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wide variety of scalar field theories.



@ Among the range of topological solitons, kinks are the simplest and arise in a
wide variety of scalar field theories.

@ We will study one of the kinks that arise in a two-component ¢* scalar field
theory coupled by means of a parameter « .



@ Among the range of topological solitons, kinks are the simplest and arise in a
wide variety of scalar field theories.

@ We will study one of the kinks that arise in a two-component ¢* scalar field
theory coupled by means of a parameter « .

o We will unravel the behaviour of the kink solution when one of its shape
modes is initially triggered. We will use a perturbative approach and then we
will compare the results obtained with numerical simulations.
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2.Kinks in the two-component ¢* model

@ The model we are going to study is given by the Lagrangian density !

1 1
£= 30u00"0F 300" = U(o.w)

where . . 1
U(g,v) = 5(6* = 1)? + S (¥ = 1)* + ko™’ = 2.
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where . . 1
U(g,y) = §(¢’2 -1+ 5(1/12 —1)? 4+ kp*y? — 5
@ The associated field equations are
Dt — Do + 20(0° — 1 + ktp?) 0,
Beet) — Dcth + 20(¥2 — 1+ ke?) = 0.
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@ The model we are going to study is given by the Lagrangian density !

1 1

where . . 1
U(g,v) = 5(6* = 1)? + S (¥ = 1)* + ko™’ = 2.

@ The associated field equations are
Ot — Ood + 20(¢° — 1+ Kp?) = 0,
Ou) — O + 21@‘:(1;‘)2 -1+ Hgb2) = 0.

@ For the potential U(¢,) the vacua structure depends on the value of &:

M ! (o b=0,1
" = , a,b=0, s
<! 1+k (—l)b
(=1)? 0
Mysq = . ab=0,1%.
0 (—1)P

IA. Halavanau, T. Romanczukiewicz and Y.M. Shnir, Resonance structures in coupled
two-component ¢* model, Phys. Rev. D 86, 085027 (2012).
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o<1

Kink solutions take the form:

tanh x (=1)°
K@) (x) = , ab=0,1
0= - ?

Shown over the potential:




ok >1

Kink solutions take the form:

) +tanh x ) 0
Ki (x) = . K (x) =

0 + tanh x

Shown over the potential:




@ When the stability of a kink solution is studied we have to propose a solution
with the structure

R(X, tiw,a) = Kl(i)(X) +aet Fu(x).

where Kl(i)(x) is the kink solution and a is a small real parameter.
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@ When the stability of a kink solution is studied we have to propose a solution
with the structure

K(x, t;w,a) = K5 (x) + aet F(x).
where Kl(i)(x) is the kink solution and a is a small real parameter.

@ Plugging this solution would lead to the problem
H Fu(x) = w?F ()

where

—j’—; + 4 — 6sech®x 0
H:

0 f%+2ﬂtanh2x72



2.Stability and eigenmodes of the kink solution

Longitudinal eigenmodes

Eigenfrequency (w) Eigenfunction
0 (ﬁO(X)z O)t = (SECh2X7 O)t
w=+3 (Mp(x),0)t = (sech x tanh x,0)*

. t
@ = VA + (71(x), 0)t = (e'qX[—l — @ +3 tanh®x — 3igtanhx],0 )




2.Stability and eigenmodes of the kink solution

Longitudinal eigenmodes

Eigenfrequency (w) Eigenfunction
0 (ﬁO(X)z O)t = (SECh2X1 O)t
w=+3 (Mp(x),0)t = (sech x tanh x,0)*
_ t
we =4+ 7 (7g(x),0)t = (e’qx[—l —G% + 3 tanh? x — 3igtanhx],0 )

Orthogonal eigenmodes

Eigenfrequency (w)

Eigenfunction

@pp=y/@n+1p—n2—n—3

1
(0, Ap(NE = (0, (sech)” "7 2 5y (=n, 20 — 1, p — n+ 172, LN e

DS =1\/q% +2r —2
@F = V@ +2x

N t - 1—tanh igx )t
(0 . Ag)" = (0, 23 —p 34 p —igt, w”/w)

where § and q are real quantities, p = 1/2k + % and n is a natural number whose

maximum value is given by the relation x >

Nmax (Nmax+1) ~2
I For k < 3, Who < 0,

which means that the kink is unstable in this regime.



@ We are interested in studying the evolution of the system when one
orthogonal mode is initially activated.




3.Perturbative appoach

@ We are interested in studying the evolution of the system when one
orthogonal mode is initially activated.

@ We are going to assume a general expansion of the fields of the form 2

o0, t) = Gk(x)+a(t)Tp(x) +7i(x.t),
bat) = 3300 + i 1),

where ¢k (x) = tanh x.

Plugging this assumption into the field equations and neglecting the smallest

terms we find
(et + @ 3) p + 7o — T — 27 + 67 G5 + 63" T Ok + 266 (Y 3pfin p)° = 0,

P
B G523.)7 = 7 -~ -5 2 ST 3 P A
Z((a“)f’ + @, ap) NMp,p + Nt — T — 20 + 261 O + 4K AT Ok Z app,p ~ 0.
p p

2N.S. Manton and H. Merabet, Kinks-gradient flow and dynamics, Nonlinearity 10, 3 (1997).
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If the previous equations are projected onto 7 and 7jp, m, then:
—=2
(Ett‘i‘sz)CD"—G V+Zapar p,—O

((3“),-” + @51 é\m) CD,m + 2 Zﬁap Bpm - 0
P
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If the previous equations are projected onto 7 and 7jp, m, then:
—=2
(Ett+w2§)CD+6 V+Zapar pr—O
((3tt)m + @51 é\m) CD,m + 2 Zﬁap Bpm = O

P

As it is assumed that we initially trigger the j-th shape mode, then

aj(t) =~ ag sin(@jt).
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3.Perturbative approach

If the previous equations are projected onto 7 and 7jp, m, then:
—2
(3w +w?3) Cp+ 63 V+Zapa, =0,

((@et)m + 5 am) CD7m + 2253/3 Bom = 0.
p

As it is assumed that we initially trigger the j-th shape mode, then
aj(t) = agsin(w;t).
If we now plug this formula into the first differential equation with the initial
conditions
3:(0)=3(0) =0, 3a,(0)=3,(0);=0 with m#j,

we have that

a3 By (4w w — @2 + w? cos(2w;t) — 4@1-2 cos(wt))
2CHTA (@2 — 40?) '
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Using the previous relations in the original truncated expansion the next
differential equations are found:

=77 (x) + (60k —2—4&7)7(x) = f(x),
—1"() + (2R ok —2-w)ii(x) = glx),

where £ = 1,2 and wy = 30j, wo = Wj + .
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3.Perturbative approach

Using the previous relations in the original truncated expansion the next
differential equations are found:

=1"(x) + (60§ — 2 —407)7(x) = f(x),
=1"(x) + (26 ¢k =2 - wp)7(x) = ge(x),

where £ =1,2 and w; = 30j, wy = W; + ©.

These equations describe the radiation emitted on the longitudinal channel at
frequency 2i; and on the orthogonal one at frequencies 3w; and &; + @.
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Using the variation of parameters method the assymptotic behaviour of the
radiation terms can be computed:

oo, i(fj;ﬁabdfOOdy) .

2z 2G+0)@G+2i) -
e (BomWs)
Nwe 2iG, e .
where
G = 271,

J

g = 4/ !)22{? + 2 — 2k,

B = \J@+eP+2-2
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3.Perturbative approach

o

I
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Longitudinal Radiation Amplitudes

10x107°

a, | w =20
! a0=0.01]
8x10°° B
| X =Xg 1
6x10°
4x10°8 ,'
|
2x10°
K
5 10 15 20
12510 1w w=20) 1l w =20,
N a0=0.05 a0=0.05
10x107° X =Xg
8x10°° 1.0x10
6x10°
4x10°° 0.5x10™
2x10°% ~
N~
—
K
K
10 15 20 10 15 20



15/1

Orthogonal Radiation Amplitudes
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4 Numerical results: Orthogonal shape mode amplitudes

@ We have assumed that the amplitude of the triggered shape mode remains
constant. This assumption works fine when 7jp 1 and 7jp » are initially

0.14t8y, w= 0.141 8y | w=,
|
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@ But for 7jp o a large decrease in the wobbling amplitude can be appreciated.
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@ A decay law for ag can be computed in order. First, if we trigger 7jp o the
total radiated energy flux is given by
dE — =
(P)=—r = —(a5 Ax,)? (200) 4,

— —
where Axz, = a3 Ay, -
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4 Numerical results: Orthogonal shape mode amplitudes

@ A decay law for ag can be computed in order. First, if we trigger 7jp o the
total radiated energy flux is given by

(P) = P —(a5 Azz,)* (2%0) 4,
where Ayz, = a3 Z;ao.
@ On the other hand, the wobbling amplitude behaves as an harmonic oscillator

on each point of the space so,

1 b 1
SziagagﬁgﬁE:/ §ox=3 08 4 Cho
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4 Numerical results: Orthogonal shape mode amplitudes

@ A decay law for ag can be computed in order. First, if we trigger 7jp o the
total radiated energy flux is given by

(P) = P —(ah Axz,)* (2%0) 1,

_ -

where Axgy = ag Ay, -
@ On the other hand, the wobbling amplitude behaves as an harmonic oscillator

on each point of the space so,

[POR - L 5 5=
(c; = 5&}030770 — E = g dx = 5 Wy dp CD,O'
— 00

@ This leads to the following differential equation for ag(t)

1@2 ~  daj(t)
2 0 7DOo gt

~ 12
~ —20o Aoz, qag(t),

whose solution is
30(0)

4G a0(0)2 A
1+t< qa,?( ) 200

2 0
CD,O wo

ao(t) ~
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@ Along this work, we have discussed the behaviour of an excited kink. In this
process, radiation at three different frequencies has been found.
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through numerical simulations.
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@ Along this work, we have discussed the behaviour of an excited kink. In this
process, radiation at three different frequencies has been found.

@ Apart from this, the amplitudes found analytically predict the behaviour seen
through numerical simulations.

@ All the analytical methods used in this presentation can be extended in order
to study other excited topological solitons such as Abelian-Higgs vortices.
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Thanks for your attention!!!



