Inclusion of radiation in the collective coordinate method approach of the ϕ^{4} model

S. Navarro-Obregón ${ }^{1}$, J.M. Queiruga ${ }^{2}$ and L.M. Nieto ${ }^{1}$
${ }^{1}$ Department of Optics, Atomic and Theoretical Physics, University of Valladolid
${ }^{2}$ Department of Applied Mathematics, University of Salamanca

State of the art

The fundamental distinction between field dynamics and particle dynamics is that fields have infinitely many degrees of freedom.
${ }^{1}$ C. Adam, N. Manton, K. Oles, T. Romanczukiewicz, and A. Wereszczynski, Phys. Rev. D 105, 065012

State of the art

The fundamental distinction between field dynamics and particle dynamics is that fields have infinitely many degrees of freedom.

Collective Coordinate Method (CCM)

Dynamics, at low speed, is codified in a few degrees of freedom that are promoted to time-dependent variables

$$
L_{e f f}\left(X_{i}(t)\right)=\int_{\mathbb{R}} \mathcal{L}\left(\phi\left(x ; X_{i}(t)\right)\right) d x
$$

${ }^{1}$ C. Adam, N. Manton, K. Oles, T. Romanczukiewicz, and A. Wereszczynski, Phys. Rev. D 105, 065012

State of the art

The fundamental distinction between field dynamics and particle dynamics is that fields have infinitely many degrees of freedom.

Collective Coordinate Method (CCM)

Dynamics, at low speed, is codified in a few degrees of freedom that are promoted to time-dependent variables

$$
L_{e f f}\left(X_{i}(t)\right)=\int_{\mathbb{R}} \mathcal{L}\left(\phi\left(x ; X_{i}(t)\right)\right) d x
$$

A novel approach ${ }^{1}$ (pRCCM) to emulate radiation is based on a tower of Derrick modes with increasing frequency and spatial extension

$$
\phi(x ; a, \boldsymbol{C})=\phi_{K}(x-a)+\sum_{k=1}^{n} \frac{C_{k}}{k!}\left((x-a)^{k} \phi_{K}^{(k)}(x-a)\right),
$$

allowing, for example, to reproduce qualitatively the fractal pattern in kink-antikink scattering and the decay of the shape mode (at short times).

[^0]
State of the art

Fig. 1: Fractal pattern in kink-antikink scattering ${ }^{1}$
${ }^{2}$ C. Adam, N. Manton, K. Oles, T. Romanczukiewicz, and A. Wereszczynski, arXiv:2304.14076

State of the art

Fig. 1: Fractal pattern in kink-antikink scattering ${ }^{1}$

Fig. 2: Shape mode decay ${ }^{2}$
${ }^{2}$ C. Adam, N. Manton, K. Oles, T. Romanczukiewicz, and A. Wereszczynski, arXiv:2304.14076

State of the art

Fig. 1: Fractal pattern in kink-antikink scattering ${ }^{1}$

Fig. 2: Shape mode decay ${ }^{2}$
${ }^{2}$ C. Adam, N. Manton, K. Oles, T. Romanczukiewicz, and A. Wereszczynski, arXiv:2304.14076

Introduction

ϕ^{4} model

The Lagrangian density reads

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2}\left(\phi^{2}-1\right)^{2}, \tag{2.1}
\end{equation*}
$$

whose field equation looks like

$$
\begin{equation*}
\square \phi+2 \phi\left(\phi^{2}-1\right)=0 . \tag{2.2}
\end{equation*}
$$

In addition to vacuum solutions $(\phi(x)= \pm 1)$, there are non-trivial stable solutions:

$$
\begin{equation*}
\phi_{K(\bar{K})}(x)= \pm \tanh \left(x-x_{0}\right) . \tag{2.3}
\end{equation*}
$$

The solutions with positive sign are called kinks, and the ones with negative sign are called antikinks.

Introduction

Let us consider a perturbation of the kink as follows

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x)+\eta(x, t), \tag{2.4}
\end{equation*}
$$

with $\eta(x, t)=\eta(x) e^{i \omega t}$.

Introduction

Let us consider a perturbation of the kink as follows

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x)+\eta(x, t) \tag{2.4}
\end{equation*}
$$

with $\eta(x, t)=\eta(x) e^{i \omega t}$.
At linear order, the field equation looks like

$$
\begin{equation*}
-\eta^{\prime \prime}(x)+\left(6 \phi_{K}(x)^{2}-2\right) \eta(x)=\omega^{2} \eta(x) \tag{2.5}
\end{equation*}
$$

The system of eigenstates and eigenvalues

$$
\begin{align*}
& \eta_{0}(x)=\frac{\sqrt{3}}{2} \operatorname{sech}^{2} x, \quad \omega_{0}=0 \tag{2.6}\\
& \eta_{s}(x)=\sqrt{\frac{3}{2}} \sinh x \operatorname{sech}^{2} x, \quad \omega_{s}=\sqrt{3} \tag{2.7}\\
& \eta_{q}(x)=\frac{3 \tanh ^{2} x-q^{2}-1-3 i q \tanh x}{\sqrt{\left(q^{2}+1\right)\left(q^{2}+4\right)}} e^{i q x}, \quad \omega_{q}=\sqrt{q^{2}+4} \tag{2.8}
\end{align*}
$$

form an orthonormal basis (Sturm-Liouville problem).

Starting point

A general field configuration close to the kink solution can be expanded as follows

$$
\begin{equation*}
\phi(x)=\phi_{K}(x)+c_{0} \eta_{0}(x)+c_{s} \eta_{s}(x)+\int_{\mathbb{R}} d q c_{q} \eta_{q}(x) . \tag{2.9}
\end{equation*}
$$

Starting point

A general field configuration close to the kink solution can be expanded as follows

$$
\begin{equation*}
\phi(x)=\phi_{K}(x)+c_{0} \eta_{0}(x)+c_{s} \eta_{s}(x)+\int_{\mathbb{R}} d q c_{q} \eta_{q}(x) . \tag{2.9}
\end{equation*}
$$

This natural assumption contains all possible degrees of freedom:

$$
\begin{aligned}
& \eta_{0}(x) \Rightarrow \text { rigid translation. } \\
& \eta_{s}(x) \Rightarrow \text { change of size. } \\
& \eta_{q}(x) \Rightarrow \text { freely propagating modes. }
\end{aligned}
$$

Starting point

A general field configuration close to the kink solution can be expanded as follows

$$
\begin{equation*}
\phi(x)=\phi_{K}(x)+c_{0} \eta_{0}(x)+c_{s} \eta_{s}(x)+\int_{\mathbb{R}} d q c_{q} \eta_{q}(x) . \tag{2.9}
\end{equation*}
$$

This natural assumption contains all possible degrees of freedom:

$$
\begin{aligned}
& \eta_{0}(x) \Rightarrow \text { rigid translation. } \\
& \eta_{s}(x) \Rightarrow \text { change of size. } \\
& \eta_{q}(x) \Rightarrow \text { freely propagating modes. }
\end{aligned}
$$

Henceforth, we are going to assume that the evolution of the kink is governed by

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x)+c_{0}(t) \eta_{0}(x)+c_{s}(t) \eta_{s}(x)+\underbrace{\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x)}_{\mathrm{R}(\mathrm{t}, \mathrm{x})} \tag{2.10}
\end{equation*}
$$

for small perturbations.

Radiation from a wobbling kink

Ansatz describing a static wobbling kink

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x)+c_{s}(t) \eta_{s}(x)+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x) \tag{3.1}
\end{equation*}
$$

Let us assume that $c_{q}(t) \sim \mathcal{O}\left(c_{s}^{2}(t)\right)$.

Radiation from a wobbling kink

Ansatz describing a static wobbling kink

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x)+c_{s}(t) \eta_{s}(x)+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x) \tag{3.1}
\end{equation*}
$$

Let us assume that $c_{q}(t) \sim \mathcal{O}\left(c_{s}^{2}(t)\right)$.
At second order in $c_{s}(t)$ the field equation looks like

$$
\begin{align*}
& \eta_{s}(x)\left(\ddot{c}_{s}(t)+\omega_{s}^{2} c_{s}(t)\right)+\int_{\mathbb{R}} d q \eta_{q}(x)\left(\ddot{c}_{q}(t)+\omega_{q}^{2} c_{q}(t)\right) \\
& +6 c_{s}^{2}(t) \phi_{K}(x) \eta_{s}^{2}(x)=0 \tag{3.2}
\end{align*}
$$

Projecting onto $\eta_{q^{\prime}}^{*}(x)$ and assuming the relations of orthogonality, we get

$$
\begin{equation*}
\ddot{c}_{q}(t)+\omega_{q}^{2} c_{q}(t)-\frac{3 i}{32} c_{s}^{2}(t) \sqrt{\frac{q^{2}+4}{q^{2}+1}} \frac{q^{2}\left(q^{2}-2\right)}{\sinh (\pi q / 2)}=0 \tag{3.3}
\end{equation*}
$$

Radiation from a wobbling kink

We take into account that the shape mode is the only source for radiation through the initial conditions $c_{q}(0)=0$ and $\dot{c}_{q}(0)=0$. In addition, we will assume that $c_{s}(t)=A_{0} \cos \left(\omega_{s} t\right)$.

Radiation from a wobbling kink

We take into account that the shape mode is the only source for radiation through the initial conditions $c_{q}(0)=0$ and $\dot{c}_{q}(0)=0$. In addition, we will assume that $c_{s}(t)=A_{0} \cos \left(\omega_{s} t\right)$.

Then, the general solution of (3.3) takes the form

$$
\begin{equation*}
c_{q}(t)=\frac{3}{2 \pi} \frac{\left(4 \omega_{s}^{2}-\omega_{q}^{2}\right)-\omega_{q}^{2} \cos \left(2 \omega_{s} t\right)-\left(4 \omega_{s}^{2}-2 \omega_{q}^{2}\right) \cos \left(\omega_{q} t\right)}{\omega_{q}^{2}\left(\omega_{q}^{2}-4 \omega_{s}^{2}\right)} \mathcal{F}(q) . \tag{3.4}
\end{equation*}
$$

The functional form suggests that there will be some suppressed frequencies in the radiation.

Radiation from a wobbling kink

We take into account that the shape mode is the only source for radiation through the initial conditions $c_{q}(0)=0$ and $\dot{c}_{q}(0)=0$. In addition, we will assume that $c_{s}(t)=A_{0} \cos \left(\omega_{s} t\right)$.

Then, the general solution of (3.3) takes the form

$$
\begin{equation*}
c_{q}(t)=\frac{3}{2 \pi} \frac{\left(4 \omega_{s}^{2}-\omega_{q}^{2}\right)-\omega_{q}^{2} \cos \left(2 \omega_{s} t\right)-\left(4 \omega_{s}^{2}-2 \omega_{q}^{2}\right) \cos \left(\omega_{q} t\right)}{\omega_{q}^{2}\left(\omega_{q}^{2}-4 \omega_{s}^{2}\right)} \mathcal{F}(q) . \tag{3.4}
\end{equation*}
$$

The functional form suggests that there will be some suppressed frequencies in the radiation.
Finally, the exact form of the radiation at leading order for a static wobbling kink is

$$
\begin{equation*}
R(t, x)=\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x) \tag{3.5}
\end{equation*}
$$

We have been able to solve analytically this integral for all x at large t under certain approximations.

Radiation from a wobbling kink

After taking the corresponding spatial limit, we conclude that $R(t, x)$ looks asymptotically (for $x \gg 0$) like

$$
\begin{equation*}
R_{\infty}(t, x)=\frac{3 \pi A_{0}^{2}}{2 \sinh (\sqrt{2} \pi)} \sqrt{\frac{3}{8}} \cos (2 \sqrt{3} t-2 \sqrt{2} x-\delta) \tag{3.6}
\end{equation*}
$$

This last result is in complete agreement with Manton's work ${ }^{3}$.
From (3.6) we can deduce the decay law for the shape mode amplitude

$$
\begin{equation*}
A(t)=\frac{1}{\sqrt{A_{0}^{-2}+0,03 t}} . \tag{3.7}
\end{equation*}
$$

Our proposal seems to be adequate. Then, we will follow this working line to construct effective models. This will allow us to gather more information about the energy transfer mechanisms between the modes.

[^1]
Radiation from a wobbling kink

After taking the corresponding spatial limit, we conclude that $R(t, x)$ looks asymptotically (for $x \gg 0$) like

$$
\begin{equation*}
R_{\infty}(t, x)=\frac{3 \pi A_{0}^{2}}{2 \sinh (\sqrt{2} \pi)} \sqrt{\frac{3}{8}} \cos (2 \sqrt{3} t-2 \sqrt{2} x-\delta) \tag{3.6}
\end{equation*}
$$

This last result is in complete agreement with Manton's work ${ }^{3}$.
From (3.6) we can deduce the decay law for the shape mode amplitude

$$
\begin{equation*}
A(t)=\frac{1}{\sqrt{A_{0}^{-2}+0,03 t}} . \tag{3.7}
\end{equation*}
$$

Our proposal seems to be adequate. Then, we will follow this working line to construct effective models. This will allow us to gather more information about the energy transfer mechanisms between the modes.

[^2]
Radiation from a wobbling kink

After taking the corresponding spatial limit, we conclude that $R(t, x)$ looks asymptotically (for $x \gg 0$) like

$$
\begin{equation*}
R_{\infty}(t, x)=\frac{3 \pi A_{0}^{2}}{2 \sinh (\sqrt{2} \pi)} \sqrt{\frac{3}{8}} \cos (2 \sqrt{3} t-2 \sqrt{2} x-\delta) \tag{3.6}
\end{equation*}
$$

This last result is in complete agreement with Manton's work ${ }^{3}$.
From (3.6) we can deduce the decay law for the shape mode amplitude

$$
\begin{equation*}
A(t)=\frac{1}{\sqrt{A_{0}^{-2}+0,03 t}} . \tag{3.7}
\end{equation*}
$$

Our proposal seems to be adequate. Then, we will follow this working line to construct effective models. This will allow us to gather more information about the energy transfer mechanisms between the modes.

[^3]
Interaction of radiation and shape mode

Ansatz containing the shape mode and radiation

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x)+c_{s}(t) \eta_{s}(x)+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x) . \tag{4.1}
\end{equation*}
$$

Interaction of radiation and shape mode

Ansatz containing the shape mode and radiation

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x)+c_{s}(t) \eta_{s}(x)+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x) \tag{4.1}
\end{equation*}
$$

Substituting (4.1) in (2.1) and integrating in the x-variable, we obtain, at third order,

$$
\begin{align*}
& \mathcal{L}_{s, q}=\frac{1}{2}\left(\dot{c}_{s}^{2}(t)-\omega_{s}^{2} c_{s}^{2}(t)\right)+\pi \int_{\mathbb{R}} d q\left(\dot{c}_{q}(t) \dot{c}_{-q}(t)-\omega_{q}^{2} c_{q}(t) c_{-q}(t)\right) \\
& -\frac{3 \pi}{16} \sqrt{\frac{3}{2}} c_{s}^{3}(t)-c_{s}^{2}(t) \int_{\mathbb{R}} d q f_{s}(q) c_{q}(t)+c_{s}(t) \int_{\mathbb{R}^{2}} d q d q^{\prime} f_{s q}\left(q, q^{\prime}\right) c_{q}(t) c_{q^{\prime}}(t), \tag{4.2}
\end{align*}
$$

where

$$
\begin{align*}
f_{s}(q) & =-\frac{3 i \pi}{16} \sqrt{\frac{q^{2}+4}{q^{2}+1}} \frac{q^{2}\left(q^{2}-2\right)}{\sinh (\pi q / 2)} \tag{4.3}\\
f_{s q}\left(q, q^{\prime}\right) & =6 \int_{\mathbb{R}} d x \phi_{K}(x) \eta_{s}(x) \eta_{q}(x) \eta_{q^{\prime}}(x) . \tag{4.4}
\end{align*}
$$

Interaction of radiation and shape mode

The equations of motion governing the evolution of $c_{q}(t)$ and $c_{s}(t)$ are yielded by

$$
\begin{align*}
& \ddot{c}_{-q}(t)+\omega_{q}^{2} c_{-q}(t)+\frac{1}{2} f_{s}(q) c_{s}^{2}(t)-\frac{1}{\pi} c_{s}(t) \int d q^{\prime} f_{s q}\left(q, q^{\prime}\right) c_{q^{\prime}}(t)=0, \tag{4.5}\\
& \ddot{c}_{s}(t)+\omega_{s}^{2} c_{s}(t)+\frac{9 \pi}{16} \sqrt{\frac{3}{2}} c_{s}^{2}(t)+2 c_{s}(t) \int_{\mathbb{R}} d q f_{s}(q) c_{q}(t) \\
& -\int_{\mathbb{R}^{2}} d q d q^{\prime} f_{s q}\left(q, q^{\prime}\right) c_{q}(t) c_{q^{\prime}}(t)=0 \tag{4.6}
\end{align*}
$$

The maximum of $f_{s}(q)$ takes place at $q \approx 2 \sqrt{2} \equiv w \approx 2 \omega_{s}$.

Interaction of radiation and shape mode

The equations of motion governing the evolution of $c_{q}(t)$ and $c_{s}(t)$ are yielded by

$$
\begin{align*}
& \ddot{c}_{-q}(t)+\omega_{q}^{2} c_{-q}(t)+\frac{1}{2} f_{s}(q) c_{s}^{2}(t)-\frac{1}{\pi} c_{s}(t) \int d q^{\prime} f_{s q}\left(q, q^{\prime}\right) c_{q^{\prime}}(t)=0, \tag{4.5}\\
& \ddot{c}_{s}(t)+\omega_{s}^{2} c_{s}(t)+\frac{9 \pi}{16} \sqrt{\frac{3}{2}} c_{s}^{2}(t)+2 c_{s}(t) \int_{\mathbb{R}} d q f_{s}(q) c_{q}(t) \\
& -\int_{\mathbb{R}^{2}} d q d q^{\prime} f_{s q}\left(q, q^{\prime}\right) c_{q}(t) c_{q^{\prime}}(t)=0 . \tag{4.6}
\end{align*}
$$

The maximum of $f_{s}(q)$ takes place at $q \approx 2 \sqrt{2} \equiv w \approx 2 \omega_{s}$.
In order to solve the system (4.5)-(4.6) numerically, we will have to choose a discretization in q. This fixes a time cut-off of order $t_{c}=1 / \Delta q$, beyond which our computations are no longer trustable.

Interaction of radiation and shape mode

- First experiment: Radiation emitted by a wobbling kink.

Interaction of radiation and shape mode

- First experiment: Radiation emitted by a wobbling kink.

We choose the following initial conditions (I.C.)

$$
\begin{equation*}
c_{s}(0)=A_{0}, \quad c_{s}^{\prime}(0)=0, \quad c_{q}(0)=0, \quad \text { and } \quad c_{q}^{\prime}(0)=0 \tag{4.7}
\end{equation*}
$$

(a) Shape mode decay

(b) Spectrum of frequencies

Fig. 3: We have assumed $n=20$ equidistant scattering modes in $q \in[-3,3]$ for the decay and $n=40$ equidistant scattering modes in $q \in[-4,4]$ for the spectrum.

Interaction of radiation and shape mode

- Second experiment: Static kink irradiated.

Interaction of radiation and shape mode

- Second experiment: Static kink irradiated.

The choice

$$
\begin{equation*}
c_{q}(t)=A_{q} e^{i \omega_{q} t} \delta\left(q-q_{0}\right)+A_{q} e^{-i \omega_{q} t} \delta\left(q+q_{0}\right) \tag{4.8}
\end{equation*}
$$

describes the superposition of a kink with a combination of scattering modes of frequency $\omega_{\mathbf{q}_{0}}$.

> — Kink — Radiation

Fig. 4: Linear radiation perturbed by the kink at the origin.

Interaction of radiation and shape mode

- Second experiment: Static kink irradiated.

The choice

$$
\begin{equation*}
c_{q}(t)=A_{q} e^{i \omega_{q} t} \delta\left(q-q_{0}\right)+A_{q} e^{-i \omega_{q} t} \delta\left(q+q_{0}\right) \tag{4.9}
\end{equation*}
$$

describes the superposition of a kink with a combination of scattering modes of frequency $\omega_{\mathbf{q}_{0}}$.

Taking (4.9) into account, the equation (4.6) reduces to

$$
\begin{equation*}
\ddot{c}_{s}(t)+\left(\omega_{s}^{2}+f\left(q_{0}\right) \sin \left(\omega_{q_{0}} t\right)\right) c_{s}(t)=0 \tag{4.10}
\end{equation*}
$$

with

$$
\begin{equation*}
f\left(q_{0}\right)=-\frac{3 \pi A_{q_{0}}}{4} \frac{q_{0}^{2}\left(q_{0}^{2}-2\right)}{\sinh \left(\pi q_{0} / 2\right)} \sqrt{\frac{q_{0}^{2}+4}{q_{0}^{2}+1}} \tag{4.11}
\end{equation*}
$$

for small $c_{s}(t)$. This expression constitutes a Mathieu equation.
Instability regions $\Rightarrow \omega_{s} / \omega_{q_{0}}=k / 2$.

Interaction of radiation and shape mode

Fig. 5: Acceleration of an irradiated kink for $A_{q}=0,16 .{ }^{4}$
${ }^{4}$ P. Forgács, A. Lukác, T. Romanczukiewicz, Phys. Rev. D 77, 125012

Interaction of radiation and shape mode

Fig. 5: Acceleration of an irradiated kink for $A_{q}=0,16 .{ }^{4}$
${ }^{4}$ P. Forgács, A. Lukác, T. Romanczukiewicz, Phys. Rev. D 77, 125012

Interaction of radiation and shape mode

Fig. 5: Acceleration of an irradiated kink for $A_{q}=0,16 .{ }^{4}$

Interaction of radiation and shape mode

Far away from the instability region, the relevant terms in Eq. (4.6) give rise to the equation of a forced harmonic oscillator.
${ }^{5}$ T. Romanczukiewicz, J. Phys. A: Math. Gen. 39 (2006) 3479.

Interaction of radiation and shape mode

Far away from the instability region, the relevant terms in Eq. (4.6) give rise to the equation of a forced harmonic oscillator.

Regarding the initial conditions

$$
\begin{align*}
& c_{s}(0)=0, \quad c_{s}^{\prime}(0)=0 \tag{4.12}\\
& c_{q}(0)=A_{q} \delta\left(q-q_{0}\right)+A_{q} \delta\left(q+q_{0}\right) \tag{4.13}\\
& \dot{c_{q}}(0)=i \omega_{q} A_{q} \delta\left(q-q_{0}\right)-i \omega_{q} A_{q} \delta\left(q+q_{0}\right) \tag{4.14}
\end{align*}
$$

${ }^{5}$ T. Romanczukiewicz, J. Phys. A: Math. Gen. 39 (2006) 3479.

Interaction of radiation and shape mode

Far away from the instability region, the relevant terms in Eq. (4.6) give rise to the equation of a forced harmonic oscillator.

Regarding the initial conditions

$$
\begin{align*}
& c_{s}(0)=0, \quad c_{s}^{\prime}(0)=0 \tag{4.12}\\
& c_{q}(0)=A_{q} \delta\left(q-q_{0}\right)+A_{q} \delta\left(q+q_{0}\right) \tag{4.13}\\
& \dot{c_{q}}(0)=i \omega_{q} A_{q} \delta\left(q-q_{0}\right)-i \omega_{q} A_{q} \delta\left(q+q_{0}\right) \tag{4.14}
\end{align*}
$$

we are able to deduce an analytical expression for the excitation of the shape mode

$$
\begin{gather*}
c_{s}(t)=A_{q_{0}}^{2} \Omega\left(q_{0}\right)\left(\frac{1}{\omega_{s}^{2}}+\frac{\left(4 \omega_{q_{0}}^{2}-\left(\operatorname{sech}\left(\pi q_{0}\right)+1\right) \omega_{s}^{2}\right) \cos \left(t \omega_{s}\right)}{\omega_{s}^{2}\left(\omega_{s}^{2}-4 \omega_{q_{0}}^{2}\right)}+\frac{\operatorname{sech}\left(\pi q_{0}\right) \cos \left(2 t \omega_{q_{0}}\right)}{\omega_{s}^{2}-4 \omega_{q_{0}}^{2}}\right) \\
\Omega\left(q_{0}\right)=-\frac{3 \sqrt{\frac{3}{2}} \pi\left(8 q_{0}^{4}+34 q_{0}^{2}+17\right)}{4\left(q_{0}^{4}+5 q_{0}^{2}+4\right)} \tag{4.15}
\end{gather*}
$$

This expression is only valid for $A_{q_{0}} \ll 1$ (new phenomena appear ${ }^{5}$).

[^4]
Interaction of radiation and shape mode

Comparison between the analytical approximation (dashed line) and the field theory result (solid line):

(a) $q=2,0$

(b) $q=3,0$

Fig. 6: We have taken into account $n=30$ equidistant scattering modes in the interval $q \in[-3,3]$.

Adding the translational mode

Now, we aim to generalise the previous approach allowing for translations of the kink.

Adding the translational mode

Now, we aim to generalise the previous approach allowing for translations of the kink.

General ansatz

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x-a(t))+c_{s}(t) \eta_{s}(x-a(t))+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x-a(t)) \tag{5.1}
\end{equation*}
$$

Adding the translational mode

Now, we aim to generalise the previous approach allowing for translations of the kink.

General ansatz

$$
\begin{equation*}
\phi(x, t)=\phi_{K}(x-a(t))+c_{s}(t) \eta_{s}(x-a(t))+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x-a(t)) . \tag{5.1}
\end{equation*}
$$

Once more, we have to substitute the field configuration ansatz into the Lagrangian density of the full theory (2.1) and integrate over the space.

$$
\begin{align*}
\mathcal{L}_{s, q, t} & =\frac{1}{2}\left(\dot{c}_{s}^{2}(t)-\omega_{s}^{2} c_{s}^{2}(t)\right)+\pi \int d q\left(\dot{c}_{q}(t) \dot{c}_{-q}(t)-\omega_{q}^{2} c_{q}(t) c_{-q}(t)\right)+c_{s}^{2}(t) \int d q f_{s}(q) c_{q}(t) \\
& +c_{s}(t) \int d q d q^{\prime} f_{s q}\left(q, q^{\prime}\right) c_{q}(t) c_{q^{\prime}}(t)+\frac{2}{3} \dot{a}^{2}(t)+\frac{\pi}{4} \sqrt{\frac{3}{2}} \dot{a}^{2}(t) c_{s}(t)+\dot{a}^{2}(t) \int d q f_{a a}(q) c_{q}(t) \\
& +\dot{a}(t) \int d q f_{a s}(q)\left(\dot{c}_{s}(t) c_{q}(t)-c_{s}(t) \dot{c}_{q}(t)\right)+\dot{a}(t) \int d q d q^{\prime} f_{a}\left(q, q^{\prime}\right) \dot{c}_{q}(t) c_{q^{\prime}}(t) \tag{5.2}
\end{align*}
$$

Some terms have been neglected by assuming $|\dot{a}(t)| \ll 1$.

Adding the translational mode

The equations of motion associated to (5.2) are yielded by

$$
\begin{align*}
\ddot{c}_{-q}(t) & +\omega_{q}^{2} c_{-q}(t)-\frac{1}{2 \pi} c_{s}^{2}(t) f_{s}(q)-\frac{1}{\pi} c_{s}(t) \int d q^{\prime} f_{s q}\left(q, q^{\prime}\right) c_{q^{\prime}}(t)-\frac{1}{2 \pi} \dot{a}^{2}(t) f_{a z}(q) \\
& -\frac{1}{2 \pi} \ddot{a}(t) f_{f_{s}}(q) c_{s}(t)-\frac{1}{\pi} \dot{a}(t) f_{a s}(q) \dot{c}_{s}(t)+\frac{1}{2 \pi} \dot{a}(t) \int d q^{\prime} \dot{c}_{q^{\prime}}(t)\left(f_{a}\left(q, q^{\prime}\right)-f_{a}\left(q^{\prime}, q\right)\right) \\
& +\frac{1}{2 \pi} \ddot{a}(t) \int d q^{\prime} f_{a}\left(q, q^{\prime}\right) c_{q^{\prime}}(t)=0, \tag{5.3}\\
\ddot{c}_{s}(t) & +\omega_{s}^{2} c_{s}(t)-2 c_{s}(t) \int d q f_{s}(q) c_{q}(t)-\int d q d q^{\prime} f_{s q}\left(q, q^{\prime}\right) c_{q}(t) c_{q^{\prime}}(t)-\frac{\pi}{4} \sqrt{\frac{3}{2}} \dot{a}^{2}(t) \\
& +2 \dot{a}(t) \int d q f_{a s}(q) \dot{c}_{q}(t)+\ddot{a}(t) \int d q f_{a s}(q) c_{q}(t)=0, \tag{5.4}\\
\frac{4}{3} \ddot{a}(t) & +\frac{\pi}{2} \sqrt{\frac{3}{2}}\left(\ddot{a}(t) c_{s}(t)+\dot{a}(t) \dot{c}_{s}(t)\right)+2 \int d q f_{a a}(q)\left(\ddot{a}(t) c_{q}(t)+\dot{a}(t) \dot{c}_{q}(t)\right) \\
& +\int d q f_{a s}(q)\left(\ddot{c}_{s}(t) c_{q}(t)-c_{s}(t) \ddot{c}_{q}(t)\right)+\frac{d}{d t} \int d q d q^{\prime} f_{a}\left(q, q^{\prime}\right) \dot{c}_{q}(t) c_{q^{\prime}}(t)=0 . \tag{5.5}
\end{align*}
$$

Adding the translational mode

Let us assume that $a(t)=x_{0}+v t$. An approximate solution of (5.4) and (5.3) is

$$
\begin{equation*}
c_{s}(t)=\frac{\pi}{4 \sqrt{6}} v^{2}, \quad c_{q}(t)=-\frac{i q^{2} \operatorname{csch}(\pi q / 2)}{8 \sqrt{\left(q^{2}+1\right)\left(q^{2}+4\right)}} v^{2} \tag{5.6}
\end{equation*}
$$

Adding the translational mode

Let us assume that $a(t)=x_{0}+v t$. An approximate solution of (5.4) and (5.3) is

$$
\begin{equation*}
c_{s}(t)=\frac{\pi}{4 \sqrt{6}} v^{2}, \quad c_{q}(t)=-\frac{i q^{2} \operatorname{csch}(\pi q / 2)}{8 \sqrt{\left(q^{2}+1\right)\left(q^{2}+4\right)}} v^{2} . \tag{5.6}
\end{equation*}
$$

If we assume the Lorentz boosted version of a kink

$$
\begin{equation*}
\phi(x, t)=\tanh \left(\frac{x-v t}{\sqrt{1-v^{2}}}\right), \tag{5.7}
\end{equation*}
$$

and expand it with respect to v, at $t=0$ we get

$$
\begin{equation*}
\phi(x, 0)=\tanh (x)+\frac{1}{2}\left(x-x \tanh ^{2}(x)\right) v^{2}+\mathcal{O}\left(v^{4}\right) \tag{5.8}
\end{equation*}
$$

Adding the translational mode

Let us assume that $a(t)=x_{0}+v t$. An approximate solution of (5.4) and (5.3) is

$$
\begin{equation*}
c_{s}(t)=\frac{\pi}{4 \sqrt{6}} v^{2}, \quad c_{q}(t)=-\frac{i q^{2} \operatorname{csch}(\pi q / 2)}{8 \sqrt{\left(q^{2}+1\right)\left(q^{2}+4\right)}} v^{2} . \tag{5.6}
\end{equation*}
$$

If we assume the Lorentz boosted version of a kink

$$
\begin{equation*}
\phi(x, t)=\tanh \left(\frac{x-v t}{\sqrt{1-v^{2}}}\right), \tag{5.7}
\end{equation*}
$$

and expand it with respect to v, at $t=0$ we get

$$
\begin{equation*}
\phi(x, 0)=\tanh (x)+\frac{1}{2}\left(x-x \tanh ^{2}(x)\right) v^{2}+\mathcal{O}\left(v^{4}\right) \tag{5.8}
\end{equation*}
$$

The projection of the first correction $\phi^{(1)}(x)$ onto the spectral modes gives

$$
\begin{align*}
\left\langle\phi^{(1)}(x), \eta_{s}(x)\right\rangle & =\frac{\pi}{4 \sqrt{6}} v^{2} \tag{5.9}\\
\left\langle\phi^{(1)}(x), \eta_{q}(x)\right\rangle & =-\frac{i \pi q^{2} \operatorname{csch}(\pi q / 2)}{4 \sqrt{\left(q^{2}+1\right)\left(q^{2}+4\right)}} v^{2} \tag{5.10}
\end{align*}
$$

We have proved that our general effective model describes relativistic effects.

Adding the translational mode

Connection between kink-antikink scattering and oscillon dynamics?

Effective model for the evolution of an oscillon

In order to model the profile of an oscillon, we use $\phi_{0}(x)=\operatorname{sech}(x)^{6}$.

First proposal

$$
\begin{equation*}
\Phi_{\mathrm{o}, \mathrm{rad}}\left(x ; a, c_{q}\right)=-1+a(t) \operatorname{sech}(x / R)+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x / R) \tag{6.1}
\end{equation*}
$$

Effective model for the evolution of an oscillon

 In order to model the profile of an oscillon, we use $\phi_{0}(x)=\operatorname{sech}(x)^{6}$.
First proposal

$$
\begin{equation*}
\Phi_{\mathrm{o}, \mathrm{rad}}\left(x ; a, c_{q}\right)=-1+a(t) \operatorname{sech}(x / R)+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x / R) . \tag{6.1}
\end{equation*}
$$

(a) $n=20, a_{0}=0,3, R=1,5$.

(b) $n=10, a_{0}=0,5, R=2$.

Fig. 7: Comparison between the effective model (dashed line) associated to (6.1) and field theory (solid line). The scattering modes have been taken in the interval $q \in[-5,5]$.
${ }^{6}$ G. Fodor, P. Forgács, Z. Horváth and A. Lukács, Phys. Rev. D79 (2009) 065002

Effective model for the evolution of an oscillon

 In order to model the profile of an oscillon, we use $\phi_{0}(x)=\operatorname{sech}(x)^{6}$.
First proposal

$$
\begin{equation*}
\Phi_{\mathrm{o}, \mathrm{rad}}\left(x ; a, c_{q}\right)=-1+a(t) \operatorname{sech}(x / R)+\int_{\mathbb{R}} d q c_{q}(t) \eta_{q}(x / R) . \tag{6.1}
\end{equation*}
$$

(a) $n=20, a_{0}=0,3, R=1,5$.

(b) $n=10, a_{0}=0,5, R=2$.

Fig. 7: Comparison between the effective model (dashed line) associated to (6.1) and field theory (solid line). The scattering modes have been taken in the interval $q \in[-5,5]$.

[^5]
Effective model for the evolution of an oscillon

Second proposal

$$
\begin{equation*}
\Phi_{\mathrm{o}, \mathrm{rad}}(x ; a, \delta)=-1+a(t) e^{-\left(\frac{x}{R}\right)^{2}}+\sum_{k=1}^{n} \frac{\delta_{k}(t)}{k!} \frac{d^{k}}{d r^{k}} e^{-\left(\frac{x}{r}\right)^{2}} . \tag{6.2}
\end{equation*}
$$

We have modelled the oscillon through a Gaussian profile ${ }^{7}$ for simplicity.
Moreover, we have chosen a new set of functions (that belong to $L^{2}(\mathbb{R})$) to describe radiation.
${ }^{7}$ P. Salmi and M. Hindmarsh, "Radiation and Relaxation of Oscillons", Phys. Rev. D85 (2012) 043501.

Effective model for the evolution of an oscillon

Second proposal

$$
\begin{equation*}
\Phi_{\mathrm{o}, \operatorname{rad}}(x ; a, \delta)=-1+a(t) e^{-\left(\frac{x}{k}\right)^{2}}+\sum_{k=1}^{n} \frac{\delta_{k}(t)}{k!} \frac{d^{k}}{d r^{k}} e^{-\left(\frac{x}{\tilde{r}}\right)^{2}} . \tag{6.2}
\end{equation*}
$$

We have modelled the oscillon through a Gaussian profile ${ }^{7}$ for simplicity.
Moreover, we have chosen a new set of functions (that belong to $L^{2}(\mathbb{R})$) to describe radiation.

The effective Lagrangian can be written symbolically in a very simple way

$$
\begin{equation*}
\mathcal{L}_{r}^{o}=\sum_{k, l=0}^{n} m_{k, l} \dot{\xi}_{k}(t) \dot{\xi}_{l}(t)-\sum_{k, l=0}^{n} \omega_{k, l}^{2} \xi_{k}(t) \xi_{l}(t)-V\left(\xi_{k}(t)\right) \tag{6.3}
\end{equation*}
$$

where $\xi_{0}(t)=a(t)$ and $\xi_{k}(t)=\delta_{k}(t)$ for $k=1, \ldots n$, so it is just a system of coupled anharmonic oscillators coupled through $V\left(\xi_{k}(t)\right)$.
${ }^{7}$ P. Salmi and M. Hindmarsh, "Radiation and Relaxation of Oscillons", Phys. Rev. D85 (2012) 043501.

Effective model for the evolution of an oscillon

Second proposal

$$
\begin{equation*}
\Phi_{\mathrm{o}, \operatorname{rad}}(x ; a, \delta)=-1+a(t) e^{-\left(\frac{x}{k}\right)^{2}}+\sum_{k=1}^{n} \frac{\delta_{k}(t)}{k!} \frac{d^{k}}{d r^{k}} e^{-\left(\frac{x}{\tilde{r}}\right)^{2}} . \tag{6.2}
\end{equation*}
$$

We have modelled the oscillon through a Gaussian profile ${ }^{7}$ for simplicity.
Moreover, we have chosen a new set of functions (that belong to $L^{2}(\mathbb{R})$) to describe radiation.

The effective Lagrangian can be written symbolically in a very simple way

$$
\begin{equation*}
\mathcal{L}_{r}^{o}=\sum_{k, l=0}^{n} m_{k, l} \dot{\xi}_{k}(t) \dot{\xi}_{l}(t)-\sum_{k, l=0}^{n} \omega_{k, l}^{2} \xi_{k}(t) \xi_{l}(t)-V\left(\xi_{k}(t)\right) \tag{6.3}
\end{equation*}
$$

where $\xi_{0}(t)=a(t)$ and $\xi_{k}(t)=\delta_{k}(t)$ for $k=1, \ldots n$, so it is just a system of coupled anharmonic oscillators coupled through $V\left(\xi_{k}(t)\right)$.
${ }^{7}$ P. Salmi and M. Hindmarsh, "Radiation and Relaxation of Oscillons", Phys. Rev. D85 (2012) 043501.

Effective model for the evolution of an oscillon

Fig. 8: $\phi(0, t)$ for different values of the initial amplitude in full numerics (solid line) and in the effective model (dashed line).

Effective model for the evolution of an oscillon

There is a last striking phenomenon that can be captured through the model (6.3). It can be understood by analysing the effective action for $a(t)$:

Effective model for the evolution of an oscillon

There is a last striking phenomenon that can be captured through the model (6.3). It can be understood by analysing the effective action for $a(t)$:

$$
\begin{equation*}
\mathcal{L}^{\circ}=\sqrt{\frac{\pi}{2}} R\left(\frac{1}{2} \dot{a}(t)^{2}-\frac{\left(4 R^{2}+1\right) a(t)^{2}}{2 R^{2}}-\frac{a(t)^{4}}{2 \sqrt{2}}+2 \sqrt{\frac{2}{3}} a(t)^{3}\right) . \tag{6.4}
\end{equation*}
$$

Effective model for the evolution of an oscillon

There is a last striking phenomenon that can be captured through the model (6.3). It can be understood by analysing the effective action for $a(t)$:

$$
\begin{equation*}
\mathcal{L}^{\circ}=\sqrt{\frac{\pi}{2}} R\left(\frac{1}{2} \dot{a}(t)^{2}-\frac{\left(4 R^{2}+1\right) a(t)^{2}}{2 R^{2}}-\frac{a(t)^{4}}{2 \sqrt{2}}+2 \sqrt{\frac{2}{3}} a(t)^{3}\right) . \tag{6.4}
\end{equation*}
$$

The potential looks like

Fig. 9: Effective potential for $a(t)$ at $R=4$.

Effective model for the evolution of an oscillon

(a) Full numerics. $R=4$.

(b) Effective model. $R=4, r=2$ and $n=8$.

Fig. 10: Comparison between the effective model and field theory. The color palette indicates the value of the field ϕ at the origin, $\phi(0, t)$.

Effective model for the evolution of an oscillon

Fig. 11: Fractal pattern in kink-antikink scattering

May we describe this behaviour starting from oscillon initial data?

Summary and conclusions

Summary and conclusions

- We have introduced true dissipative degrees of freedom into a CCM. That have allowed us to analyse:
- The leading radiation emitted by the wobbling kink.
- The excitation of the shape mode by radiation.
- The translation of the kink.
- The ϕ^{4} oscillon dynamics.

Summary and conclusions

- We have introduced true dissipative degrees of freedom into a CCM. That have allowed us to analyse:
- The leading radiation emitted by the wobbling kink.
- The excitation of the shape mode by radiation.
- The translation of the kink.
- The ϕ^{4} oscillon dynamics.
- The mechanisms that explain the energy transfer between radiation and the shape mode are:
- A resonance
- A Mathieu instability $\}$ Strongest coupling at $\omega_{q}=2 \omega_{s}$.

Summary and conclusions

- We have introduced true dissipative degrees of freedom into a CCM. That have allowed us to analyse:
- The leading radiation emitted by the wobbling kink.
- The excitation of the shape mode by radiation.
- The translation of the kink.
- The ϕ^{4} oscillon dynamics.
- The mechanisms that explain the energy transfer between radiation and the shape mode are:
- A resonance
- A Mathieu instability $\}$ Strongest coupling at $\omega_{q}=2 \omega_{s}$.
- The inclusion of scattering modes allows for an exact Lorentz contraction at second order once the translational mode is added.

Summary and conclusions

- We have introduced true dissipative degrees of freedom into a CCM. That have allowed us to analyse:
- The leading radiation emitted by the wobbling kink.
- The excitation of the shape mode by radiation.
- The translation of the kink.
- The ϕ^{4} oscillon dynamics.
- The mechanisms that explain the energy transfer between radiation and the shape mode are:
- A resonance
- A Mathieu instability $\}$ Strongest coupling at $\omega_{q}=2 \omega_{s}$.
- The inclusion of scattering modes allows for an exact Lorentz contraction at second order once the translational mode is added.
- An extremely simple effective model (system of coupled anharmonic oscillators) containing a set of functions emulating radiation is able to describe the KAK creation from initial oscillon data.

Thanks for your attention!

[^0]: ${ }^{1}$ C. Adam, N. Manton, K. Oles, T. Romanczukiewicz, and A. Wereszczynski, Phys. Rev. D 105, 065012

[^1]: ${ }^{3}$ N. S. Manton and H. Merabet, " ϕ^{4} kinks: Gradient flow and dynamics," Nonlinearity 10, 3 (1997)

[^2]: ${ }^{3}$ N. S. Manton and H. Merabet, " ϕ^{4} kinks: Gradient flow and dynamics," Nonlinearity 10, 3 (1997)

[^3]: ${ }^{3}$ N. S. Manton and H. Merabet, " ϕ^{4} kinks: Gradient flow and dynamics," Nonlinearity 10, 3 (1997)

[^4]: ${ }^{5}$ T. Romanczukiewicz, J. Phys. A: Math. Gen. 39 (2006) 3479.

[^5]: ${ }^{6}$ G. Fodor, P. Forgács, Z. Horváth and A. Lukács, Phys. Rev. D79 (2009) 065002

