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1.Introduction

Among the range of topological solitons, kinks are the simplest and arise in a
wide variety of scalar field theories.

We will study one of the kinks that arise in a two-component ϕ4 scalar field
theory coupled by means of a parameter κ .

We will unravel the behaviour of the kink solution when one of its shape
modes is initially triggered. We will use a perturbative approach and then we
will compare the results obtained with numerical simulations.
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2.Kinks in the two-component ϕ4 model

The model we are going to study is given by the Lagrangian density 1

L =
1

2
∂µϕ∂

µϕ+
1

2
∂µψ∂

µψ − U(ϕ, ψ).

where

U(ϕ, ψ) =
1

2
(ϕ2 − 1)2 +

1

2
(ψ2 − 1)2 + κϕ2ψ2 − 1

2
.

The associated field equations are

∂ttϕ− ∂xxϕ+ 2ϕ(ϕ2 − 1 + κψ2) = 0,

∂ttψ − ∂xxψ + 2ψ(ψ2 − 1 + κϕ2) = 0.

For the potential U(ϕ, ψ) the vacua structure depends on the value of κ:

Mκ<1 =


1

√
1 + κ

 (−1)a

(−1)b

 , a, b = 0, 1

 ,

Mκ>1 =


 (−1)a

0


 0

(−1)b

 , a, b = 0, 1

 .

1A. Halavanau, T. Romanczukiewicz and Y.M. Shnir, Resonance structures in coupled
two-component ϕ4 model, Phys. Rev. D 86, 085027 (2012).
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2.kinks in the two-component ϕ4 model

κ < 1
Kink solutions take the form:

K (a,b)(x) =
tanh x√
1 + κ

 (−1)a

(−1)b

 , a, b = 0, 1.

Shown over the potential:
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2.kinks in the two-component ϕ4 model

κ > 1
Kink solutions take the form:

K
(±)
1 (x) =

 ± tanh x

0

 , K
(±)
2 (x) =

 0

± tanh x

 .

Shown over the potential:

6/1



2.Stability and eigenmodes of the kink solution

When the stability of a kink solution is studied we have to propose a solution
with the structure

K̃ (x , t;ω, a) = K
(±)
1 (x) + a e iωt Fω(x) .

where K
(±)
1 (x) is the kink solution and a is a small real parameter.

Plugging this solution would lead to the problem

H Fω(x) = ω2Fω(x)

where

H =

 − d2

dx2 + 4− 6 sech2x 0

0 − d2

dx2 + 2κ tanh2 x − 2

 .
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2.Stability and eigenmodes of the kink solution

Longitudinal eigenmodes

Eigenfrequency (ω) Eigenfunction

0 (η0(x), 0)
t = (sech2x , 0)t

ω =
√
3 (ηD(x), 0)

t = (sech x tanh x , 0)t

ωc
q =

√
4 + q2 (ηq(x), 0)

t =
(
e iqx [−1− q2 + 3 tanh2 x − 3iq tanh x] , 0

)t

Orthogonal eigenmodes

Eigenfrequency (ω) Eigenfunction

ω̂D,n =
√

(2n + 1)ρ − n2 − n − 5
2

(0, η̂D (x))t = (0, (sech x)
ρ−n− 1

2 2F1(−n, 2ρ − n, ρ − n + 1/2,
(1−tanh x)

2
))t

ω̂c
q̂

=

√
q̂2 + 2κ − 2

(
0 , η̂q̂ (x)

)t
=

(
0, 2F1(

1
2

− ρ, 1
2

+ ρ,−i q̂ + 1,
(1−tanh x)

2
) ei q̂x

)t

where q and q̂ are real quantities, ρ =
√
2κ+ 1

4 and n is a natural number whose

maximum value is given by the relation κ > nmax (nmax+1)
2 . For κ < 3, ω̂2

D,0 < 0,
which means that the kink is unstable in this regime.
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3.Perturbative appoach

We are interested in studying the evolution of the system when one
orthogonal mode is initially activated.

We are going to assume a general expansion of the fields of the form 2

ϕ(x , t) = ϕK (x) + a(t) ηD(x) + η(x , t),

ψ(x , t) =
∑
p

âp(t) η̂D,p(x) + η̂(x , t),

where ϕK (x) = tanh x .
Plugging this assumption into the field equations and neglecting the smallest
terms we find

(att + ω2 a) ηD + ηtt − ηxx − 2η + 6 η ϕ2K + 6a2 η2D ϕK + 2κϕK (
∑
p

âp η̂D,p)
2 ≈ 0, (1)

∑
p

((âtt)p + ω̂2
p âp) η̂D,p + η̂tt − η̂xx − 2η̂ + 2κ η̂ ϕ2K + 4κ a ηD ϕK

∑
p

âp η̂D,p ≈ 0. (2)

2N.S. Manton and H. Merabet, Kinks-gradient flow and dynamics, Nonlinearity 10, 3 (1997).
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3.Perturbative approach

If the previous equations are projected onto η and η̂D,m, then:

(att + ω2 a)C
2

D + 6 a2 V +
∑
p,r

âp âr B̂pr = 0,

((âtt)m + ω̂2
m âm) Ĉ

2
D,m + 2

∑
p

a âp B̂pm = 0.

As it is assumed that we initially trigger the j-th shape mode, then

âj(t) ≈ a0 sin(ω̂j t).

If we now plug this formula into the first differential equation with the initial
conditions

at(0) = a(0) = 0, âm(0) = âm(0)t = 0 with m ̸= j ,

we have that

a(t) ≈
a20B̂jj

(
4ω̂2

j − ω2 + ω2 cos(2ω̂j t)− 4ω̂2
j cos(ωt)

)
2C

2

Dω
2(ω2 − 4ω̂2

j )
.
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we have that

a(t) ≈
a20B̂jj

(
4ω̂2

j − ω2 + ω2 cos(2ω̂j t)− 4ω̂2
j cos(ωt)

)
2C

2

Dω
2(ω2 − 4ω̂2

j )
.

10/1



3.Perturbative approach

Using the previous relations in the original truncated expansion the next
differential equations are found:

−η ′′(x) + (6ϕ2K − 2− 4ω̂2
j ) η(x) = f (x),

−η̂ ′′(x) + (2κϕ2K − 2− ω2
ℓ ) η̂(x) = gℓ(x),

where ℓ = 1, 2 and ω1 = 3ω̂j , ω2 = ω̂j + ω.

These equations describe the radiation emitted on the longitudinal channel at
frequency 2ω̂j and on the orthogonal one at frequencies 3ω̂j and ω̂j + ω.
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3.Perturbative approach

Using the variation of parameters method the assymptotic behaviour of the
radiation terms can be computed:

η2ω̂j

x→∞−−−→
i
(∫∞

−∞ ηq(y)f (y)dy
)

2(q + i)(q + 2i)
e−iqx ,

η̂ωℓ

x→∞−−−→

(∫∞
−∞ η̂q̂ℓ(y)gℓ(y)dy

)
2i q̂ℓ

e−i q̂ℓx .

where

q = 2
√
ω̂2
j − 1,

q̂1 =
√
9ω̂2

j + 2− 2κ,

q̂2 =
√
(ω̂j + ω)2 + 2− 2κ.
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3.Perturbative approach
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4.Numerical results: Radiation amplitudes

Longitudinal Radiation Amplitudes

ω = 2ω 0
0=0.01
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aω
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4. Numerical results: Radiation amplitudes

Orthogonal Radiation Amplitudes
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4.Numerical results: Orthogonal shape mode amplitudes

We have assumed that the amplitude of the triggered shape mode remains
constant. This assumption works fine when η̂D,1 and η̂D,2 are initially
activated.
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But for η̂D,0 a large decrease in the wobbling amplitude can be appreciated.
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4.Numerical results: Orthogonal shape mode amplitudes

A decay law for a0 can be computed in order. First, if we trigger η̂D,0 the
total radiated energy flux is given by

⟨P⟩ = dE

dt
= −(a20 A

′
2ω̂0

)2 (2 ω̂0) q,

where A2ω̂0
= a20 A

′
2ω̂0

.
On the other hand, the wobbling amplitude behaves as an harmonic oscillator
on each point of the space so,

E =
1

2
ω̂2
0a

2
0η̂

2
0 → E =

∫ ∞

−∞
E dx =

1

2
ω̂2
0 a20 Ĉ 2

D,0.

This leads to the following differential equation for a0(t)

1

2
ω̂2
0 Ĉ 2

D,0

da20(t)

dt
≈ −2ω̂0 A

′2
2ω̂0

q a40(t),

whose solution is

a0(t) ≈
a0(0)√√√√1 + t

(
4 q a0(0)

2 A
′2
2ω̂0

Ĉ 2
D,0 ω̂0

) .
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5.Conclusions and future works

Along this work, we have discussed the behaviour of an excited kink. In this
process, radiation at three different frequencies has been found.

Apart from this, the amplitudes found analytically predict the behaviour seen
through numerical simulations.

All the analytical methods used in this presentation can be extended in order
to study other excited topological solitons such as Abelian-Higgs vortices.
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Thanks for your attention!!!
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