Wobbling kinks in a coupled two-component ϕ^{4} field theory

A. Alonso-Izquierdo ${ }^{1}$, D. Miguélez-Caballero ${ }^{2}$, L.M. Nieto 2
${ }^{1}$ Department of Applied Mathematics - University of Salamanca
${ }^{2}$ Department of Theoretical, Optical and Atomic Physics - University of Valladolid david.miguelez@uva.es

September $13^{\text {th }}, 2023$

Universidad deValladolid
VNiVERSiDAD

- SALAMANCA

Outline

1. Introduction

- Among the range of topological solitons, kinks are the simplest and arise in a wide variety of scalar field theories.

1. Introduction

- Among the range of topological solitons, kinks are the simplest and arise in a wide variety of scalar field theories.
- We will study one of the kinks that arise in a two-component ϕ^{4} scalar field theory coupled by means of a parameter κ.

1. Introduction

- Among the range of topological solitons, kinks are the simplest and arise in a wide variety of scalar field theories.
- We will study one of the kinks that arise in a two-component ϕ^{4} scalar field theory coupled by means of a parameter κ.
- We will unravel the behaviour of the kink solution when one of its shape modes is initially triggered. We will use a perturbative approach and then we will compare the results obtained with numerical simulations.

2. Kinks in the two-component ϕ^{4} model

- The model we are going to study is given by the Lagrangian density ${ }^{1}$

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} \partial_{\mu} \psi \partial^{\mu} \psi-U(\phi, \psi) .
$$

where

$$
U(\phi, \psi)=\frac{1}{2}\left(\phi^{2}-1\right)^{2}+\frac{1}{2}\left(\psi^{2}-1\right)^{2}+\kappa \phi^{2} \psi^{2}-\frac{1}{2} .
$$

[^0]
2. Kinks in the two-component ϕ^{4} model

- The model we are going to study is given by the Lagrangian density ${ }^{1}$

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} \partial_{\mu} \psi \partial^{\mu} \psi-U(\phi, \psi) .
$$

where

$$
U(\phi, \psi)=\frac{1}{2}\left(\phi^{2}-1\right)^{2}+\frac{1}{2}\left(\psi^{2}-1\right)^{2}+\kappa \phi^{2} \psi^{2}-\frac{1}{2} .
$$

- The associated field equations are

$$
\begin{aligned}
\partial_{t t} \phi-\partial_{x x} \phi+2 \phi\left(\phi^{2}-1+\kappa \psi^{2}\right) & =0, \\
\partial_{t t} \psi-\partial_{x x} \psi+2 \psi\left(\psi^{2}-1+\kappa \phi^{2}\right) & =0 .
\end{aligned}
$$

[^1]
2. Kinks in the two-component ϕ^{4} model

- The model we are going to study is given by the Lagrangian density ${ }^{1}$

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} \partial_{\mu} \psi \partial^{\mu} \psi-U(\phi, \psi) .
$$

where

$$
U(\phi, \psi)=\frac{1}{2}\left(\phi^{2}-1\right)^{2}+\frac{1}{2}\left(\psi^{2}-1\right)^{2}+\kappa \phi^{2} \psi^{2}-\frac{1}{2} .
$$

- The associated field equations are

$$
\begin{aligned}
\partial_{t t} \phi-\partial_{x x} \phi+2 \phi\left(\phi^{2}-1+\kappa \psi^{2}\right) & =0, \\
\partial_{t t} \psi-\partial_{x x} \psi+2 \psi\left(\psi^{2}-1+\kappa \phi^{2}\right) & =0 .
\end{aligned}
$$

- For the potential $U(\phi, \psi)$ the vacua structure depends on the value of κ :

$$
\begin{gathered}
\mathcal{M}_{k<1}=\left\{\frac{1}{\sqrt{1+\kappa}}\binom{(-1)^{a}}{(-1)^{b}}, a, b=0,1\right\}, \\
\mathcal{M}_{k>1}=\left\{\binom{(-1)^{a}}{0}\binom{0}{(-1)^{b}}, a, b=0,1\right\} .
\end{gathered}
$$

[^2]
2.kinks in the two-component ϕ^{4} model

- $\underline{\kappa<1}$

Kink solutions take the form:

$$
K^{(a, b)}(x)=\frac{\tanh x}{\sqrt{1+\kappa}}\binom{(-1)^{a}}{(-1)^{b}}, \quad a, b=0,1
$$

Shown over the potential:

2.kinks in the two-component ϕ^{4} model

- $\kappa>1$

Kink solutions take the form:

$$
K_{1}^{(\pm)}(x)=\binom{ \pm \tanh x}{0}, \quad K_{2}^{(\pm)}(x)=\binom{0}{ \pm \tanh x}
$$

Shown over the potential:

2. Stability and eigenmodes of the kink solution

- When the stability of a kink solution is studied we have to propose a solution with the structure

$$
\widetilde{K}(x, t ; \omega, a)=K_{1}^{(\pm)}(x)+a e^{i \omega t} F_{\omega}(x) .
$$

where $K_{1}^{(\pm)}(x)$ is the kink solution and a is a small real parameter.

2.Stability and eigenmodes of the kink solution

- When the stability of a kink solution is studied we have to propose a solution with the structure

$$
\widetilde{K}(x, t ; \omega, a)=K_{1}^{(\pm)}(x)+a e^{i \omega t} F_{\omega}(x) .
$$

where $K_{1}^{(\pm)}(x)$ is the kink solution and a is a small real parameter.

- Plugging this solution would lead to the problem

$$
\mathcal{H} F_{\omega}(x)=\omega^{2} F_{\omega}(x)
$$

where

$$
\mathcal{H}=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+4-6 \operatorname{sech}^{2} x & 0 \\
0 & -\frac{d^{2}}{d x^{2}}+2 \kappa \tanh ^{2} x-2
\end{array}\right)
$$

2.Stability and eigenmodes of the kink solution

Longitudinal eigenmodes

Eigenfrequency (ω)	Eigenfunction
0	$\left(\bar{\eta}_{0}(x), 0\right)^{t}=\left(\operatorname{sech}^{2} x, 0\right)^{t}$
$\bar{\omega}=\sqrt{3}$	$\left(\bar{\eta}_{D}(x), 0\right)^{t}=(\operatorname{sech} x \tanh x, 0)^{t}$
$\bar{\omega} \frac{c}{\bar{q}}=\sqrt{4+\bar{q}^{2}}$	$\left(\bar{\eta}_{\bar{q}}(x), 0\right)^{t}=\left(e^{i \bar{q} \times}\left[-1-\bar{q}^{2}+3 \tanh ^{2} x-3 i \bar{q} \tanh x\right], 0\right)^{t}$

2.Stability and eigenmodes of the kink solution

Longitudinal eigenmodes

Eigenfrequency (ω)	Eigenfunction
0	$\left(\bar{\eta}_{0}(x), 0\right)^{t}=\left(\operatorname{sech}^{2} x, 0\right)^{t}$
$\bar{\omega}=\sqrt{3}$	$\left(\bar{\eta}_{D}(x), 0\right)^{t}=(\operatorname{sech} x \tanh x, 0)^{t}$
$\bar{\omega} \frac{c}{\bar{q}}=\sqrt{4+\bar{q}^{2}}$	$\left(\bar{\eta}_{\bar{q}}(x), 0\right)^{t}=\left(e^{i \bar{q} \times}\left[-1-\bar{q}^{2}+3 \tanh ^{2} x-3 i \bar{q} \tanh x\right], 0\right)^{t}$

Orthogonal eigenmodes

Eigenfrequency (ω)	Eigenfunction
$\widehat{\omega}_{D, n}=\sqrt{(2 n+1) \rho-n^{2}-n-\frac{5}{2}}$	$\left(0, \widehat{\eta}_{D}(x)\right)^{t}=\left(0,(\operatorname{sech} x)^{\rho-n-\frac{1}{2}}{ }_{2} F_{1}\left(-n, 2 \rho-n, \rho-n+1 / 2, \frac{(1-\tanh x)}{2}\right)\right)^{t}$
$\widehat{\omega}_{\widehat{q}}^{c}=\sqrt{\widehat{q}^{2}+2 \kappa-2}$	$\left(0, \widehat{\eta}_{\widehat{q}}(x)\right)^{t}=\left(0,{ }_{2} F_{1}\left(\frac{1}{2}-\rho, \frac{1}{2}+\rho,-i \widehat{q}+1, \frac{(1-\tanh x)}{2}\right) e^{i \widehat{q} x}\right)^{t}$

where \bar{q} and \hat{q} are real quantities, $\rho=\sqrt{2 \kappa+\frac{1}{4}}$ and n is a natural number whose maximum value is given by the relation $\kappa>\frac{n_{\max }\left(n_{\max }+1\right)}{2}$. For $\kappa<3, \widehat{\omega}_{D, 0}^{2}<0$, which means that the kink is unstable in this regime.

3.Perturbative appoach

- We are interested in studying the evolution of the system when one orthogonal mode is initially activated.
 terms we find

3.Perturbative appoach

- We are interested in studying the evolution of the system when one orthogonal mode is initially activated.
- We are going to assume a general expansion of the fields of the form ${ }^{2}$

$$
\begin{aligned}
\phi(x, t) & = \\
\psi(x, t) & =
\end{aligned} \quad \sum_{K}(x)+\bar{a}(t) \bar{\eta}_{D}(x)+\bar{\eta}(x, t), ~ \widehat{a}_{p}(t) \widehat{\eta}_{D, p}(x)+\widehat{\eta}(x, t), ~ l
$$

where $\phi_{K}(x)=\tanh x$.
Plugging this assumption into the field equations and neglecting the smallest terms we find

$$
\begin{aligned}
& \left(\bar{a}_{t t}+\bar{\omega}^{2} \bar{a}\right) \bar{\eta}_{D}+\bar{\eta}_{t t}-\bar{\eta}_{x x}-2 \bar{\eta}+6 \bar{\eta} \phi_{K}^{2}+6 \bar{a}^{2} \bar{\eta}_{D}^{2} \phi_{K}+2 \kappa \phi_{K}\left(\sum_{p} \widehat{a}_{p} \widehat{\eta}_{D, p}\right)^{2} \approx 0, \\
& \sum_{p}\left(\left(\widehat{a}_{t t}\right)_{p}+\widehat{\omega}_{p}^{2} \widehat{a}_{p}\right) \widehat{\eta}_{D, p}+\widehat{\eta}_{t t}-\widehat{\eta}_{x x}-2 \widehat{\eta}+2 \kappa \widehat{\eta} \phi_{K}^{2}+4 \kappa \bar{a} \bar{\eta}_{D} \phi_{K} \sum_{p} \widehat{a}_{p} \widehat{\eta}_{D, p} \approx 0 .
\end{aligned}
$$

[^3]
3.Perturbative approach

If the previous equations are projected onto $\bar{\eta}$ and $\widehat{\eta}_{D, m}$, then:

$$
\begin{aligned}
& \left(\bar{a}_{t t}+\bar{\omega}^{2} \bar{a}\right) \bar{C}_{D}^{2}+6 \bar{a}^{2} \bar{V}+\sum_{p, r} \widehat{a}_{p} \widehat{a}_{r} \widehat{B}_{p r}=0, \\
& \left(\left(\widehat{a}_{t t}\right)_{m}+\widehat{\omega}_{m}^{2} \widehat{a}_{m}\right) \widehat{C}_{D, m}^{2}+2 \sum_{p} \bar{a} \widehat{a}_{p} \widehat{B}_{p m}=0 .
\end{aligned}
$$

3.Perturbative approach

If the previous equations are projected onto $\bar{\eta}$ and $\widehat{\eta}_{D, m}$, then:

$$
\begin{aligned}
& \left(\bar{a}_{t t}+\bar{\omega}^{2} \bar{a}\right) \bar{C}_{D}^{2}+6 \bar{a}^{2} \bar{V}+\sum_{p, r} \widehat{a}_{p} \widehat{a}_{r} \widehat{B}_{p r}=0, \\
& \left(\left(\widehat{a}_{t t}\right)_{m}+\widehat{\omega}_{m}^{2} \widehat{a}_{m}\right) \widehat{C}_{D, m}^{2}+2 \sum_{p} \bar{a} \widehat{a}_{p} \widehat{B}_{p m}=0 .
\end{aligned}
$$

As it is assumed that we initially trigger the j-th shape mode, then

$$
\widehat{a}_{j}(t) \approx a_{0} \sin \left(\widehat{\omega}_{j} t\right)
$$

3.Perturbative approach

If the previous equations are projected onto $\bar{\eta}$ and $\widehat{\eta}_{D, m}$, then:

$$
\begin{aligned}
& \left(\bar{a}_{t t}+\bar{\omega}^{2} \bar{a}\right) \bar{C}_{D}^{2}+6 \bar{a}^{2} \bar{V}+\sum_{p, r} \widehat{a}_{p} \widehat{a}_{r} \widehat{B}_{p r}=0 \\
& \left(\left(\widehat{a}_{t t}\right)_{m}+\widehat{\omega}_{m}^{2} \widehat{a}_{m}\right) \widehat{C}_{D, m}^{2}+2 \sum_{p} \bar{a} \widehat{a}_{p} \widehat{B}_{p m}=0 .
\end{aligned}
$$

As it is assumed that we initially trigger the j-th shape mode, then

$$
\widehat{a}_{j}(t) \approx a_{0} \sin \left(\widehat{\omega}_{j} t\right)
$$

If we now plug this formula into the first differential equation with the initial conditions

$$
\bar{a}_{t}(0)=\bar{a}(0)=0, \quad \hat{a}_{m}(0)=\widehat{a}_{m}(0)_{t}=0 \quad \text { with } \quad m \neq j,
$$

we have that

$$
\bar{a}(t) \approx \frac{a_{0}^{2} \widehat{B}_{j j}\left(4 \widehat{\omega}_{j}^{2}-\bar{\omega}^{2}+\bar{\omega}^{2} \cos \left(2 \widehat{\omega}_{j} t\right)-4 \widehat{\omega}_{j}^{2} \cos (\bar{\omega} t)\right)}{2 \bar{C}_{D}^{2} \bar{\omega}^{2}\left(\bar{\omega}^{2}-4 \widehat{\omega}_{j}^{2}\right)}
$$

3.Perturbative approach

Using the previous relations in the original truncated expansion the next differential equations are found:

$$
\begin{aligned}
-\bar{\eta}^{\prime \prime}(x)+\left(6 \phi_{K}^{2}-2-4 \widehat{\omega}_{j}^{2}\right) \bar{\eta}(x) & =f(x) \\
-\widehat{\eta}^{\prime \prime}(x)+\left(2 \kappa \phi_{K}^{2}-2-\omega_{\ell}^{2}\right) \widehat{\eta}(x) & =g_{\ell}(x)
\end{aligned}
$$

where $\ell=1,2$ and $\omega_{1}=3 \widehat{\omega}_{j}, \omega_{2}=\widehat{\omega}_{j}+\bar{\omega}$.
These equations describe the radiation emitted on the longitudinal channel at

3.Perturbative approach

Using the previous relations in the original truncated expansion the next differential equations are found:

$$
\begin{aligned}
-\bar{\eta}^{\prime \prime}(x)+\left(6 \phi_{K}^{2}-2-4 \widehat{\omega}_{j}^{2}\right) \bar{\eta}(x) & =f(x), \\
-\widehat{\eta}^{\prime \prime}(x)+\left(2 \kappa \phi_{K}^{2}-2-\omega_{\ell}^{2}\right) \widehat{\eta}(x) & =g_{\ell}(x),
\end{aligned}
$$

where $\ell=1,2$ and $\omega_{1}=3 \widehat{\omega}_{j}, \omega_{2}=\widehat{\omega}_{j}+\bar{\omega}$.
These equations describe the radiation emitted on the longitudinal channel at frequency $2 \widehat{\omega}_{j}$ and on the orthogonal one at frequencies $3 \widehat{\omega}_{j}$ and $\widehat{\omega}_{j}+\bar{\omega}$.

3.Perturbative approach

Using the variation of parameters method the assymptotic behaviour of the radiation terms can be computed:

$$
\begin{array}{ll}
\bar{\eta}_{2 \bar{\omega}_{j}} & \xrightarrow{x \rightarrow \infty} \\
& \frac{i\left(\int_{-\infty}^{\infty} \bar{\eta}_{\bar{q}}(y) f(y) d y\right)}{2(\bar{q}+i)(\bar{q}+2 i)} e^{-i \bar{q} x} \\
\hat{\eta}_{\omega_{\ell}} \xrightarrow{x \rightarrow \infty} & \frac{\left(\int_{-\infty}^{\infty} \widehat{\eta}_{\widehat{q}_{\ell}}(y) g_{\ell}(y) d y\right)}{2 i \widehat{q}_{\ell}} e^{-i \bar{q}_{\ell} x}
\end{array}
$$

where

$$
\begin{aligned}
\bar{q} & =2 \sqrt{\widehat{\omega}_{j}^{2}-1}, \\
\widehat{q}_{1} & =\sqrt{9 \widehat{\omega}_{j}^{2}+2-2 \kappa}, \\
\widehat{q}_{2} & =\sqrt{\left(\widehat{\omega}_{j}+\bar{\omega}\right)^{2}+2-2 \kappa} .
\end{aligned}
$$

3.Perturbative approach

4. Numerical results: Radiation amplitudes

Longitudinal Radiation Amplitudes

4. Numerical results: Radiation amplitudes

Orthogonal Radiation Amplitudes

4. Numerical results: Orthogonal shape mode amplitudes

- We have assumed that the amplitude of the triggered shape mode remains constant. This assumption works fine when $\widehat{\eta}_{D, 1}$ and $\widehat{\eta}_{D, 2}$ are initially activated.

- But for $\widehat{\eta}_{D, 0}$ a large decrease in the wobbling amplitude can be appreciated.

4. Numerical results: Orthogonal shape mode amplitudes

- A decay law for a_{0} can be computed in order. First, if we trigger $\widehat{\eta}_{D, 0}$ the total radiated energy flux is given by

$$
\langle P\rangle=\frac{d E}{d t}=-\left(a_{0}^{2} \bar{A}_{2 \widehat{\omega}_{0}}^{\prime}\right)^{2}\left(2 \widehat{\omega}_{0}\right) \bar{q},
$$

where $\bar{A}_{2 \widehat{\omega}_{0}}=a_{0}^{2} \bar{A}_{2 \widehat{\omega}_{0}}^{\prime}$.

4. Numerical results: Orthogonal shape mode amplitudes

- A decay law for a_{0} can be computed in order. First, if we trigger $\widehat{\eta}_{D, 0}$ the total radiated energy flux is given by

$$
\langle P\rangle=\frac{d E}{d t}=-\left(a_{0}^{2} \bar{A}_{2 \widehat{\omega}_{0}}^{\prime}\right)^{2}\left(2 \widehat{\omega}_{0}\right) \bar{q}
$$

where $\bar{A}_{2 \widehat{\omega}_{0}}=a_{0}^{2} \bar{A}_{2 \bar{\omega}_{0}}^{\prime}$.

- On the other hand, the wobbling amplitude behaves as an harmonic oscillator on each point of the space so,

$$
\mathcal{E}=\frac{1}{2} \widehat{\omega}_{0}^{2} a_{0}^{2} \widehat{\eta}_{0}^{2} \rightarrow E=\int_{-\infty}^{\infty} \mathcal{E} d x=\frac{1}{2} \widehat{\omega}_{0}^{2} a_{0}^{2} \widehat{C}_{D, 0}^{2} .
$$

4. Numerical results: Orthogonal shape mode amplitudes

- A decay law for a_{0} can be computed in order. First, if we trigger $\widehat{\eta}_{D, 0}$ the total radiated energy flux is given by

$$
\langle P\rangle=\frac{d E}{d t}=-\left(a_{0}^{2} \bar{A}_{2 \widehat{\omega}_{0}}^{\prime}\right)^{2}\left(2 \widehat{\omega}_{0}\right) \bar{q}
$$

where $\bar{A}_{2 \bar{\omega}_{0}}=a_{0}^{2} \bar{A}_{2 \bar{\omega}_{0}}^{\prime}$.

- On the other hand, the wobbling amplitude behaves as an harmonic oscillator on each point of the space so,

$$
\mathcal{E}=\frac{1}{2} \widehat{\omega}_{0}^{2} a_{0}^{2} \widehat{\eta}_{0}^{2} \rightarrow E=\int_{-\infty}^{\infty} \mathcal{E} d x=\frac{1}{2} \widehat{\omega}_{0}^{2} a_{0}^{2} \widehat{C}_{D, 0}^{2} .
$$

- This leads to the following differential equation for $a_{0}(t)$

$$
\frac{1}{2} \widehat{\omega}_{0}^{2} \widehat{C}_{D, 0}^{2} \frac{d a_{0}^{2}(t)}{d t} \approx-2 \widehat{\omega}_{0} \bar{A}_{2 \widehat{\omega}_{0}}^{\prime 2} \bar{q} a_{0}^{4}(t)
$$

whose solution is

$$
a_{0}(t) \approx \frac{a_{0}(0)}{\sqrt{1+t\left(\frac{4 \bar{q} a_{0}(0)^{2} \bar{A}_{2 \widehat{\omega}_{0}}^{\prime 2}}{\widehat{C}_{D, 0}^{2} \widehat{\omega}_{0}}\right)}} .
$$

5. Conclusions and future works

- Along this work, we have discussed the behaviour of an excited kink. In this process, radiation at three different frequencies has been found.
- All the analytical methods used in this presentation can be extended in order to study other excited topological solitons such as Abelian-Higgs vortices.

5. Conclusions and future works

- Along this work, we have discussed the behaviour of an excited kink. In this process, radiation at three different frequencies has been found.
- Apart from this, the amplitudes found analytically predict the behaviour seen through numerical simulations.
- All the analytical methods used in this presentation can be extended in order to study other excited topological solitons such as Abelian-Higgs vortices.

5. Conclusions and future works

- Along this work, we have discussed the behaviour of an excited kink. In this process, radiation at three different frequencies has been found.
- Apart from this, the amplitudes found analytically predict the behaviour seen through numerical simulations.
- All the analytical methods used in this presentation can be extended in order to study other excited topological solitons such as Abelian-Higgs vortices.

Thanks for your attention!!!

[^0]: ${ }^{1}$ A. Halavanau, T. Romanczukiewicz and Y.M. Shnir, Resonance structures in coupled two-component ϕ^{4} model, Phys. Rev. D 86, 085027 (2012).

[^1]: ${ }^{1}$ A. Halavanau, T. Romanczukiewicz and Y.M. Shnir, Resonance structures in coupled two-component ϕ^{4} model, Phys. Rev. D 86, 085027 (2012).

[^2]: ${ }^{1}$ A. Halavanau, T. Romanczukiewicz and Y.M. Shnir, Resonance structures in coupled two-component ϕ^{4} model, Phys. Rev. D 86, 085027 (2012).

[^3]: ${ }^{2}$ N.S. Manton and H. Merabet, Kinks-gradient flow and dynamics, Nonlinearity 10, 3 (1997).

