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State of the art

The fundamental distinction between field dynamics and particle dynamics is that
fields have infinitely many degrees of freedom.

Collective Coordinate Method (CCM)

Dynamics, at low speed, is codified in a few degrees of freedom that are promoted
to time-dependent variables

Leff (Xi (t)) =

∫
R
L(φ(x ;Xi (t))) dx .

A novel approach1 (pRCCM) to emulate radiation is based on a tower of Derrick
modes with increasing frequency and spatial extension

φ(x ; a,C ) = φK (x − a) +
n∑

k=1

Ck

k!

(
(x − a)kφ

(k)
K (x − a)

)
,

allowing, for example, to reproduce qualitatively the fractal pattern in kink-antikink
scattering and the decay of the shape mode (at short times).

1C. Adam, N. Manton, K. Oles, T. Romanczukiewicz, and A. Wereszczynski, Phys. Rev. D 105, 065012
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State of the art

(a) Field theory (b) pRCCM theory

Fig. 1: Fractal pattern in kink-antikink scattering 1

Fig. 2: Shape mode decay 2

2C. Adam, N. Manton, K. Oles, T. Romanczukiewicz, and A. Wereszczynski, arXiv:2304.14076
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Introduction

φ4 model

The Lagrangian density reads

L =
1

2
∂µφ∂

µφ− 1

2
(φ2 − 1)2 , (2.1)

whose field equation looks like

�φ+ 2φ(φ2 − 1) = 0 . (2.2)

In addition to vacuum solutions (φ(x) = ±1), there are non-trivial stable solutions:

φK(K̄)(x) = ± tanh(x − x0) . (2.3)

The solutions with positive sign are called kinks, and the ones with negative sign
are called antikinks.
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Introduction

Let us consider a perturbation of the kink as follows

φ(x , t) = φK (x) + η(x , t) , (2.4)

with η(x , t) = η(x)e iωt .

At linear order, the field equation looks like

− η′′(x) +
(
6φK (x)2 − 2

)
η(x) = ω2η(x) . (2.5)

The system of eigenstates and eigenvalues

η0(x) =

√
3

2
sech2 x , ω0 = 0 , (2.6)

ηs(x) =

√
3

2
sinh x sech2 x , ωs =

√
3 , (2.7)

ηq(x) =
3 tanh2 x − q2 − 1− 3iq tanh x√

(q2 + 1)(q2 + 4)
e iqx , ωq =

√
q2 + 4 , (2.8)

form an orthonormal basis (Sturm-Liouville problem).
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Starting point

A general field configuration close to the kink solution can be expanded as follows

φ(x) = φK (x) + c0η0(x) + csηs(x) +

∫
R
dq cqηq(x) . (2.9)

This natural assumption contains all possible degrees of freedom:

η0(x) ⇒ rigid translation.

ηs(x) ⇒ change of size.

ηq(x) ⇒ freely propagating modes.

Henceforth, we are going to assume that the evolution of the kink is governed by

φ(x , t) = φK (x) + c0(t)η0(x) + cs(t)ηs(x) +

∫
R
dq cq(t)ηq(x)︸ ︷︷ ︸

R(t,x)

(2.10)

for small perturbations.
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Radiation from a wobbling kink

Ansatz describing a static wobbling kink

φ(x , t) = φK (x) + cs(t)ηs(x) +

∫
R
dq cq(t)ηq(x) . (3.1)

Let us assume that cq(t) ∼ O
(
c2

s (t)
)
.

At second order in cs(t) the field equation looks like

ηs(x)

(
c̈s(t) + ω2

s cs(t)

)
+

∫
R
dq ηq(x)

(
c̈q(t) + ω2

qcq(t)

)
+6c2

s (t)φK (x)η2
s (x) = 0 . (3.2)

Projecting onto η∗q′(x) and assuming the relations of orthogonality, we get

c̈q(t) + ω2
qcq(t)− 3i

32
c2

s (t)

√
q2 + 4

q2 + 1

q2(q2 − 2)

sinh (πq/2)
= 0 , (3.3)
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Radiation from a wobbling kink

We take into account that the shape mode is the only source for radiation through
the initial conditions cq(0) = 0 and ċq(0) = 0. In addition, we will assume that
cs(t) = A0 cos(ωst).

Then, the general solution of (3.3) takes the form

cq(t) =
3

2π

(4ω2
s − ω2

q)− ω2
q cos(2ωst)− (4ω2

s − 2ω2
q) cos(ωqt)

ω2
q(ω2

q − 4ω2
s )

F(q) . (3.4)

The functional form suggests that there will be some suppressed frequencies in the
radiation.

Finally, the exact form of the radiation at leading order for a static wobbling kink is

R(t, x) =

∫
R
dq cq(t)ηq(x) . (3.5)

We have been able to solve analytically this integral for all x at large t under certain
approximations.
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Radiation from a wobbling kink

After taking the corresponding spatial limit, we conclude that R(t, x) looks
asymptotically (for x � 0) like

R∞(t, x) =
3πA2

0

2 sinh(
√

2π)

√
3

8
cos
(
2
√

3t − 2
√

2x − δ
)
. (3.6)

This last result is in complete agreement with Manton’s work3.

From (3.6) we can deduce the decay law for the shape mode amplitude

A(t) =
1√

A−2
0 + 0,03 t

. (3.7)

Our proposal seems to be adequate. Then, we will follow this working line to cons-
truct effective models. This will allow us to gather more information about the
energy transfer mechanisms between the modes.

3N. S. Manton and H. Merabet, “φ4 kinks: Gradient flow and dynamics,” Nonlinearity 10, 3 (1997)
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Interaction of radiation and shape mode

Ansatz containing the shape mode and radiation

φ(x , t) = φK (x) + cs(t)ηs(x) +

∫
R
dq cq(t)ηq(x) . (4.1)

Substituting (4.1) in (2.1) and integrating in the x-variable, we obtain, at third
order,

Ls,q =
1

2

(
ċ2

s (t)− ω2
s c

2
s (t)

)
+ π

∫
R
dq
(
ċq(t)ċ−q(t)− ω2

qcq(t)c−q(t)
)

−3π

16

√
3

2
c3

s (t)− c2
s (t)

∫
R
dq fs (q)cq(t) + cs (t)

∫
R2

dqdq′ fsq(q, q′)cq(t)cq′(t) , (4.2)

where

fs(q) = −3iπ

16

√
q2 + 4

q2 + 1

q2(q2 − 2)

sinh (πq/2)
, (4.3)

fsq(q, q′) = 6

∫
R
dx φK (x)ηs(x)ηq(x)ηq′(x). (4.4)
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Interaction of radiation and shape mode

The equations of motion governing the evolution of cq(t) and cs(t) are yielded by

c̈−q(t) + ω2
q c−q(t) +

1

2
fs(q)c2

s (t)− 1

π
cs(t)

∫
dq′fsq(q, q′)cq′(t) = 0, (4.5)

c̈s(t) + ω2
s cs(t) +

9π

16

√
3

2
c2

s (t) + 2cs(t)

∫
R
dq fs(q)cq(t)

−
∫
R2

dqdq′ fsq(q, q′)cq(t)cq′(t) = 0. (4.6)

The maximum of fs(q) takes place at q ≈ 2
√

2 ≡ w ≈ 2ωs .

In order to solve the system (4.5)-(4.6) numerically, we will have to choose a dis-
cretization in q. This fixes a time cut-off of order tc = 1/∆q, beyond which our
computations are no longer trustable.
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Interaction of radiation and shape mode

First experiment: Radiation emitted by a wobbling kink.

We choose the following initial conditions (I.C.)

cs(0) = A0 , c ′s(0) = 0 , cq(0) = 0 , and c ′q(0) = 0 . (4.7)

10 20 30 40 50
t

-0.6

-0.4

-0.2

0.2

0.4

cs(t)

(a) Shape mode decay

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.00000

0.00005

0.00010

0.00015

0.00020

q

c q
,m
ax

(b) Spectrum of frequencies

Fig. 3: We have assumed n = 20 equidistant scattering modes in q ∈ [−3, 3] for the
decay and n = 40 equidistant scattering modes in q ∈ [−4, 4] for the spectrum.
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Interaction of radiation and shape mode
Second experiment: Static kink irradiated.

The choice
cq(t) = Aqe

iωqtδ(q − q0) + Aqe
−iωqtδ(q + q0) (4.8)

describes the superposition of a kink with a combination of scattering modes of
frequency ωq0 .

Kink Radiation

-15 -10 -5 0 5 10 15
-1.0

-0.5

0.0

0.5

1.0

x

Fig. 4: Linear radiation perturbed by the kink at the origin.
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Interaction of radiation and shape mode

Second experiment: Static kink irradiated.

The choice
cq(t) = Aqe

iωqtδ(q − q0) + Aqe
−iωqtδ(q + q0) (4.9)

describes the superposition of a kink with a combination of scattering modes of
frequency ωq0 .

Taking (4.9) into account, the equation (4.6) reduces to

c̈s(t) +
(
ω2

s + f (q0) sin(ωq0t)
)
cs(t) = 0 , (4.10)

with

f (q0) = −3πAq0

4

q2
0(q2

0 − 2)

sinh (πq0/2)

√
q2

0 + 4

q2
0 + 1

, (4.11)

for small cs(t). This expression constitutes a Mathieu equation.

Instability regions ⇒ ωs/ωq0 = k/2.
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Interaction of radiation and shape mode

Fig. 5: Acceleration of an irradiated kink for Aq = 0,16. 4

4P. Forgács, A. Lukác, T. Romanczukiewicz, Phys. Rev. D 77, 125012
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4P. Forgács, A. Lukác, T. Romanczukiewicz, Phys. Rev. D 77, 125012

University of Valladolid CCM including radiation September 29th, 2023 15 / 29



Interaction of radiation and shape mode

Far away from the instability region, the relevant terms in Eq. (4.6) give rise to the
equation of a forced harmonic oscillator.

Regarding the initial conditions

cs(0) = 0 , c ′s(0) = 0 , (4.12)

cq(0) = Aqδ(q − q0) + Aqδ(q + q0) , (4.13)

ċq(0) = iωqAqδ(q − q0)− iωqAqδ(q + q0) , (4.14)

we are able to deduce an analytical expression for the excitation of the shape mode

cs (t) = A2
q0

Ω(q0)

(
1

ω2
s

+

(
4ω2

q0
− (sech(πq0) + 1)ω2

s

)
cos (tωs )

ω2
s (ω2

s − 4ω2
q0 )

+
sech(πq0) cos (2tωq0 )

ω2
s − 4ω2

q0

)

Ω(q0) = −
3

√
3

2
π
(
8q4

0 + 34q2
0 + 17

)
4 (q4

0 + 5q2
0 + 4)

. (4.15)

This expression is only valid for Aq0 � 1 (new phenomena appear5).

5T. Romanczukiewicz, J. Phys. A: Math. Gen. 39 (2006) 3479.
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ċq(0) = iωqAqδ(q − q0)− iωqAqδ(q + q0) , (4.14)

we are able to deduce an analytical expression for the excitation of the shape mode

cs (t) = A2
q0

Ω(q0)

(
1

ω2
s

+

(
4ω2

q0
− (sech(πq0) + 1)ω2

s

)
cos (tωs )

ω2
s (ω2

s − 4ω2
q0 )

+
sech(πq0) cos (2tωq0 )

ω2
s − 4ω2

q0

)

Ω(q0) = −
3

√
3

2
π
(
8q4

0 + 34q2
0 + 17

)
4 (q4

0 + 5q2
0 + 4)

. (4.15)

This expression is only valid for Aq0 � 1 (new phenomena appear5).

5T. Romanczukiewicz, J. Phys. A: Math. Gen. 39 (2006) 3479.

University of Valladolid CCM including radiation September 29th, 2023 16 / 29



Interaction of radiation and shape mode

Far away from the instability region, the relevant terms in Eq. (4.6) give rise to the
equation of a forced harmonic oscillator.

Regarding the initial conditions

cs(0) = 0 , c ′s(0) = 0 , (4.12)

cq(0) = Aqδ(q − q0) + Aqδ(q + q0) , (4.13)
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Interaction of radiation and shape mode

Comparison between the analytical approximation (dashed line) and the field theory
result (solid line):
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(b) q = 3,0

Fig. 6: We have taken into account n = 30 equidistant scattering modes in the interval
q ∈ [−3, 3].
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Adding the translational mode

Now, we aim to generalise the previous approach allowing for translations of the
kink.

General ansatz

φ(x , t) = φK

(
x − a(t)

)
+ cs(t)ηs

(
x − a(t)

)
+

∫
R
dq cq(t)ηq

(
x − a(t)

)
. (5.1)

Once more, we have to substitute the field configuration ansatz into the Lagrangian
density of the full theory (2.1) and integrate over the space.

Ls,q,t =
1

2

(
ċ2

s (t)− ω2
s c2

s (t)
)

+ π

∫
dq
(

ċq(t)ċ−q(t)− ω2
qcq(t)c−q(t)

)
+ c2

s (t)

∫
dqfs (q)cq(t)

+ cs (t)

∫
dqdq′fsq(q, q′)cq(t)cq′ (t) +

2

3
ȧ2(t) +

π

4

√
3

2
ȧ2(t)cs (t) + ȧ2(t)

∫
dqfaa(q)cq(t)

+ ȧ(t)

∫
dqfas (q) (ċs (t)cq(t)− cs (t)ċq(t)) + ȧ(t)

∫
dqdq′fa(q, q′)ċq(t)cq′ (t). (5.2)

Some terms have been neglected by assuming |ȧ(t)| � 1.
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ȧ2(t)cs (t) + ȧ2(t)
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University of Valladolid CCM including radiation September 29th, 2023 18 / 29



Adding the translational mode

Now, we aim to generalise the previous approach allowing for translations of the
kink.

General ansatz

φ(x , t) = φK

(
x − a(t)

)
+ cs(t)ηs

(
x − a(t)

)
+

∫
R
dq cq(t)ηq

(
x − a(t)

)
. (5.1)

Once more, we have to substitute the field configuration ansatz into the Lagrangian
density of the full theory (2.1) and integrate over the space.

Ls,q,t =
1

2

(
ċ2
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∫
dqfaa(q)cq(t)

+ ȧ(t)
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Adding the translational mode

The equations of motion associated to (5.2) are yielded by

c̈−q(t) + ω2
qc−q(t) −

1

2π
c2

s (t)fs (q) −
1

π
cs (t)

∫
dq′fsq(q, q′)cq′ (t) −

1

2π
ȧ2(t)faa(q)

−
1

2π
ä(t)fas (q)cs (t) −

1

π
ȧ(t)fas (q)ċs (t) +

1

2π
ȧ(t)

∫
dq′ċq′ (t)

(
fa(q, q′) − fa(q′, q)

)
+

1

2π
ä(t)

∫
dq′fa(q, q′)cq′ (t) = 0, (5.3)

c̈s (t) + ω2
s cs (t) − 2cs (t)

∫
dqfs (q)cq(t) −

∫
dqdq′fsq(q, q′)cq(t)cq′ (t) −

π

4

√
3

2
ȧ2(t)

+ 2ȧ(t)

∫
dqfas (q)ċq(t) + ä(t)

∫
dqfas (q)cq(t) = 0 , (5.4)

4

3
ä(t) +

π

2

√
3

2
(ä(t)cs (t) + ȧ(t)ċs (t)) + 2

∫
dqfaa(q) (ä(t)cq(t) + ȧ(t)ċq(t))

+

∫
dqfas (q) (c̈s (t)cq(t) − cs (t)c̈q(t)) +

d

dt

∫
dqdq′fa(q, q′)ċq(t)cq′ (t) = 0 . (5.5)
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Adding the translational mode
Let us assume that a(t) = x0 + v t. An approximate solution of (5.4) and (5.3) is

cs(t) =
π

4
√

6
v2, cq(t) = − iq2 csch(πq/2)

8
√

(q2 + 1)(q2 + 4)
v2. (5.6)

If we assume the Lorentz boosted version of a kink

φ(x , t) = tanh

(
x − vt√
1− v2

)
, (5.7)

and expand it with respect to v , at t = 0 we get

φ(x , 0) = tanh(x) +
1

2

(
x − x tanh2(x)

)
v2 +O(v4) . (5.8)

The projection of the first correction φ(1)(x) onto the spectral modes gives

〈φ(1)(x), ηs(x)〉 =
π

4
√

6
v2 , (5.9)

〈φ(1)(x), ηq(x)〉 = − iπq2 csch(πq/2)

4
√

(q2 + 1)(q2 + 4)
v2 . (5.10)

We have proved that our general effective model describes relativistic effects.
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Adding the translational mode

t1 t2 t3
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Connection between kink-antikink scattering and oscillon dynamics?
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Effective model for the evolution of an oscillon
In order to model the profile of an oscillon, we use φo(x) = sech(x) 6.

First proposal

Φo, rad(x ; a, cq) = −1 + a(t) sech(x/R) +

∫
R
dqcq(t)ηq(x/R). (6.1)
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-1.0

-0.9

-0.8

-0.7

t

ϕ
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,t
)

(a) n = 20, a0 = 0,3, R = 1,5.
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-0.4

t

ϕ
(0
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(b) n = 10, a0 = 0,5, R = 2.

Fig. 7: Comparison between the effective model (dashed line) associated to (6.1) and
field theory (solid line). The scattering modes have been taken in the interval q ∈ [−5, 5].

6G. Fodor, P. Forgács, Z. Horváth and A. Lukács, Phys. Rev. D79 (2009) 065002
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Effective model for the evolution of an oscillon

Second proposal

Φo, rad(x ; a, δ) = −1 + a(t)e−( x
R )2

+
n∑

k=1

δk (t)

k!

dk

drk
e−( x

r )2

. (6.2)

We have modelled the oscillon through a Gaussian profile7 for simplicity.

Moreover, we have chosen a new set of functions (that belong to L2(R)) to describe
radiation.

The effective Lagrangian can be written symbolically in a very simple way

Lo
r =

n∑
k,l=0

mk,l ξ̇k (t)ξ̇l (t)−
n∑

k,l=0

ω2
k,lξk (t)ξl (t)− V (ξk (t)) , (6.3)

where ξ0(t) = a(t) and ξk (t) = δk (t) for k = 1, ...n, so it is just a system of
coupled anharmonic oscillators coupled through V (ξk (t)).

7P. Salmi and M. Hindmarsh, “Radiation and Relaxation of Oscillons”, Phys. Rev. D85 (2012) 043501.
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Effective model for the evolution of an oscillon
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Fig. 8: φ(0, t) for different values of the initial amplitude in full numerics (solid line) and
in the effective model (dashed line).
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Effective model for the evolution of an oscillon
There is a last striking phenomenon that can be captured through the model (6.3).

It can be understood by analysing the effective action for a(t):

Lo =

√
π

2
R

(
1

2
ȧ(t)2 −

(
4R2 + 1

)
a(t)2

2R2
− a(t)4

2
√

2
+ 2

√
2

3
a(t)3

)
. (6.4)

The potential looks like

-1 1 2 3
a

5

10

15

20

V(a)

Fig. 9: Effective potential for a(t) at R = 4.
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Effective model for the evolution of an oscillon

a0

t

(a) Full numerics. R = 4.

a0

t

(b) Effective model. R = 4, r = 2 and n = 8.

Fig. 10: Comparison between the effective model and field theory. The color palette
indicates the value of the field φ at the origin, φ(0, t).
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Effective model for the evolution of an oscillon

Fig. 11: Fractal pattern in kink-antikink scattering

May we describe this behaviour starting from oscillon initial data?
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Summary and conclusions

We have introduced true dissipative degrees of freedom into a CCM. That
have allowed us to analyse:

I The leading radiation emitted by the wobbling kink.
I The excitation of the shape mode by radiation.
I The translation of the kink.
I The φ4 oscillon dynamics.

The mechanisms that explain the energy transfer between radiation and the
shape mode are:

I A resonance
I A Mathieu instability

}
Strongest coupling at ωq = 2ωs .

The inclusion of scattering modes allows for an exact Lorentz contraction at
second order once the translational mode is added.

An extremely simple effective model (system of coupled anharmonic
oscillators) containing a set of functions emulating radiation is able to
describe the KAK creation from initial oscillon data.
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Thanks for your attention!
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