

∝
1

(1 − q2) N2
2 (nE−nV) ∫ ∏

e∈E

dUe exp {−
1
2

Tr log (m2
v δvv′ ⊗ 1N2 − qA[U ])}

= ∫ ∏
e∈E

dUe
1

(1 − q2) N2
2 (nE−nV) det (m2

v I − qA[U ])
1
2

ZgKM ∝ ∫ ∏
e∈E

dUe ζG(q; U)1
2  : the unitary matrix weighted 

   Ihara zeta function
ζG(q; U)



• The unitary matrix weighted adjacency matrix for : 
 
 

• Recalling that the Ihara zeta is a generating function of the multi-
trace Wilson loops, then we obtain 
 
    
    
 
 
 
 
 
where 

U(N)

W ≡ U1U2U3

Example1: triangle graph

ZgKM ∝ ∫ dU1dU2dU3
1

det (I − qA[U ] + q2 (D − I ))
1
2

= ∫ dU1dU2dU3 exp {
∞

∑
k=1

q3k

k
|Tr(U1U2U3)k |2 }

= ∫ dW {1 + |TrW |2 q3 +
1
2 ( |TrW |4 + |TrW2 |2 ) q6 +

1
6 ( |TrW |6 + 3 |TrW |2 |TrW2 |2 + 2 |TrW3 |2 ) q9 + ⋯}

=
N

∏
i=1

1
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0 U1 ⊗ U†

1 U†
3 ⊗ U3
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1 ⊗ U1 0 U2 ⊗ U†

2
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• We can generalize the previous results to cycle graphs (polygons,  quiver diagram) 
 
 
 
 
 
 
 
 
 
 
 

• After integrating over the unitary groups, we obtain 
 
   
 
 

̂An−1

Cycle graph Cn

ZCn
(q) = ZC1

(qn)

=
N

∏
i=1

1
1 − qni

 graphC1

 graphCn



• It is difficult to perform the integral over the unitary matrices in general, but 
the situation becomes simple in the large  limit, thanks to the decomposition 
(clustering) of the vev of the Wilson loops 
 
 
 
 
 
 
 
 
 
 
where  is a set of chiral prime loops (choose a one direction of the loops) 

• The partition function of the graph Kazakov-Migdal model can be written by a 
infinite product of (square roots of) the Ihara zeta functions 

N

Π+

Large  limitN

ZgKM ∝ ∫ ∏
e∈E

dUe exp { ∑
C∈Π+

∞

∑
k=1

qℓ(C)k

k
|TrWC[U ]k |2 }

≡ ⟨ ∏
C∈Π+
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∞

∑
k=1

qℓ(C)k

k
|TrWC[U ]k |2 }⟩

N→∞ ∏
C∈Π+ ⟨exp {

∞

∑
k=1

qℓ(C)k

k
|TrWC[U ]k |2 }⟩

= ∏
C∈Π+

∞

∏
i=1

1
1 − qiℓ(C)

=
∞

∏
i=1

ζG(qi)1
2



• We can perform the  integral by using the Harish-Chandra-Itzykson-Zuber 
integral: 
 
 
 
where  are the eigenvalues and  are the Vandermonde 
determinants of  

• Then we obtain the multi matrix model for  as the partition function of 
the graph Kazakov-Migdal model 
 
 

• We can perform this integral exactly for simpler cases like the cycle graph 
and agrees with the results from the graph zeta function, but it is difficult to 
evaluate for the generic graphs

Ue

ai, bj Δ(a), Δ(b)
A, B

Φv

Duality

∫ dU etTrAUBU† ∝
deti,j etaibj

Δ(a)Δ(b)

ZgKM ∝ ∫ ∏
v∈V

N

∏
i=1

dϕv,i e− 1
2 m2

v ϕ2
v,iΔ(ϕv)2−deg v∏

e∈E

det
i,j

eqϕs(e),iϕt(e), j



• It is known that there is a generalization of the Ihara zeta function, which 
contains one more parameter and counts the number of the bumps too 

 Bartholdi’s zeta function 
 
 
 
 
 
 
where  is cyclic bump count (# of bumps) and  

• A proof is similar to the Ihara zeta function 
 
 
 
where 
 
 

⇒

cbc(C) lim
u→0

ζ′ G(q, u) = ζG(q)

Extension to Bartholdi’s zeta function

ζ′ G(q, u) ≡ ∏
C:primitive (not reduced)

1
1 − ucbc(C)qℓ(C)

=
1

(1 − (1 − u)2q2)nE−nV det (I − qA + (1 − u)q2 (D − (1 − u)I))

ζ′ G(q, u) =
1

det (I − q(W + uJ))
=

1
(1 − (1 − u2)q2)nE−nV det (I − qA + (1 − u)q2(D − (1 − u)I ))

 forWee′ = 1 e e′  forJeē = 1
e

ē



• The mass and coupling of the Kazakov-Migdal model is tuned to be 
 

• Then, the partition function becomes 
 
 
 
 
 
 
 
 
 
 
 
 
where  fC(q, u) = ∑

C̃: reducible to C
ucbc(C̃)q|C̃|

Graph Kazakov-Migdal model with bumps

ZgKM = ∫ ∏
v∈V

dΦv∏
e∈E

dUee−βSgKM

= ( 2π
β )

1
2 nV N2

∫e∈E
dUe

1
det (I − qAU + q2(1 − u)(D − (1 − u)I ))

= ( 2π
β )

1
2 nV N2

(1 − (1 − u)2q2)
1
2 (nE−nV)N2

𝒱G(q, u)N2
2

× ∫e∈E
dUe ∏

C∈Π+

exp {
∞

∑
k=1

1
k

fC(q, u)k TrWC(U )k }

SgKM = Tr { 1
2 ∑

v∈V
(1 − q2(1 − u)2 + q2(1 − u)deg v) Φ2

v − q∑
e∈E

Φs(e)UeΦt(e)U†
e }



•  is the contribution from the collapsed cycle 

• For  , 
 
 
 
 
 
e.g. 
 
 
 
 

𝒱G(q, u)

G = Cn

Contribution from the zero-area Wilson loops 
(collapsed cycles)

𝒱Cn
(q, u) =

1 + (1 − u2)q2 − 1 − 2(1 + u2)q2 + (1 − u2)2q4

2q2

n

Generalized Catalan number

𝒱C1
(q, u) = 1 + u2q2 + (u2 + u4)q4 + (u2 + 3u4 + u6)q6 + ⋯

↔ 1 + TrUU†q2 + (TrUUU†U† + TrUU†UU†)q4

+(TrUUUU†U†U† + TrUU†UUU†U† + TrUUU†UU†U† + TrUUU†U†UU†

+TrUU†UU†UU†)q6 + ⋯



• In the large  limit,  contributes to the free energy at order  
 

• On the other hand, after eliminating  , we obtain the matrix model 
for  

• The exact semi-circle solution for this matrix model [Gross 1992] 
corresponds to the  order contribution to the free energy 

• Thus, we expect that the semi-circle solution of the matrix model at 
large  comes from the zero-area (collapsed) Wilson loops only 

 infinite tension strings [Boulatov 1992] 

• The Wilson loops with the bumps are important to understand the 
relation to the string theory (zigzag symmetry)

N 𝒱G(q, u) N2

Ue
Φv

N2

N
⇒

Comparison with matrix model

ℱgKM ∼ N2 (−
1
nV

log 𝒱G(q, u)) + 𝒪(N )



• We proposed a generalization of the Kazakov-Migdal model on 
the graph, which reproduces the weighted Ihara zeta function 

• The graph Kazakov-Migdal model generates the non-
collapsing Wilson loops, which are countable 

• We can perform the unitary matrix integral exactly in the large 
 limit and the partition function of the graph Kazakov-Migdal 

model is given by the infinite product of the Ihara zeta 
function 

• We expect much more applications of the graph zeta function 
to the counting (index) of the gauge invariant operators (chiral 
rings) in quiver gauge theory

N

Conclusion and Discussions


