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Outline

The talk is outlined as follows:

I A brief introduction to Lagrangian multiform theory - the basic idea, and an
example (of a Lagrangian 2-form strucure) in 1+1 dimension;

I Present the Darboux- Kadomtsev-Petviashvili (KP) system as a generating
system for the entire KP hierarchy, and its Lagrangian 3-form structure;

I Interpretation as a Chern-Simons theory in infinite-dimensional space;

I Comparison with 1+1-dimensional field theories (e.g. 4D Chern-Simons theory).

I will not go into the discrete theory, even though it has been a motivator, and the
discrete systems are present in the background1

1F.W. Nijhoff, Lagrangian multiform structure of discrete and semi-discrete KP systems, in preparation, and
talks given at SIDE14.2 and ICIAM2023.



Why Lagrangian multiform theory?

Key question: How to capture the property of multidimensional consistency (MDC)
within a Lagrange formalism?

Multidimensional consistency: We know that many ”integrable” equations, discrete
and continuous possess the property of multidimenional consistency.

I continuous: commuting flows, higher symmetries & master symmetries,
hierarchies;

I discrete: consistency-around-the-cube, Bäcklund transforms, higher continuous
symmetries, commuting discrete flows

In all these cases we can think of the dependent variable a (possibly vector-valued)
function of many (discrete and continuous) variables

u = u(n1, n2, . . . ; x , t1, t2, . . . )

on which we can impose many equations simultaneously, and it is the compatibility of
those equations that makes the integrability manifest.

Key problem: In a variational approach, the Euler-Lagrange (EL) equations, only
produce one equation per component of the dependent variables; not an entire system
of compatible equations on one and the same dependent variable!
Answer: Lagrangians of an MDC integrable theory must be differential- or difference
forms in space of multi-variables!
Thus, a new variational approach to integrability was initiated by the paper:
• S. Lobb & FWN: Lagrangian multiforms and multidimensional consistency, J. Phys.
A:Math Theor. 42 (2009) 454013



An example of a Lagrangian 2-form
Let us denote u = u(x1, x2, x3), ui = ∂u

∂xi
, uij = ∂2u

∂xi∂xj
, etc.

Consider the Lagrangians (Suris, 2012):

L12 = 1
2
u1u2 − cos u ,

L13 = 1
2
u1u3 + γ

(
1
2
u2

11 − 1
8
u4

1

)
,

L23 = − 1
2
u2u3 + γ

(
1
2
u2

1 cos u + u11(u12 − sin u)
)
.

Then the usual Euler-Lagrange (EL) equations for these three Lagrangians yield
respectively:

δL12

δu
= −u12 + sin u ⇒ u12 = sin u sine-Gordon eq.

δL13

δu
= ∂1

(
−u3 + 1

2
γu3

1 + γu111

) u1=v⇒ v3 = γ(v111 + 3
2
v2v1) mKdV eq

δL23

δu
= u23 − γ

(
1
2
u2

1 sin u + u11 cos u
)

consistency relation .

together with variations w.r.t. ’alien derivatives’:

δL23

δu1
= γ (u1 cos u − u112) = 0 ,

δL23

δu11
= γ(u12 − sin u) = 0 .

In fact,
∂2 (mKdV eq) ⇔ ∂1 (consist rel) ⇔ ∂3 (sG eq)3

This suggest that the Lagrangians are components of a Lagrangian 2-form

L = L12 dx1 ∧ dx2 + L23 dx2 ∧ dx3 + L31 dx3 ∧ dx1 ,

where we set Lji = −Lij .



Closure property and generalised EL eqs

The Lagrangian 2-form L has the following remarkable property:

dL = (∂1L23 + ∂2L31 + ∂3L12) dx1 ∧ dx2 ∧ dx3

= (sin u − u12)
(
u3 − γu111 − 1

2
γu3

1

)
dx1 ∧ dx2 ∧ dx3

which has a ’double zero’ when u satifies the EL equations! Thus we have the

closure property: dL|EL = 0

Action functional:

S[u(x);σ] =

∫
σ

L =

∫
σ

L12 dx1 ∧ dx2 + L23 dx2 ∧ dx3 + L31 dx3 ∧ dx1

is a functional of both the field variables u(x) as well as of the surface in the space of
independent variables σ over which to integrate.
Multiform principle: The action S is critical w.r.t. variations u → u + δu of the fields,
as well as w.r.t. variations σ → σ + δσ of the surfaces of integration.
Generalised EL equations: Considering a closed d-dim surface σ = ∂B for some
d + 1-dimensional volume B, in the language of the differential bi-complex, using
Stokes’ theorem: ∫

B
dL =

∫
σ=∂B

L = S ⇒ δS =

∫
B
δdL = 0

for all volumes B. Hence, we have

generalised EL eqs: δS = 0 ⇔ δdL = 0



Lagrangian multi-form theory (LMFT), provides a variational approach to integrability
in the sense of multidimensional consistency (MDC).
LMFT differs from the conventional variational approach in a number of respects:

I Lagrangians are differential- (or difference) forms (with co-dimension nonzero) in
the space of independent variables;

I the action is a functional of the dependent variables (the ”fields”) as well as of
the surfaces in the space of independent variables;

I the EL equations form a MDC (i.e. integrable) system of equations;

I the critical point of the action, i.e. solutions of a system of generalized EL
equations, the action is independent on local variations of the surface in the
space of multi-variables;

I the Lagrangians are no longer input (from tertiary considerations) but can be
viewed as solutions of the system of generalized EL equations.

This new approach was initiated by the paper:
• S. Lobb & FWN: Lagrangian multiforms and multidimensional consistency, J. Phys.
A:Math Theor. 42 (2009) 454013
Seminal work at TU Berlin (A. Bobenko & Yu. Suris and collabs.) have contributed
to the development of the theory, which was there also called theory of
pluri-Lagrangian systems.
First step to a quantum theory of LMFT, in terms of Feynman propagators, was
undertaken in:
• S. King & FWN: Quantum variational principle and quantum multiform structure:
the case of quadratic Lagrangians, Nucl. Phys. B947 (2019) 114686



Lagrangian 3-form and KP type systems

In the case of three-dimensional equations the relevant variational structure is that of
Lagrangian 3-forms. This includes the Kadomtsev-Petviashvili (KP) type systems and
its generalisations. The generalised Darboux system is in this class as well.

Generalised Darboux system
The original Darboux system2 describes conjugate nets in the theory of orthogonal
curvilinear coordinates. The generalised Darboux system reads

∂Bqr

∂ξp
= BqpBpr ,

∂Brq

∂ξp
= BrpBpq ,

∂Bpr

∂ξq
= BpqBqr ,

∂Brp

∂ξq
= BrqBqp ,

∂Bpq

∂ξr
= BprBrq ,

∂Bqp

∂ξr
= BqrBrp .

where the Bpq , etc., are scalar functions (but can be readily generalised to matrices)
of the independent variables ξp , ξq and ξr , which are continuous variables labelled by
parameters p, q and r respectively (where p 6= q 6= r 6= p).

Remark: The integrability aspects of the Darboux system has been investigated by
many authors mostly in the late 1980s and 1990s (Zakharov, Manakov, Doliwa,
Santini, Konopelchenko and Bogdanov, Martinez-Alonso, etc.)

2G. Darboux, Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux. Ann. Sci. de
l’ÉNS, 2eme série, tome 7 (1878) 275–348.



Multidimensional consistency of the Darboux system

A main feature of the Darboux system is the following.

Proposition: The PDE system (7) for the quantities B·· is multidimensionally
consistent.

The proof is by direct computation, introducing a fourth variable ξs and associated
lattice direction with parameter s, such that the system of independent variables is
extended to include Bps ,Bqs ,Brs and Bsp ,Bsq ,Bsr obeying relations of the form

∂Bps

∂ξq
= BpqBqs ,

∂Bpq

∂ξs
= BpsBsq ,

etc. We then establish by direct computation from the extended system of equations
comprising (7) and the PDEs w.r.t. ξs , the relation

∂

∂ξs

(
∂

∂ξp
Bqr

)
=

∂

∂ξp

(
∂

∂ξs
Bqr

)
,

by direct computation. Similarly all relations obtained from cross-differentiation hold
by the same token.

Remark: The MDC property suggests that here is a Lagrangian multiform structure
behind the Darboux system3.

3FWN, Lagrangian 3-form structure for the Darboux system and the KP hierarchy, ArXiv:2206.14338



Lagrangian 3-form structure for the Darboux system

We now introduce the Lagrangian structure. Let us consider the following Lagrangian
components

Lpqr = 1
2

(
Brq∂ξpBqr − Bqr∂ξpBrq

)
+ 1

2

(
Bqp∂ξrBpq − Bpq∂ξrBqp

)
+ 1

2

(
Bpr∂ξqBrp − Brp∂ξqBpr

)
+ BrpBpqBqr − BrqBqpBpr . (1.1)

Then we have the following main statement

Theorem
The differential of the Lagrangian 3-form

L :=Lpqr dξp ∧ dξq ∧ dξr + Lqrs dξq ∧ dξr ∧ dξs+

+ Lrsp dξr ∧ dξs ∧ dξp + Lspq dξs ∧ dξp ∧ dξq , (1.2)

has a “double zero” on the solutions of the set of generalised Darboux equations (7),
i.e. dL can be written as

dL = Apqrs dξp ∧ dξq ∧ dξr ∧ dξs (1.3)

with the coefficient Apqrs being a sum of products of factors which vanish on solutions
of the EL equations.



Proof.
Computing the the components of the differential dL we obtain

∂ξs Lpqr − ∂ξpLqrs + ∂ξqLrsp − ∂ξr Lspq =

Γs;rqΓp;qr − Γp;rqΓs;qr + Γs;qpΓr ;pq − Γr ;qpΓs;pq

+ Γs;prΓq;rp − Γq;prΓs;rp + Γq;srΓp;rs − Γp;srΓq;rs

+ Γp;sqΓr ;qs − Γr ;sqΓp;qs + Γq;psΓr ;sp − Γr ;psΓq;sp ,

where
Γp;qs = ∂ξpBqs − BqpBps ,

and similarly for the other indices. The set of generalised EL equations in this case are
obtained from δApqrs = 0, repeating the general arguments4, for deriving the EL
equations from the differential of the Lagrangian multiform. Thus, since all the
variations δBpq etc. and their first derivatives, are independent, the coefficients are
precisely all the combinations Γr ;pq , etc. which will have to vanish at the critical point
for the action

S[B(ξ); V ] =

∫
V

L =

∫
W

dL ,

integrated over any arbitrary 3-dimensional closed hypersurfaces V in the multivariable
space of all the ξp ’s, such that V = ∂W .

4Yu. Suris and M. Vermeeren, On the Lagrangian structure of integrable hierarchies, in: Advances in Discrete
Differential Geometry, ed. A. Bobenko, (Springer Verlag, Berlin), pp. 347–378.
D. Sleigh, F.W. Nijhoff and V. Caudrelier, Variational symmetries and Lagrangian multiforms, Lett. Math. Phys.
110 no. 4 (2020) 805–826.



Lax multiplet
The generalised Darboux system of B-equations possesses a Lax multiplet5.

Proposition: The system of B-equations arises as the compatibility conditions for the
linear overdetermined system of the form

∂Φq

∂ξp
= BqpΦp , p 6= q , or

∂Ψr

∂ξp
= ΨpBpr . ∀p 6= r ,

Remark: The Lax multiplets can be obtained from the Darboux system itself, relying
on MDC, by identifying the Lax wave functions Φ = Bpk and Ψ = Blp fixing two
directions in the space of independent variables, ξk and ξl , say (where k and l play
the role of spectral parameters).
Furthermore, Φ and Ψ obey a linear homogeneous set of equations of the form

∂p∂qΦr = (∂p ln Φq)∂qΦr + (∂q ln Φp)∂pΦr ,

∂p∂qΨr = (∂p ln Ψq)∂qΨr + (∂q ln Ψp)∂pΨr .

A corollary to the multiform structure is a Lagrangian description of the Lax pair:
Corollary: The Lagrangian components

Lpq(k) = 1
2

(
Ψq∂ξp Φq − (∂ξp Ψq)Φq

)
− 1

2

(
Ψp∂ξq Φp − (∂ξq Ψp)Φp

)
+ 1

2

(
Bqp∂ξkBpq − Bpq∂ξkBqp

)
+ ΨpBpqΦq −ΨqBqpΦp ,

and the corresponding Lagrangian 3-form, fixing the direction given by xk , reduces to
a 2-form:

L(k) := Lpq(k) dξp ∧ dξq + Lqr(k) dξq ∧ dξr + Lrp(k) dξr ∧ dξp .

5A. Doliwa, On τ -function of conjugate nets, J. of Nonl. Math. Phys. 12 (2004) 244–252.



Discrete Darboux system
A discrete analogue of the Darboux system of orthogonal coordinate systems, foes
back to Bogdanov & Konopelchenko, and Doliwa & Santini. The corresponding
discrete analogue of the generalised Darboux system (7) reads

∆pBqr = BqpTpBpr , ∆pBrq = BrpTpBpq ,

∆qBrp = BrqTqBqp , ∆qBpr = BpqTqBqr ,

∆rBpq = BprTrBrq , ∆rBqp = BqrTrBrp ,

where the difference operator ∆p = Tp − id. This system is related to other
multidimensional lattice systems of matrix KP type (FWN, 1985). Now:
• The above system of difference equations is multidimensionally consistent, and
furthermore, it is consistent with the differential Darboux-KP system.
This can be checked by direct computation.
Similarly to the continuous case we have a Lax system, and its adjoint, given by

∆pΦq = BqpTpΦp , ∆pΨq = ΨpTpBpq ,

and the homogeneous linear difference system for an eigenfunctions Φr , Ψr

respectively,

∆p∆qΦr =
∆p(TqΦq)

TqΦq
∆qΦr +

∆q(TpΦp)

TpΦp
∆pΦr ,

∆p∆qΨr =
∆pΨq

TpΨq
∆q(TpΨr ) +

∆qΨp

TqΨp
∆p(TqΨr ) .

This is the discrete analogue to the Lamé system of equations arising in the theory of
conjugate nets of curvilinear coordinates6.

6G.Lamé, Leçons sur les coordonnées curvilignes et leurs diverses applications,(Mallet–Bachalier, Paris, 1859).



Connection with KP system
To understand the structure of the KP system it is necesary to consider the lattice KP
system 7 and the KP hierarchy 8 as part of one and the same system.
In the direct linearisation (DL) approach to KP, the dynamics is governed by
plane-wave factors which take the form

ρk =

[∏
ν

(pν − k)nν

]
exp

{
kξ −

∑
ν

ξpν
pν − k

}
,

σk′ =

[∏
ν

(pν − k′)−nν

]
exp

{
−k′ξ +

∑
ν

ξpν
pν − k′

}
.

in the construction of the τ -function which obeys the Hirota equation:

(p − q)(TpTqτ)Tr τ + (q − r)(TqTr τ)Tpτ + (r − p)(TrTpτ)Tqτ = 0 ,

Here Tpν (p, q, r being any three of the pν) denotes the elementary shift in the
variable nν associated with pν (which in this context) has the interpretation of a
lattice parameter measuring the grid width in the discrete direction labelled by nν .
The interplay between discrete and continuous variables turns out to be an essential
feature of the structure:

∂τ

∂ξp
= −

(
T−1

p

d

dp
Tp

)
τ := lim

ε→0

T−1
p Tp−ετ − τ

ετ
,

for any of the parameters pν = p.
7Hirota R. 1981 Discrete analogue of a generalized Toda equation. J. Phys. Soc. Japan 50, 3785–3791.

F.W. Nijhoff, H.W. Capel, G.L. Wiersma and G.R.W. Quispel, Bäcklund transformations and three-dimensional
lattice equations,Phys. Lett. 105A (1984) 267–272.

8M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS
Kôkyûroku 439 (1981) 30–46.



τ -function relations

Using the identification between lattice shifts and derivatives, we can perform a limit
r → p on Hirota’s equation and thus obtain the following differential-difference
equation for τ

(p − q)

(
τ Tq

∂τ

∂ξp
− (Tqτ)

∂τ

∂ξp

)
= τ Tqτ − (Tpτ)TqT

−1
p τ .

Furthermore, the τ -function also obeys the differential-difference equation

1 + (p − q)2 ∂
2 ln τ

∂ξp ∂ξq
=

(TpT
−1
q τ)TqT

−1
p τ

τ2
,

which is the bilinear form of the 2D Toda equation (with the discrete variable along
the skew-diagonal lattice direction in the lattice generated by the Tp and Tq shifts).

Miwa variables: The KP hierarchy can be obtained by the expansions9

tj = δj,1ξ +
∑
ν

(
ξpν

pj+1
ν

+
1

j

nν

pjν

)

⇒ Tpν τ = τ

(
{tj +

1

jpjν
}
)

and
∂τ

∂ξpν
=
∞∑
j=1

1

pj+1
ν

∂τ

∂tj
,

where the tj are the usual independent time-variables in the hierarchy.

9T. Miwa, On Hirota’s difference equations. Proc. Japan Acad. (1982) 58A, 9–12.



Identification between KP and Darboux
Consider the quantities10

Sa,b =
T−1
a Tbτ

τ
⇒ Bpq =

σpρqSp,q

q − p
= σpρq

T−1
p Tqτ

(q − p)τ
, (q 6= p) .

The quantities S , as a consequence of the Hirota and the differential-difference
equation, obey the relations11

(p − b)TpSa,b − (p − a)Sa,b = (a− b)Sa,pTpSp,b ,

(p − a)(p − b)
∂Sa,b

∂ξp
= (a− b)

(
Sa,pSp,b − Sa,b

)
.

These relations are compatible for all parameters p and corresponding shifts and
derivatives w.r.t. the corresponding Miwa variables ξp .
Furthermore, the quantity S = Sa,b obeys the following 3-dimensional partial
difference equation

[(p − b)TpTqS − (p − a)TqS] [(q − b)TqTrS − (q − a)TrS]

[(p − b)TpTrS − (p − a)TrS] [(q − b)TpTqS − (q − a)TpS]

×
[(r − b)TpTrS − (r − a)TpS]

[(r − b)TqTrS − (r − a)TqS]
= 1

which is essentially the lattice Schwarzian KP equation12.
10We can also identify Bpp = C∂ξp (ln τ), where C is some constant normalisation factor.
11Similar relations also appeared in:

L. Martinez-Alonso, B. Konopelchenko, The KP Hierarchy in Miwa coordinates, Phys. Lett. A 258 (1999) 272–278;
12I.Ya. Dorfman and F.W. Nijhoff, On a (2+1)-dimensional version of the Krichever-Novikov equation, Phys.

Lett. A 157 (1991) 107–112.



Matrix Darboux system

A matrix generalisation of the Darboux system is given by

∂iGjk = GikJiGji , i 6= j 6= k 6= i .

Here the Gij are N × N matrix functions of dynamical variables

xi = ξ
Ji
li
, xj = ξ

Jj
lj
, xk = ξ

Jk
lk
, . . . , which are labelled by a continuous parameter l· and

also by constant matrices Ji , Jj , Jkwhich commute among themselves13

In fact, , i.e., [Ji , Jj ] = [Jj , Jk ] = [Jk , Ji ] = 0, and we have denoted ∂/∂ξlj =: ∂j , etc.
for the sake of brevity.
The matrices J ’tune’ a hierarchy of associated PDEs.

A Lagrangian for the matrix Darboux system reads14

Lijk = 1
2
tr
{
GijJi (∂kGji )Jj − (∂kGij )JiGjiJj + cycl. (ijk)

}
− tr

{
GijJiGkiJkGjkJj − GjiJjGkjJkGikJi

}
,

which is a matrix generalisation of the Darboux Lagrangian.

13In fact, one can also consider the non-commutative case [Ji , Jj ] = Γkij Jk , in which case we get non-commuting

flows on a loop group, for which a Lagrangian description was proposed, for (1+1)-dimensional hierarchies, recently
in: V. Caudrelier, F.W. Nijhoff, D. Sleigh and M. Vermeeren, Lagrangian multiforms on Lie groups and
noncommuting flows, ArXiv:2204.09663.

14F.W. Nijhoff and J.-M. Maillet, Algebraic Structure of Integrable Systems in D = 2 + 1 and Routes towards
Multidimensional Integrability, in: Nonlinear Evolutions, Proceedings of the IVth NEEDS Conference, Ed. J.J.P.
Léon, (World Scientific, Signapore, 1988); Preprint PAR-LPTHE 87-45, September 1987.



Matrix 3-form structure
The Lagrangian Lijk can be viewed as a components of a Lagrangian 3-form:

L =
∑

i<j<k

Lijk dxi ∧ dxj ∧ dxk ,

which obeys the following property: • The Lagrangian 3-form L has a double zero on
solutions of the set of matrix Darboux equations.
The proof is computational, and in essence similar to the scalar case, (differing only in
the matrix ordering within the trace). Computing the differential of L we get:

dL =
∑
i,j,k,l

Aijkl dxi ∧ dxj ∧ dxk ∧ dxl ,

with

Aijkl = 1
2 tr {Γl ;i,jJiΓk;j,iJj − Γk;i,jJiΓl ;j,iJj

+ Γl ;k,iJkΓj ;i,kJi − Γj ;k,iJkΓl ;i,kJi

Γl ;j,kJjΓi ;k,jJk − Γi ;j,kJjΓl ;k,jJk ± cycl (ijkl)} ,
where the quantities Γ are given by

Γi ;j.k = ∂iGjk − GikJiGji .

The double zero expansion implies that the generalised EL equations arising from
δdL = 0(for all Gij varied independently, for different indices) gives rise to the entire
system of matrix Darboux equations. They yield the critical point of the action

S[G·,·(x); V ] =

∫
V

L ,

as a functional of all the matrix fields G·,· for all hypersurfaces V in the space of
independent variables.



Higher-dimensional Chern-Simons actions
The conventional Chern-Simons theory over a Lie algebra g, with associated gauge
group G , involves a g-valued gauge connection 1-form A, and the associated curvature
2-form,

F = dA + A ∧ A .

Here we consider matrix-valued gauge fields only, where the gauge groups of interest
are the general linear groups, GL(n,R), endowed with the matrix trace Tr, and where
the wedge product A ∧ A is evaluated via the matrix product, and not via the Lie
bracket.
The standard CS Lagrangians in dimensions 3 and 5 read

CS3 = Tr
(
A ∧ dA + 2

3
A ∧ A ∧ A

)
,

CS5 = Tr
(
A ∧ dA ∧ dA + 3

2
A ∧ A ∧ A ∧ dA

+ 3
5
A ∧ A ∧ A ∧ A ∧ A

)
,

and they are defined through the property that

dCS3 = Tr (F ∧ F ) ,

dCS5 = Tr (F ∧ F ∧ F ) .

Remark: Coming from the perspective of the multiform variational principle, we
recognise in the latter relations a similarity between Chern classes and the double,
respectively triple zero conditions for the Euler-Lagrange equations F = 0.
However, the relation F = 0 is too strong for integrability!



General form of (conventional) CS actions
The general higher form of the CS Lagrangians are given by the formula

CS2n+1 = (n + 1)

∫ 1

0
dλTr

(
A ∧ F∧nλ

)
,

where Fλ := λdA + λ2A ∧ A ,

They obey15

dCS2n+1 = Tr
(
F∧(n+1)

)
,

where the latter expressions are 2n + 2-forms, whose variational derivative (using the
multiform EL equations in the language of the variational bi-complex), are given by

δdCS2n+1 = (n + 1)Tr
(
F∧(n) ∧ δF

)
,

which vanishes whenever F = 0. The latter would correspond to the usual variational
equations in conventional CS theory, but in our setting F = 0 is too stringent a
condition. In fact, we will work later with a restricted set of fields, and the
corresponding equations of motion are slightly weaker than the standard
zero-curvature condition.
In all these conventional CS theories, we fix the dimensionality of the
(2n+1)-dimensional manifold M2n+1 over which the Lagrangians are integrated
through

A CS
2n+1 =

∫
M2n+1

CS2n+1 .

15Note that in dimension 1, we have CS1 = Tr(A), with dCS1 = Tr(F ).



Higher Lagrangian Multiforms from CS Lagrangians

In order to make a connection between the CS theory and Lagrangian multiforms we
need to specify the gauge field A as:

B =
∑
k,l∈Z

Bkl dξk Ek,l .

Here for simplicity Bkl := Bpkpl ((ξi )i∈Z).
The Ekl are generators of GL(∞) obeying16: Ek,lEm,n = δl,mEk,n and Tr(Ek,l ) = δk,l .
matrices (Mab)a,b∈Z, indexed by integers, with . Note that
Computing the corresponding curvature FB associated with the gauge field B, we get

FB =
∑

j,k,l∈Z

(
∂ξjBkl − BkjBjl

)
dξj ∧ dξk Ek,l . (1.7)

Note that the coefficients ∂ξjBkl − BkjBjl are exactly of the Darboux form.
Main statement: Computing the corresponding CS action, we get exactly the
Lagrangian 3-form of the Darboux-KP system:

L(3) = CS3(B) =
∑

i,j,k∈Z
L

(3)
ijk dξi ∧ dξj ∧ dξk ,

in which the coefficients L
(3)
ijk = 2

3!
Lpi pjpk of (1.1), including a prefactor for

convenience.

16We can think of this as generating MatZ(C) with (Ekl )ab = δk,aδl,b . The sum in the definition of B being
infinite, can be understood in the ‘completed graded sense’, for the dξk Ek,l are linearly independent, and hence
we never get infinite sums of real numbers.



Double-zero structure

Calculating with the special gauge field B the differential of the Lagrangian 3-form,
we find

dL(3) = Tr(FB ∧ FB) =
∑

j,k,l,m∈Z
all indices different(

∂ξjBkl − BkjBjl

)(
∂ξmBlk − BlmBmk

)
dξj ∧ dξk ∧ dξm ∧ dξl .

In particular, this implies that Tr(FB ∧ FB), has a double zero on the solutions of the
generalised Darboux system in (7), which implies that the latter arises as the EL
equations of the multiform action.

Remark: Note that while Tr(FB ∧ FB) indeed has a double zero on the solutions of
(7), the form FB ∧ FB does not necessarily have such a double zero when (7) holds,
as this would require that the Darboux system also extends to the case that all three
labelled variables are no longer distinct.



Higher CS multiform actions
Following the connection between the conventional higher CS actions and Chern
classes, we can now also postulate higher multiform actions for the Darboux-KP
system. Thus, using the same gauge field B in the higher CS action we obtain the
Lagrangian 5-form

L(5) = Tr
(
B ∧ dB ∧ dB

+ 3
2
B ∧ B ∧ B ∧ dB + 3

5
B ∧ B ∧ B ∧ B ∧ B

)
,

=
∑

j,k,l,m,n∈Z
L

(5)
jklmndξj ∧ dξk ∧ dξl ∧ dξm ∧ dξn ,

with

L
(5)
jklmn = 1

5!

∑
j′,k′,l′,m′,n′∈{j,k,l,m,n}

εj′k′ l′m′n′

[
Bpj′ ,pl′ (∂ξpk′

Bpl′ ,pn′ )(∂ξpm′
Bpn′ ,pj′ )

+ 3
2
Bpj′ ,pk′Bpk′ ,pl′Bpl′ ,pn′ (∂ξpm′

Bpn′ ,pj′ )

+ 3
5
Bpj′ ,pk′Bpk′ ,pl′

Bpl′
,pm′

Bpm′ ,pn′Bpn′ ,pj′

]
,

where εjklmn is the 5-dimensional Levi-Civita symbol.
As a consequence of the construction, the Lagrangian 5-form has the property that

dL(5) = Tr (FB ∧ FB ∧ FB) .

This again leads to the fact that dL(5) has a triple zero on the solutions still of the
same Darboux-KP system, as it has the MDC property! (Again FB ∧ FB ∧ FB does
not necessarily have a triple zero on the solutions of the Darboux-KP system!)



Generating CS multiform Lagrangian
Similarly, all higher Lagrangian multiforms L(2n+1) of odd degree can be constructed in
the same way, leading to the formula:

dL(2n+1) = Tr
(
F∧nB

)
=

∑
j1,l1,j2,l2,...,jn,ln∈Z

(∂ξj1
Bln l1 − Bln j1Bj1 l1 ) (∂ξj2

Bl1 l2 − Bl1j2Bj2 l2 ) . . .

. . . (∂ξjnBl(n−1) ln
− Bl(n−1)jn

Bjn ll )

dξj1 ∧ dξln ∧ dξj2 ∧ dξl1 ∧ . . . ∧ dξjn ∧ dξl(n−1)
,

which has a n-fold zero on the solutions of the generalised Darboux-KP system.
Thus, establishing a hierarchy of Lagrangian multiforms in increasingly higher odd
dimensions, but all associated with the same generalised Darboux-KP system. Their
action functionals are of the form:∫

V2n+1

CS2n+1(B),

for each 2n + 1-dimensional hypersurface V2n+1 embedded in RZ. Thus, we can write
a generating Lagrangian multiform as the formal sum, in powers of a dummy
parameter ~,

S
(∞)
~ [B; V∞] =

∞∑
n=1

~n

n + 1

∫
V2n+1

L(2n+1).

integrated over the disjoint union V∞ = q∞n=1V2n+1 of submanifolds.



Comparison with 4D Chern-Simons theory

In order to depart from the confines of a topological field theory, an action for
1+1-dimensional integrable field theory was proposed by a line of work by Costello et
al., going back to earlier ideas by Nekrassov17

The action functional

S[A] = K

∫
M=Σ×CP1

ω ∧ CS3(A)

extends the usual CS action by integrating over a 4D manifold M with coordinates
(τ, σ, z, z̄), where (τ, σ) are real space-time coordinates and z is a complex spectral
variable. The gauge field is chosen as

A = Aσ dσ + Aτ dτ + Az̄ dz̄ .

(with component Az = 0), and where ω = ϕ(z)dz is a meromorphic 1-form.
In the classical context one obtain two sets of equations of motion as EL equations:

I bulk equations of motion ω ∧ F (A) = 0 ,

I ‘boundary equations’ arising from the contours around singularities (defects) of ω
in CP1: d ω ∧ Tr(A ∧ η) (for all variations η).

The claim is that the possible 4D CS actions generate integrable 1+1- dimensional
field theories, with the gauge field components Aσ and Aτ (up to a gauge) acting as
Lax connections, and indeed possessing a classical r -matrix strcuture for suitable
choices of ω.

17N.A. Nekrassov, Four Dimensional Holomorphic Theories, PhD Thesis, Princeton University, 1996.
K. Costello, E. Witten and M. Yamazaki, Gauge theory and integrability I-II, arXiv:1709.09993; arXiv:1802.01579.



Connection with 1+1-dim. integrable field theories
A generalised N × N matrix Lax system, by ‘compounding’ the usual hierarchy of
integrable time-flows, was derived18 leading to:

∂

∂ξp
Φk =

Rp

p − k
Φk , ∀ p,

where k is a spectral parameter, p and ξp as before, and the matrix coefficients Rp

independent of k. Imposing, this for all p we get the MDC system

∂qRp = ∂pRq , p∂pRq − q∂qRp + [Rq ,Rp ] = 0 , ∀ p 6= q .

(where we abbreviated ∂/∂ξp = ∂p , There are several ways to resolve these relations:

Rp = Jp − ∂pH = p(∂pg)g−1 ,

for some matrices H and g (without label), and where the Jp are commuting constant
matrices. This leads to the equations:

∂p∂qH =
[Jp − ∂pH, Jq − ∂qH]

q − p
,

p∂q
(
(∂pg)g−1

)
= q∂p

(
(∂qg)g−1

)
,

the latter being generalized chiral field equations. Both systems have a Lagrangian
structure:

L = (p−q)
2

tr (∂pH · ∂qH)− 1
2
tr ([Jp ,H]∂qH)

+ 1
2
tr ([Jq ,H]∂pH)− 1

3
tr ([∂pH, ∂qH]H) ,

18F.W. Nijhoff, “Linear integral transformations and hierarchies of integrable nonlinear evolution equations,”
Physica D31 (1988) 339–388.
F.W. Nijhoff, “Integrable hierarchies, Lagrangian structures and noncommuting flows,” in Topics in soliton theory
and exactly solvable nonlinear equations, M. Ablowitz, M. Kruskal & B. Fuchssteiner (Eds), pp. 150–181, (World
Scientific, 1987).



and respectively a special Wess-Zumino-Witten-Novikov type action:

L = tr
(
∂pg · ∂qg−1

)
+

q + p

q − p

∫ 1

0
dt tr

(
[∂pg · g−1, ∂qg · g−1]

dg

dt
· g−1

)
,

(where t is a dummy variable and g = g(t) in the second integrand depends on t, s.t.
g(0) = I (unit matrix), g(1) = g(ξp , ξq). Curiously, a similar prefactor to the
topological term appears in the work on 4D CS theory19.
Remark: For neither Lagrangian (for H and g fields) a Lagrangian 2-form structure
holds, but it was established for the general class of Zakharov-Mikhailov Lagrangians20.
A particular case of this structure is given by the Lagrangian components

Lpq = tr
(
Φ−1

q ∂pΦqJq − Φ−1
p ∂qΦpJp

)
− (tr⊗ tr)rpq (Rp ⊗ Rq) ,

where the classical r matrix appears in the ‘potential term’ of the Lagrangian21.
Hence the Lagrangian 2-form

L =
∑
p,q

Lpqdξp ∧ dξq ,

obeys the closure relation dL = 0 on solutions of the EL equations

∂pRq = ∂qRp =
[Rp ,Rq ]

p − q
,

as a consequence of the classical Yang-Baxter equation.
19F. Delduc, S. Lacroix, M. Magro, and B. Vicedo, “A unifying 2d action for integrable -models from 4d

Chern-Simons theory,” arXiv:1909.13824.

K. Costello and M. Yamazaki, “Gauge Theory And Integrability, III,” arXiv:1908.02289
20D. Sleigh, FWN & V. Caudrelier, A variational approach to Lax representations, J. Geom, Phys. 142 (2019)

66–79
21V. Caudrelier, M. Stoppato & B. Vicedo, Classical Yang-Baxter equation, Lagrangian multiforms and ultralocal

integrable hierarchies, arXiv:2201.08286



Discussion

Here some points:

I Lagrangian multiform structures seem to form a universal aspect of integrability
as it represents the phenomenon of MDC at the variational level;

I Establishing a Lagrangian 3-form structure for the Darboux-KP system seems the
most promising route to attain a quantum theory of the KP system;

I The connection with a CS theory in infinite-dimensional space may yield new
insights into the connection between topological, conformal and integrable field
theories;

I A new departure (within Lagrangian multiform theory) is to develop a variational
description of non-commuting flows22, which may yield a variational approacj to
Lie group actions on manifolds;

I Potentially the quantum version of Lagrangian multiform theory 23 may lead to
the introduction of a new quantum object, namely the sum over (hyper)surfaces
of surface-dependent propagators. embedding space’).

22V. Caudrelier, FWN, D. Sleigh and M. Vermeeren, Lagrangian multiforms on Lie groups and noncommuting
flows, J. Geom. Phys. 187 (2023), ArXiv:2204.09663

23S. King & FWN: Quantum variational principle and quantum multiform structure: the case of quadratic
Lagrangians, Nucl. Phys. B947 (2019) 114686
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