Drinfeld realization of the centrally extended $\mathfrak{p s l}(2 \mid 2)$ Yangian algebra with the manifest coproducts

Takuya Matsumoto ${ }^{1}$
Based on arXiv:2208.11889 [math.QA] partly working with Prof. Yoshiyuki Koga ${ }^{1}$
${ }^{1}$ University of Fukui
\section*{Tagen MathPhys. Seminar}
September 13, 2022 @ Nagoya University

Motivations

- $\mathfrak{s l}(2 \mid 2)$ is a distinguished Lie superalgebra.
- Math: \#(defect) are two, the Killing form is degenerated, allows two central extensions.
[lohara,Koga]
- Phys: Supersymmetries in particles phys, 1-dim Hubbard model in statistical phys.
[Beisert][Shastry]
- The Yangian algebra $Y(\mathfrak{g})$ assoc. with the Lie alg. \mathfrak{g} is a def. of the UEA $U(\mathfrak{g})$,
[Drinfeld,'85]
- having the non-local actions, called the coproducts Δ,

$$
\begin{aligned}
& \Delta: Y \rightarrow Y \otimes Y \quad \text { (alg. hom.) } \\
& \Delta\left(\widehat{J}^{A}\right)=\widehat{J}^{A} \otimes 1+1 \otimes \widehat{J}^{A}+\frac{\hbar}{2} f_{B C}^{A} J^{B} \otimes J^{C} .
\end{aligned}
$$

- There are several realizations of $Y(\mathfrak{g})$; D1, D2, RTT. In particular, the D2 fits for the repr. th.
[Drinfeld,'88]
- We've shown that the compatibility of Δ with the D2. [M,'22]

$$
\Delta([x, y])=[\Delta(x), \Delta(y)] \quad \text { for } \quad x, y \in Y_{\mathrm{D} 2}\left(\mathfrak{s l}(2 \mid 2) \oplus \mathbb{C}^{2}\right) .
$$

- This allows us to prove the PBW thm.
[M, in prep.]

Plan of this talk

Lie Superalgebra $\mathfrak{s l}(2 \mid 2)$
Central extensions of $\mathfrak{s l}(2 \mid 2)$

Yangian and the Hopf algebraic structures

Quantum affine algebra
Affine Lie Superalgebra $\widehat{\mathfrak{s l}(2 \mid 2)}$
Odd reflections
Weyl group
Generalized Verma modules

Lie Superalgebra $\mathfrak{s l}(2 \mid 2)$

Central extensions of $\mathfrak{s l}(2 \mid 2)$

Yangian and the Hopf algebraic structures

Quantum affine algebra

Affine Lie Superalgebra $\widehat{\mathfrak{s l}(2 \mid 2)}$

Odd reflections

Lie Superalgebra

- Lie superalgebra \mathfrak{g} is a \mathbb{Z}_{2}-graded vector sp . equipped with the graded commutator $[]:, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$,

$$
[A, B]=A B-(-1)^{\bar{A} \bar{B}} B A, \quad \bar{A}=\left\{\begin{array}{ll}
\overline{0} & \text { (even) } \\
\overline{1} & \text { (odd) }
\end{array} .\right.
$$

- Ex. $\mathfrak{g l}(m \mid n)$ is generated by $E_{i j}(i, j=1, \cdots, m+n)$ and they satisfy the relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{j k} E_{i l}-(-1)^{(\bar{i}+\bar{j})(\bar{k}+\bar{l})} \delta_{i l} E_{j k}
$$

The parity is defined by $\overline{E_{i j}}=\bar{i}+\bar{j}$ and

$$
\begin{gathered}
\bar{i}= \begin{cases}0 & (i=1, \ldots, m) \\
1 & (i=m+1, \cdots, m+n)\end{cases} \\
\text { i.e. } \mathfrak{g l}(m \mid n)=\left[\begin{array}{c|c}
\mathfrak{g l}_{m} & \text { Odd } \\
\hline \text { Odd } & \mathfrak{g l}_{n}
\end{array}\right] \supset \mathfrak{g l}_{m} \oplus \mathfrak{g l}_{n} \text { : even subalg. }
\end{gathered}
$$

Lie Superalgebra $\mathfrak{s l}(2 \mid 2)$

- Supertrace STr for a supermatrix $M=\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is define by $\mathrm{STr} M=\operatorname{Tr} A-\operatorname{Tr} D$.
- Lie superalgebra $\mathfrak{s l}(2 \mid 2)$ is the supertraceless part of $\mathfrak{g l}(2 \mid 2)$;

$$
\mathfrak{s l}(2 \mid 2)=\{x \in \mathfrak{g l}(2 \mid 2) \mid \mathrm{STr} x=0\} .
$$

Set $I=\operatorname{diag}(1,1,-1,-1)$, then $\mathbb{C} I \ltimes \mathfrak{s l}(2 \mid 2)=\mathfrak{g l}(2 \mid 2)$.

- Set $C=\frac{1}{2} \operatorname{diag}(1,1,1,1)$ (center). $\mathfrak{s l}, \mathfrak{p g l}, \mathfrak{p s l}$ are related as

$$
\begin{aligned}
\mathfrak{g l}(2 \mid 2) & =\mathbb{C} I \ltimes \mathfrak{s l}(2 \mid 2) \quad \text { (subalg.) } \\
& =\quad \mathfrak{p g l}(2 \mid 2) \ltimes \mathbb{C} C \quad \text { (projected out) } \\
& =\mathbb{C} I \ltimes \mathfrak{p s l}(2 \mid 2) \ltimes \mathbb{C} C .
\end{aligned}
$$

c.f. $\mathfrak{p s l}(2 \mid 2)=A_{1,1} \cdot \mathfrak{p s l}(2 \mid 2) \supset \mathfrak{s l}(2) \oplus \mathfrak{s l}(2)$ (ev. subalg.).

Lie Superalgebra $\mathfrak{s l}(2 \mid 2)$

Central extensions of $\mathfrak{s l}(2 \mid 2)$

Yangian and the Hopf algebraic structures

Quantum affine algebra

Affine Lie Superalgebra $\widehat{\mathfrak{s l}(2 \mid 2)}$

Odd reflections

Central extensions

$-\operatorname{psl}(2 \mid 2)$ has the three-dim. central extensions. [Iohara,Koga]

$$
\begin{aligned}
\mathfrak{p s l}(2 \mid 2) \oplus \mathbb{C}^{3} & :=\left[\begin{array}{c|c}
\mathfrak{s l} 2 & \text { Odd } \\
\hline \text { Odd } & \mathfrak{s l}
\end{array}\right] \oplus \mathbb{C} C \oplus \mathbb{C} P^{+} \oplus \mathbb{C} P^{-} \\
& =\mathfrak{s l}(2 \mid 2) \oplus \mathbb{C} P^{+} \oplus \mathbb{C} P^{-}
\end{aligned}
$$

- It could be obtained from the excep. Lie salg. $D(2,1 ; \alpha)$;

$$
\begin{array}{r}
D(2,1 ; \alpha) \underset{\text { even }}{\supset} \mathfrak{S l}_{2} \oplus \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2} \\
\xrightarrow{\alpha \rightarrow 0} \\
\mathfrak{p s l}(2 \mid 2) \oplus \mathbb{C}^{3} \underset{\text { even }}{\supset} \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2} \oplus \mathbb{C}^{3}
\end{array}
$$

- Introduce the simple root generators as

$$
\begin{aligned}
& \qquad\left[\begin{array}{cc|cc}
h & x_{1}^{+} & & \\
x_{1}^{-} & h & x_{2}^{+} & \\
\hline & x_{2}^{-} & h & x_{3}^{+} \\
& & x_{3}^{-} & h
\end{array}\right], \quad\left\{\begin{array}{l}
h_{1}=E_{11}-E_{22} \\
h_{2}=E_{22}+E_{33} \\
h_{3}=-E_{33}+E_{44}
\end{array} .\right. \\
& \text { c.f. } \frac{1}{2} h_{1}+h_{2}+\frac{1}{2} h_{3}=\sum_{i=1}^{4} E_{i i}=C \text { is central. }
\end{aligned}
$$

Defining relations

Def. $1\left(\mathfrak{p s l}(2 \mid 2) \oplus \mathbb{C}^{3}\right)$

The centrally extended Lie superalgebra $\mathfrak{g}=\mathfrak{p s l}(2 \mid 2) \oplus \mathbb{C}^{3}$ over \mathbb{C} has the generators $h_{i, 0}, x_{i, 0}^{ \pm}$with $i=1,2,3$ and the central elements $P_{0}^{ \pm}$, and they satisfy the following relations;

$$
\begin{align*}
{\left[h_{i, 0}, h_{j, 0}\right] } & =0 \tag{1}\\
{\left[h_{i, 0}, x_{j, 0}^{ \pm}\right] } & = \pm a_{i j} x_{j, 0}^{ \pm} \tag{2}\\
{\left[x_{i, 0}^{+}, x_{j, 0}^{-}\right] } & =\delta_{i j} h_{i, 0} \tag{3}\\
{\left[x_{2,0}^{ \pm}, x_{2,0}^{ \pm}\right]=\left[x_{1,0}^{ \pm}, x_{3,0}^{ \pm}\right] } & =0 \tag{4}\\
{\left[x_{i, 0}^{ \pm},\left[x_{i, 0}^{ \pm}, x_{2,0}^{ \pm}\right]\right] } & =0 \quad \text { for } \quad i=1,3 \tag{5}\\
{\left[\left[x_{1,0}^{ \pm}, x_{2,0}^{ \pm}\right],\left[x_{3,0}^{ \pm}, x_{2,0}^{ \pm}\right]\right] } & =P_{0}^{ \pm} . \tag{6}
\end{align*}
$$

The Cartan matrix is $\left(a_{i j}\right)=\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -2\end{array}\right)$.
Remark:
$\frac{1}{2} h_{1}+h_{2}+\frac{1}{2} h_{3}=: C$ is central in $\mathfrak{s l}(2 \mid 2)$ and
$A_{1,1}=\mathfrak{p s l}(2 \mid 2)=\mathfrak{s l}(2 \mid 2) / \mathbb{C} C$.

Representations

Theorem 2 (M-Molev,'14)

A complete list of pairwise non-isomorphic finite-dimensional irreducible representations of \mathfrak{g} where the central elements act by
$C \mapsto 0, P_{0}^{-} \mapsto 0, P_{0}^{+} \mapsto 1$, consists of

1. the Kac modules $K(m, n)$ with $m, n \in \mathbb{Z}_{+}$and $m \neq n$, $\operatorname{dim} K(m, n)=16(m+1)(n+1)$,
2. the modules S_{n} with $n \in \mathbb{Z}_{+}, \quad \operatorname{dim} S_{n}=8(n+1)(n+2)$.

Note:

- There exists outer automorphism of \mathfrak{g} sending

$$
\left(\begin{array}{cc}
C & -P_{0}^{-} \\
P_{0}^{+} & -C
\end{array}\right) \mapsto\left(\begin{array}{rr}
D & 0 \\
0 & -D
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \text {. }
$$

- The reps. of the former case coincide with those of $\mathfrak{s l}(2 \mid 2)$.
- The reps. of the latter are discussed in the above theorem.

Lie Superalgebra $\mathfrak{s l}(2 \mid 2)$

Central extensions of $\mathfrak{s l}(2 \mid 2)$

Yangian and the Hopf algebraic structures

Quantum affine algebra

Affine Lie Superalgebra $\widehat{\mathfrak{s l}(2 \mid 2)}$

Odd reflections

What's the Yangian?

- The Yangian $Y_{\hbar}(\mathfrak{g})$ is the one-param. (\hbar) def. of the UEA $U(\mathfrak{g})$ of the Lie alg. \mathfrak{g}, introduced by [Drinfeld,'85],
- with the $\mathbb{Z}_{\geq 0}$-degree.

$$
\begin{aligned}
& \{0\} \subset Y(\mathfrak{g})_{0}=U(\mathfrak{g}) \subset Y(\mathfrak{g})_{1} \subset Y(\mathfrak{g})_{2} \subset \cdots \\
& Y(\mathfrak{g})=\bigcup_{n=0}^{\infty} Y(\mathfrak{g})_{n}, \quad Y(\mathfrak{g})_{n}=\{x \in Y(\mathfrak{g}) \mid \operatorname{deg}(x) \leq n\}
\end{aligned}
$$

- having the non-local actions called the coproducts,

$$
\begin{aligned}
& \Delta: Y \rightarrow Y \otimes Y \quad \text { (alg. hom.) } \\
& \Delta\left(\widehat{J}^{A}\right)=\widehat{J}^{A} \otimes 1+1 \otimes \widehat{J}^{A}+\frac{\hbar}{2} f_{B C}^{A} J^{B} \otimes J^{C}
\end{aligned}
$$

- From the QIMs point of view, the Yangian arises as the symmetries of the rational R-matrices.

Models	R-matrix	inf. dim. symmetries
XXX	Rational	Yangian
XXZ	Trigonometric	Quantum affine alg.
XYZ	Elliptic	Ell. quan. aff. alg.

How to define the Yangians $(1 / 3)$

Drinfeld's first realization

Generators:

$$
\begin{aligned}
& J^{A}(\text { Lie alg. }), \widehat{J}^{A}(\text { deg. } 1) \\
& (A=1, \cdots, \operatorname{dim} \mathfrak{g} .)
\end{aligned}
$$

Relations:

$$
\begin{aligned}
& {\left[J^{A}, J^{B}\right]=f^{A B}{ }_{C} J^{C}} \\
& {\left[\widehat{J}^{A}, J^{B}\right]=f^{A B}{ }_{C} \widehat{J}^{C}} \\
& {\left[\left[\widehat{J}^{A}, \widehat{J}^{B}\right], J^{C}\right]-\left[\left[\widehat{J}^{A}, J^{B}\right], \widehat{J}^{C}\right]} \\
& \quad=\hbar^{2} a_{D E F}^{A B C} J^{D} J^{E} J^{F} \\
& \quad \text { (Serre rel.) }
\end{aligned}
$$

Nice: fewer generators, a natural lift of the Lie alg.
Bad: Not suitable for the representation theory.

How to define the Yangians (2/3)

Drinfeld's second realization

Generators:

$E_{i, r}, F_{i, r}, H_{i, r}$,
$(i=1, \cdots, \operatorname{rankg}, r=0,1,2, \cdots)$
Relations:

$$
\begin{aligned}
& {\left[H_{i, r}, H_{j, s}\right]=0} \\
& {\left[H_{i, r+1}, E_{j, s}\right]-\left[H_{i, r}, E_{j, s+1}\right]} \\
& \quad=\frac{\hbar}{2} a_{i j}\left\{H_{i, r}, E_{j, s}\right\}
\end{aligned}
$$

Nice: Including the Cartan gens., suitable for repr. theory.
Bad: The coproduct structure is Not transparent.
\Rightarrow Remedy: Levendorskii's realization

How to define the Yangians (3/3)

RTT formulation

Generators: $t_{i j}^{(r)}$

$$
(i, j=1, \cdots, n, r=0,1,2, \cdots .)
$$

Relations:

$$
\begin{aligned}
& R_{12}(u-v) T_{1}(u) T_{2}(v) \\
& \quad=T_{2}(v) T_{1}(u) R_{12}(u-v)
\end{aligned}
$$

where

$$
\begin{aligned}
& t_{i j}(u):=\delta_{i j}+\sum_{r>1} t_{i j}^{(r)} u^{-r} \\
& T(u):=e_{i j} \otimes t_{i j}(u) \\
& R_{12}(u):=1-P_{12} u^{-1}
\end{aligned}
$$

Nice: Yangians as sols. of the YBE, the coproducts are obvious, and suitable for repr. theory. See [Molev san's book]!

Bad: Relations to the other defs. are not clear. "Top down."

Yangian

Def. 3 (Drinfeld realization $\left.\mathrm{Y}_{D}\left(\mathfrak{s l}(2 \mid 2) \oplus \mathbb{C}^{3}\right),[\mathrm{M}]\right)$

The Yangian $\mathrm{Y}_{D}\left(\mathfrak{s l}(2 \mid 2) \oplus \mathbb{C}^{3}\right)$ is generated by $h_{i, r}, x_{i, r}^{ \pm}$with $i=1,2,3$ and the central elements $P_{r}^{ \pm}$with $r=0,1,2, \cdots$.
They satisfy the following relations,

$$
\begin{align*}
& {\left[h_{i, r}, h_{j, s}\right]=0, \quad\left[x_{i, r}^{+}, x_{j, s}^{-}\right]=\delta_{i j} h_{i, r+s}, \quad\left[h_{i, 0}, x_{j, r}^{ \pm}\right]= \pm a_{i j} x_{j, r}^{ \pm}} \tag{7}\\
& {\left[h_{i, r+1}, x_{j, s}^{ \pm}\right]-\left[h_{i, r}, x_{j, s+1}^{ \pm}\right]= \pm \frac{1}{2} a_{i j}\left\{h_{i, r}, x_{j, s}^{ \pm}\right\} \quad \text { for } i, j \text { not both } 2} \tag{8}\\
& {\left[h_{2, r}, x_{2, s}^{ \pm}\right]=0} \tag{9}\\
& {\left[x_{i, r+1}^{ \pm}, x_{j, s}^{ \pm}\right]-\left[x_{i, r}^{ \pm}, x_{j, s+1}^{ \pm}\right]= \pm \frac{1}{2} a_{i j}\left\{x_{i, r}^{ \pm}, x_{j, s}^{ \pm}\right\} \quad \text { for } i, j \text { not both } 2} \tag{10}\\
& {\left[x_{2, r}^{ \pm}, x_{2, s}^{ \pm}\right]=0} \tag{11}\\
& {\left[x_{j, r}^{ \pm},\left[x_{j, s}^{ \pm}, x_{2, t}^{ \pm}\right]\right]+\left[x_{j, s}^{ \pm},\left[x_{j, r}^{ \pm}, x_{2, t}^{ \pm}\right]\right]=0 \quad \text { for } \quad j=1,3} \tag{12}\\
& {\left[\left[x_{1, r}^{ \pm}, x_{2,0}^{ \pm}\right],\left[x_{3, s}^{ \pm}, x_{2,0}^{ \pm}\right]\right]=P_{r+s}^{ \pm} .} \tag{13}
\end{align*}
$$

The Cartan matrix is $\left(a_{i j}\right)=\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -2\end{array}\right)$.

Yangian

Denote $\mathfrak{s l}(2 \mid 2) \oplus \mathbb{C}^{3}$ by \mathfrak{g}.

Purpose:

We would like to show that the Yangian $\mathrm{Y}_{D}(\mathfrak{g})$ has the Hopf algebraic structures.

But, hard to show the coproducts Δ for the Drinfeld realizations.

Remedy:

1. Define the truncated system $Y_{L}(\mathfrak{g})$, called the Levendorskii's realization.
2. Introduce the Hopf alg. str. for $\mathrm{Y}_{L}(\mathfrak{g})$.
3. Show the isom. $\mathrm{Y}_{D}(\mathfrak{g}) \simeq \mathrm{Y}_{L}(\mathfrak{g})$.

The Hopf alg. str. of $\mathrm{Y}_{D}(\mathfrak{g})$ are induced from those of $\mathrm{Y}_{L}(\mathfrak{g})$.
c.f. [Spill, Torrielli]

Levendorskii's realization of the Yangians

Levendorskii's realization
[Levendorskii,'93]
Generators:

$$
\begin{aligned}
& \left.E_{i, 0}, F_{i, 0}, H_{i, 0} \text { (deg. } 0\right) \\
& \left.E_{i, 1}, F_{i, 1}, H_{i, 1} \text { (deg. } 1\right)
\end{aligned}
$$

Relations:

Truncation of D2 up to deg. 0 and 1.

$$
\begin{aligned}
& \widetilde{H}_{i, 1}:=H_{i, 1}-\frac{1}{2} H_{i, 0}^{2} \\
& \Rightarrow E_{i, r+1}=\frac{1}{a_{i i}}\left[\widetilde{H}_{i, 1}, E_{i, r}\right] \\
& \text { "Boost operator" }
\end{aligned}
$$

Nice: Reduced system of D2. The Hopf alg. str. could be proven (by brute force...).

Bad: Isomorphism with D2 is shown by tedious induction.

Yangian

Def. 4 (Levendorskii's realization $\mathrm{Y}_{L}\left(\mathfrak{s l}(2 \mid 2) \oplus \mathbb{C}^{3}\right)$) The Yangian $\mathrm{Y}_{L}\left(\mathfrak{s l}(2 \mid 2) \oplus \mathbb{C}^{3}\right)$ generated by $h_{i, 0}, x_{i, 0}^{ \pm}, \tilde{h}_{i, 1}, x_{i, 1}^{ \pm}$ with $i=1,2,3$ and the central elements $P_{0}^{ \pm}, P_{1}^{ \pm}$. They satisfy the relations of the Lie algebra (Def.1) and

$$
\begin{align*}
& {\left[\tilde{h}_{i, 1}, h_{j, 0}\right]=0, \quad\left[\tilde{h}_{i, 1}, \tilde{h}_{j, 1}\right]=0 \quad \text { (degree two rels.) },} \tag{14}\\
& {\left[\tilde{h}_{i, 1}, x_{j, 0}^{ \pm}\right]= \pm a_{i j} x_{j, 1}^{ \pm}, \quad\left[x_{i, 1}^{+}, x_{j, 0}^{-}\right]=\delta_{i j} h_{i, 1}} \tag{15}\\
& {\left[x_{i, 1}^{ \pm}, x_{j, 0}^{ \pm}\right]-\left[x_{i, 0}^{ \pm}, x_{j, 1}^{ \pm}\right]= \pm \frac{1}{2} a_{i j}\left\{x_{i, 0}^{ \pm}, x_{j, 0}^{ \pm}\right\}} \tag{16}\\
& {\left[x_{2,1}^{ \pm}, x_{2,0}^{ \pm}\right]=0} \tag{17}\\
& {\left[\tilde{h}_{j, 1},\left[x_{j, 1}^{+}, x_{j, 1}^{-}\right]\right]=0 \quad \text { for } \quad j=1,3} \tag{18}\\
& {\left[\tilde{h}_{1,1},\left[x_{2,1}^{+}, x_{2,1}^{-}\right]\right]=0 \quad \text { (degree three rels.) }} \tag{19}\\
& {\left[\left[x_{1,1}^{ \pm}, x_{2,0}^{ \pm}\right],\left[x_{3,0}^{ \pm}, x_{2,0}^{ \pm}\right]\right]=P_{1}^{ \pm}} \tag{20}
\end{align*}
$$

where $h_{i, 1}$ in (15) is defined by $h_{i, 1}=\tilde{h}_{i, 1}+\frac{1}{2}\left(h_{i, 0}\right)^{2}$.
The Cartan matrix is the same as before.

Proposition 5 (M)
The Yangian $\mathrm{Y}_{L}(\mathfrak{g})$ has the Hopf algebra structures with the coproducts $\Delta: \mathrm{Y}_{L}(\mathfrak{g}) \rightarrow \mathrm{Y}_{L}(\mathfrak{g}) \otimes \mathrm{Y}_{L}(\mathfrak{g})$ given by

$$
\begin{aligned}
\Delta(X)= & X \otimes 1+1 \otimes X \quad \text { for } \quad X \in U(\mathfrak{g}) \\
\Delta\left(x_{2,1}^{+}\right)= & x_{2,1}^{+} \otimes 1+1 \otimes x_{2,1}^{+} \\
& +h_{2,0} \otimes x_{2,0}^{+}+E_{12} \otimes E_{31}+E_{34} \otimes E_{42}-E_{14} \otimes P_{0}^{+} \\
& \cdots \quad \text { (fairly complicated) } \\
\Delta\left(P_{1}^{+}\right)= & P_{1}^{+} \otimes 1+1 \otimes P_{1}^{+}-2 C_{0} \otimes P_{0}^{+} \\
\Delta\left(P_{1}^{-}\right)= & P_{1}^{-} \otimes 1+1 \otimes P_{1}^{-}-2 P_{0}^{-} \otimes C_{0}
\end{aligned}
$$

the counits $\epsilon: \mathrm{Y}_{L}(\mathfrak{g}) \rightarrow \mathbb{C}, \epsilon(X)=0$ for $X \in \mathrm{Y}_{L}(\mathfrak{g})$, and the antipodes $\mathrm{S}: \mathrm{Y}_{L}(\mathfrak{g}) \rightarrow \mathrm{Y}_{L}(\mathfrak{g})$ satisfying the antipode rels.
c.f. [Beisert, 2004]

Yangian

Introduce the higher degree gens. for $r \in \mathbb{Z}_{\geq 0}$ in $\mathrm{Y}_{L}(\mathfrak{g})$ by
$x_{1, r+1}^{ \pm}= \pm \frac{1}{2}\left[\tilde{h}_{1,1}, x_{1, r}^{ \pm}\right], \quad x_{2, r+1}^{ \pm}=\mp\left[\tilde{h}_{1,1}, x_{2, r}^{ \pm}\right], \quad x_{3, r+1}^{ \pm}=\mp \frac{1}{2}\left[\tilde{h}_{3,1}, x_{3, r}^{ \pm}\right]$,
$h_{i, r}=\left[x_{i, r}^{+}, x_{i, 0}^{-}\right] \quad(i=1,2,3), \quad P_{r}^{ \pm}=\left[\left[x_{1, r}^{ \pm}, x_{2,0}^{ \pm}\right],\left[x_{3,0}^{ \pm}, x_{2,0}^{ \pm}\right]\right]$.

Theorem 6 (M)

The Yangian $\mathrm{Y}_{D}(\mathfrak{g})$ is isomorphic to $\mathrm{Y}_{L}(\mathfrak{g})$. The isomorphism $\phi: \mathrm{Y}_{D}(\mathfrak{g}) \rightarrow \mathrm{Y}_{L}(\mathfrak{g})$ is given by

$$
h_{i, r} \mapsto h_{i, r}, \quad x_{i, r}^{ \pm} \mapsto x_{i, r}^{ \pm}, \quad P_{r}^{ \pm} \mapsto P_{r}^{ \pm}
$$

where the image of ϕ is defined in (21).

Yangian

Theorem 6 allows us to induce the Hopf algebra structures to $\mathrm{Y}_{D}(\mathfrak{g})$ from $\mathrm{Y}_{L}(\mathfrak{g})$ via the following commutative diagrams,

Δ_{D} : coproduct, S_{D} : antipode, and ϵ_{D} : counit in $\mathrm{Y}_{D}(\mathfrak{g})$.
Corollary 7
$\mathrm{Y}_{D}(\mathfrak{g})$ has the Hopf alg. structures induced from those of $\mathrm{Y}_{L}(\mathfrak{g})$.

Lie Superalgebra $\mathfrak{s l}(2 \mid 2)$

Central extensions of $\mathfrak{s l}(2 \mid 2)$

Yangian and the Hopf algebraic structures

Quantum affine algebra

Affine Lie Superalgebra $\widehat{\mathfrak{s l}(2 \mid 2)}$

Odd reflections

Quantum affine algebra $\mathrm{U}_{g, q}(\hat{\mathfrak{g}})$

- Generators: $\left\{K_{i}, E_{i}, F_{i}\right\}_{i=0,1,2,3}$ and

$$
\left\{U_{k}, V_{k}\right\}_{k=0,2} \text { (centers) }
$$

- Parity $p: \mathrm{U}_{g, q} \rightarrow \mathbb{Z}_{2}$,

$$
p\left(E_{k}\right)=p\left(F_{k}\right)=1 \quad(k=0,2), \quad p(\text { others })=0
$$

- Two deformation parameters ?? g and q
- GCM, Normalized matrix, Dynkin diagram ;

$$
\begin{gathered}
\left(b_{i j}\right)=\left(\begin{array}{r|rrr}
0 & -1 & 0 & 1 \\
\hline-1 & 2 & -1 & 0 \\
0 & -1 & 0 & 1 \\
1 & 0 & 1 & -2
\end{array}\right) \\
\left(d_{i}\right)=\operatorname{diag}(-1,-1,-1,1)
\end{gathered}
$$

Defining relations

- Defining relations:
c.f. [Jimbo],[Drinfeld]

$$
\begin{align*}
& \mathrm{K}_{1}^{-1} \mathrm{~K}_{k}^{-2} \mathrm{~K}_{3}^{-1}=\mathrm{V}_{k}^{2} \quad(k=0,2) \tag{22}\\
& K_{i} E_{j} K_{i}^{-1}=q^{b_{i j}} E_{j}, \quad K_{i} F_{j} K_{i}^{-1}=q^{-b_{i j}} F_{j} \tag{23}\\
& {\left[E_{j}, F_{j}\right]=d_{j} \frac{K_{j}-K_{j}^{-1}}{q-q^{-1}}} \tag{24}\\
& {\left[E_{i}, F_{j}\right]=0 \quad \text { for } \quad i \neq j, \quad(i, j) \neq(0,2),(2,0) .} \tag{25}
\end{align*}
$$

The centrally extended relations ;

$$
\begin{align*}
& {\left[E_{2}, F_{0}\right]=-\tilde{g}\left(K_{0}-U_{2} U_{0}^{-1} K_{2}^{-1}\right),} \tag{26}\\
& {\left[E_{0}, F_{2}\right]=+\tilde{g}\left(K_{2}-U_{0} U_{2}^{-1} K_{0}^{-1}\right),} \tag{27}
\end{align*}
$$

where we denote $\tilde{g}:=g / \sqrt{1-g^{2}\left(q-q^{-1}\right)^{2}}$.

Defining relations

- The Serre relations (similar for F 's):

$$
\begin{aligned}
& {\left[\mathrm{E}_{1}, \mathrm{E}_{3}\right]=\mathrm{E}_{2} \mathrm{E}_{2}=\mathrm{E}_{0} \mathrm{E}_{0}=\left[\mathrm{E}_{2}, \mathrm{E}_{0}\right]=0} \\
& {\left[\mathrm{E}_{j},\left[\mathrm{E}_{j}, \mathrm{E}_{k}\right]\right]-\left(q-2+q^{-1}\right) \mathrm{E}_{j} \mathrm{E}_{k} \mathrm{E}_{j}=0}
\end{aligned}
$$

- The extended Serre relations:

$$
\begin{aligned}
& {\left[\left[\mathrm{E}_{1}, \mathrm{E}_{k}\right],\left[\mathrm{E}_{3}, \mathrm{E}_{k}\right]\right]-\left(q-2+q^{-1}\right) \mathrm{E}_{k} \mathrm{E}_{1} \mathrm{E}_{3} \mathrm{E}_{k}=g\left(1-\mathrm{V}_{k}^{2} \mathrm{U}_{k}^{2}\right)} \\
& {\left[\left[\mathrm{F}_{1}, \mathrm{~F}_{k}\right],\left[\mathrm{F}_{3}, \mathrm{~F}_{k}\right]\right]-\left(q-2+q^{-1}\right) \mathrm{F}_{k} \mathrm{~F}_{1} \mathrm{~F}_{3} \mathrm{~F}_{k}=g\left(\mathrm{~V}_{k}^{-2}-\mathrm{U}_{k}^{-2}\right)} \\
& \text { where } j=1,3, k=0,2
\end{aligned}
$$

Note: Introduced U instead of P_{0}^{+}and P_{0}^{-}
\rightarrow More restricted algebra is considered.

$$
\begin{aligned}
q^{C} & =V_{2} \\
P_{0}^{+} & =+g\left(1-\mathrm{V}_{2}^{2} \mathrm{U}_{2}^{2}\right) \\
P_{0}^{-} & =-g\left(\mathrm{~V}_{2}^{-2}-\mathrm{U}_{2}^{-2}\right)
\end{aligned}
$$

Limits of the deformation parameters

$\mathrm{U}_{g, q}(\hat{\mathfrak{g}})$ has two deformation parameters ;
$g:$ " coupling const." and $q: q$-deformation.

- $g \rightarrow 0$ limit: dropping the central extensions.

$$
\lim _{g \rightarrow 0} \mathrm{U}_{g, q}(\hat{\mathfrak{g}}) \simeq \mathrm{U}_{q}(\hat{\mathfrak{s l}}(2 \mid 2))
$$

$>q \rightarrow 1$ limit: Yangian limit, degenerates XXZ to XXX .

$$
\lim _{q \rightarrow 1} \mathrm{U}_{g, q}(\hat{\mathfrak{g}}) \simeq \mathrm{Y}_{\hbar}(\mathfrak{g}), \quad q=\mathrm{e}^{\hbar}
$$

Difficult to see the degeneration of the relations directly.
c.f. [Guay-Ma]
(\because) Singular limit : Rescale by $1 /(1-q)$, then take $q \rightarrow 1$
\diamond Checked the degeneracy for the fundamental repr. and the coproducts.

Yanian limit of $\mathrm{U}_{g, q}(\hat{\mathfrak{g}})$

Obs.: Considering the limit $q \rightarrow 1$ of fund. rep., we see that

$$
F_{0} \rightarrow\left[\left[E_{3}, E_{2}\right], E_{1}\right]=:-E_{321}, \quad E_{0} \rightarrow\left[\left[F_{3}, F_{2}\right], F_{1}\right]=: F_{321}
$$

Then their differences divided by $(q-1)$ could give something finite. In fact, we found the level-1 Yangian as

$$
\begin{aligned}
\lim _{q \rightarrow 1} \frac{-F_{0}-E_{321}}{2 i g(q-1)} & =\widehat{E}_{321}+\frac{i}{2}\left(1+U^{2}\right) F_{2} \\
\lim _{q \rightarrow 1} \frac{E_{0}-F_{321}}{2 i g(q-1)} & =-\widehat{F}_{321}+\frac{i}{2}\left(1+U^{-2}\right) E_{2}
\end{aligned}
$$

1. Evaluation rep.: $\widehat{E}_{321} \simeq u E_{321}$

$$
\lim _{q \rightarrow 1} \frac{-F_{0}-E_{321}}{2 i g(q-1)} \simeq u E_{321}+\frac{i}{2}\left(1+U^{2}\right) F_{2}
$$

2. Coproduct Δ :

- Yangian Δ

$$
\lim _{q \rightarrow 1} \frac{-\Delta\left(F_{0}\right)-\Delta\left(E_{321}\right)}{2 i g(q-1)}=\Delta\left(\widehat{E}_{321}+\frac{i}{2}\left(1+U^{2}\right) F_{2}\right)
$$

Lie Superalgebra $\mathfrak{s l}(2 \mid 2)$

Central extensions of $\mathfrak{s l}(2 \mid 2)$

Yangian and the Hopf algebraic structures

Quantum affine algebra

Affine Lie Superalgebra $\widehat{\mathfrak{s l}(2 \mid 2)}$

Odd reflections

Affine Lie Superalgebra $\widehat{\mathfrak{s l}}(2 \mid 2)$

- Cartan datum
- $I=\{0,1,2,3\}=I_{\overline{0}} \sqcup I_{\overline{1}}$: index set of simple roots with $I_{\overline{0}}=\{1,3\}$ (even) and $I_{\overline{1}}=\{0,2\}$ (odd).
- $A=\left(a_{i j}\right)_{i, j \in I}:$ Cartan matrix, rank $A=2$,

$$
A=\left[\begin{array}{rrrr}
0 & -1 & 0 & 1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 0 & 1 \\
-1 & 0 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{rrrr}
0 & -1 & 0 & 1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 0 & 1 \\
1 & 0 & 1 & -2
\end{array}\right]
$$

where $B=D A$ (symmetrized) with $D=\operatorname{diag}(1,1,1,-1)$.

- Root datum
- Cartan subalgebra $\mathfrak{h}, \operatorname{dim} \mathfrak{h}=6$.
- Simple roots and coroots : $\Pi=\left\{\alpha_{i}\right\}_{i \in I} \subset \mathfrak{h}^{*}$,

$$
\Pi^{\vee}=\left\{h_{i}\right\}_{i \in I} \subset \mathfrak{h}, \text { s.t. }\left\langle h_{i}, \alpha_{j}\right\rangle=\alpha_{j}\left(h_{i}\right)=a_{i j}
$$

- Dyunkin diagram

Affine Lie Superalgebra $\widehat{\mathfrak{s l}(2 \mid 2)}$

- Root datum
- Root system : $\Delta=\{\beta+m \delta, n \delta \mid \beta \in \bar{\Delta}, m, n \in \mathbb{Z}, n \neq 0\}$ where $\delta=\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}$ (imaginary root) and $\bar{\Delta}$ is the root system of $\mathfrak{s l}(2 \mid 2)$.
- $\Delta_{\overline{0}}, \Delta_{\overline{1}}$: sets of even and odd roots, resp. In particular, $\bar{\Delta}=\bar{\Delta}_{\overline{0}} \sqcup \bar{\Delta}_{\overline{1}}$ with $\bar{\Delta}_{\overline{0}}=\left\{ \pm \alpha_{1}, \pm \alpha_{3}\right\}$, $\bar{\Delta}_{\overline{1}}=\left\{ \pm \alpha_{2}, \pm\left(\alpha_{1}+\alpha_{2}\right), \pm\left(\alpha_{2}+\alpha_{3}\right), \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)\right\}$
- Root vectors: $e_{\beta} \in \mathfrak{g}^{\beta}, f_{\beta} \in \mathfrak{g}^{-\beta}$, where $\mathfrak{g}^{\gamma}=\left\{x \in \mathfrak{g} \mid[h, x]=\gamma(h) x\right.$ for $\left.{ }^{\forall} h \in \mathfrak{h}\right\}$ (root subsp. corresponding to γ)

Remark 8
In $\mathfrak{s l}(2 \mid 2)$ case, any $\tau \in \Delta_{\overline{1}}$ is isotropic, i.e., $(\tau, \tau)=0$.

Lie Superalgebra $\mathfrak{s l}(2 \mid 2)$

Central extensions of $\mathfrak{s l}(2 \mid 2)$

Yangian and the Hopf algebraic structures

Quantum affine algebra

Affine Lie Superalgebra $\widehat{\mathfrak{s l}(2 \mid 2)}$

Odd reflections

Motivations for the odd reflections

- Believe that taking into account all bases $\Pi \in \mathbb{B}$ equally is a democratic attitude for the Lie superalg.
- We want to construct the BGG-type resolution for the reprs. of the affine $\widehat{\mathfrak{s l}}(2 \mid 2), \quad$ [Bernstein, Gel'fand, Gel'fand,'71,'75,'76]

$$
\cdots \rightarrow N_{3}(\mathfrak{g}) \rightarrow N_{2}(\mathfrak{g}) \rightarrow N_{1}(\mathfrak{g}) \rightarrow L_{\Lambda}(\mathfrak{g}) \rightarrow 0,
$$

which explains the character formula.

- expecting that $N_{i}(\mathfrak{g})$ are the generalized Verma modules, so as the affine Lie superalgebra $\mathfrak{s l}(2 \mid 1)$ case.

Base and odd reflection

Def. 9 (Base)

$\Sigma \subset \Delta$ (lin. indep.) is called a base if ${ }^{\exists} e_{\beta}, f_{\beta}(\beta \in \Sigma)$ satisfying
(1) $\left\{e_{\beta}, f_{\beta}, h \mid \beta \in \Sigma, h \in \mathfrak{h}\right\}$ generate \mathfrak{g},
(2) $\left[e_{\beta}, f_{\gamma}\right]=0$ if $\beta \neq \gamma$.

Denote the set of bases by \mathbb{B}.

Def. 10 (Odd reflection)

Let Σ be a base and $\tau \in \Sigma_{\overline{1}}$. For each $\beta \in \Sigma$, the odd reflection $r_{\tau}(\beta)$ is defined by

$$
r_{\tau}(\beta)= \begin{cases}-\beta & \beta=\tau \\ \beta+\tau & \beta \neq \tau \wedge(\beta, \tau) \neq 0 \\ \beta & \beta \neq \tau \wedge(\beta, \tau)=0\end{cases}
$$

Note: $r_{\tau}(\Sigma)$ is also a base for any $\tau \in \Sigma_{\overline{1}}$. Hence, the odd refs. define transformations btw. bases.

Odd reflections: ex. $\operatorname{osp}(3 \mid 2)=B_{1,1}$

$$
\otimes \Longrightarrow \circ, \quad\left(\begin{array}{cc}
0 & 1 \\
-2 & 2
\end{array}\right)
$$

$$
\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}
$$

$$
\Delta_{\overline{0}}^{+}=\left\{\alpha_{2}, 2\left(\alpha_{1}+\alpha_{2}\right)\right\}
$$

$$
\Delta_{1}^{+}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}\right\} \mid \Delta_{1}^{\prime \pm}=\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}\right\}
$$

$$
\begin{aligned}
& r_{\alpha_{1}}\left(\alpha_{1}\right)=-\alpha_{1} \\
& r_{\alpha_{1}}\left(\alpha_{2}\right)=\alpha_{1}+\alpha_{2}
\end{aligned}
$$

But,

$$
r_{\alpha_{1}}\left(2\left(\alpha_{1}+\alpha_{2}\right)\right)=2 \alpha_{2} \notin \Delta
$$

Odd ref. is Not in GL($\left.\mathfrak{h}^{*}\right)$.
Categorical int. seems more natural. $r_{\alpha_{1}} \in \operatorname{Hom}\left(\Pi, \Pi^{\prime}\right)$ "Weyl groupoid"

Odd reflections for $\widehat{\mathfrak{s l}}(2 \mid 2)$
Two typical types of Dynkins: $\Sigma=$ "XOXO" and $\Xi=$ "XXXX"

Odd reflections interchange Σ and Ξ.
$\rightarrow r_{\beta_{2}}: \Sigma \rightarrow \Xi$

$-r_{\gamma_{2}}: \Xi \rightarrow \Sigma$

Odd reflections for $\widehat{\mathfrak{s l}}(2 \mid 2)$

Complete list of Bases for $\widehat{\mathfrak{s l}}(2 \mid 2)\left(\delta=\sum_{i=0}^{3} \alpha_{i}, m \in \mathbb{Z}\right)$

$$
\begin{aligned}
& \Sigma_{1}^{m}=\left\{\alpha_{0}+m \delta, \alpha_{1}, \alpha_{2}-m \delta, \alpha_{3}\right\} \quad\left(\text { c.f. } \Pi=\Sigma_{1}^{0}\right) \\
& \Sigma_{2}^{m}=\left\{\alpha_{1},-\alpha_{0}-\alpha_{1}-m \delta, \alpha_{0}+\alpha_{1}+\alpha_{2}, \alpha_{0}+\alpha_{3}+m \delta\right\} \\
& \Sigma_{3}^{m}=\left\{\alpha_{3}, \alpha_{0}+\alpha_{1}+m \delta, \alpha_{0}+\alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{3}-m \delta\right\} \\
& \Sigma_{4}^{m}=\left\{-\alpha_{0}-m \delta, \alpha_{0}+\alpha_{1}+\alpha_{2},-\alpha_{2}+m \delta, \alpha_{0}+\alpha_{2}+\alpha_{3}\right\} \\
& \Xi_{1}^{m}=\left\{-\alpha_{0}-m \delta, \alpha_{0}+\alpha_{1}+m \delta, \alpha_{2}-m \delta, \alpha_{0}+\alpha_{3}+m \delta\right\} \\
& \Xi_{2}^{m}=\left\{\alpha_{0}+m \delta, \alpha_{1}+\alpha_{2}-m \delta,-\alpha_{2}+m \delta, \alpha_{2}+\alpha_{3}-m \delta\right\}
\end{aligned}
$$

Periodicity: $\pm \delta$-shift is obtained by 4 steps .

Algebraic structures assoc. with Bases

Three hierarchies assoc. with a base Σ :
Root $\Sigma \rightarrow$ Algebra $\mathfrak{g}_{\Sigma}^{+} \rightarrow$ Module M_{Σ}.

- Triangular decomposition assoc. with a base Σ :

$$
\mathfrak{g}=\mathfrak{g}_{\Sigma}^{+} \oplus \mathfrak{h} \oplus \mathfrak{g}_{\Sigma}^{-}
$$

where

$$
\mathfrak{g}_{\Sigma}^{ \pm}=\bigoplus_{\gamma \in \pm \Delta_{\Sigma}^{+}} \mathfrak{g}^{\gamma}, \quad \Delta_{\Sigma}^{+}=\Delta \cap Q_{\Sigma}^{+}, \quad Q_{\Sigma}^{+}=\sum_{\gamma \in \Sigma} \mathbb{Z}_{\geq 0} \gamma
$$

- Cartan matrices assoc. w/ $\Sigma=X O X O$ and $\Xi=X X X X$

$$
A_{\Sigma}=\left[\begin{array}{rrrr}
0 & -1 & 0 & 1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 0 & 1 \\
-1 & 0 & -1 & 2
\end{array}\right], \quad A_{\Xi}=\left[\begin{array}{rrrr}
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{array}\right],
$$

can be symm. by $D_{\Sigma}=\operatorname{diag}(1,1,1,-1)$ and $D_{\Xi}=\operatorname{diag}(1,1,-1,-1)$, resp.

Algebraic structures assoc. with Bases

- Weyl vector ρ_{Σ} assoc. with a base Σ.

$$
\begin{aligned}
& \text { 1. For } \Pi \in \mathbb{B} \text {, take } \rho_{\Pi} \in \mathfrak{h}^{*} \text { s.t. }\left(\rho_{\Pi}, \alpha_{i}\right)=\frac{1}{2}\left(\alpha_{i}, \alpha_{i}\right),(i \in I) \text {. } \\
& \text { 2. For any } \Sigma \in \mathbb{B} \text {, set } \rho_{\Sigma}:=\rho_{\Pi}+\sum_{\beta \in \Delta_{\Pi}^{+} \cap \Delta_{\bar{\Sigma}}^{-}} \beta \text {. }
\end{aligned}
$$

Note:

- when $\Sigma^{\prime}=r_{\tau}(\Sigma) \in \mathbb{B}$ with $\tau \in \Sigma_{\overline{1}}, \rho_{\Sigma^{\prime}}=\rho_{\Sigma}+\tau$.
- holds that $\left(\rho_{\Sigma}, \gamma\right)=\frac{1}{2}(\gamma, \gamma) \quad\left({ }^{\forall} \gamma \in \Sigma\right)$.
- For $\Pi=\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \in \mathbb{B}$, we can take ρ_{Π} as

$$
\rho_{\Pi}=\frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right) .
$$

Principal roots

Def. 11 (Principal root)

An even root $\gamma \in \Delta$ is called a principal root if there exists a base $\Sigma \in \mathbb{B}$ obtained from Π by odd reflections s.t. $\gamma \in \Sigma$.

- Principal rts. $=$ all even rts. in $\{\Sigma \in r(\Pi) \mid r:$ Odd ref. $\}$.
- The list of bases for $\widehat{\mathfrak{s l}(2 \mid 2) \text {, }}$

$$
\begin{aligned}
& \Sigma_{1}^{m}=\left\{\alpha_{0}+m \delta, \alpha_{1}, \alpha_{2}-m \delta, \alpha_{3}\right\} \quad\left(\mathrm{c} . \mathrm{f} . \Pi=\Sigma_{1}^{0}\right) \\
& \Sigma_{2}^{m}=\left\{\alpha_{1},-\alpha_{0}-\alpha_{1}-m \delta, \alpha_{0}+\alpha_{1}+\alpha_{2}, \alpha_{0}+\alpha_{3}+m \delta\right\} \\
& \Sigma_{3}^{m}=\left\{\alpha_{3}, \alpha_{0}+\alpha_{1}+m \delta, \alpha_{0}+\alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{3}-m \delta\right\} \\
& \Sigma_{4}^{m}=\left\{-\alpha_{0}-m \delta, \alpha_{0}+\alpha_{1}+\alpha_{2},-\alpha_{2}+m \delta, \alpha_{0}+\alpha_{2}+\alpha_{3}\right\} \\
& \Xi_{1}^{m}=\left\{-\alpha_{0}-m \delta, \alpha_{0}+\alpha_{1}+m \delta, \alpha_{2}-m \delta, \alpha_{0}+\alpha_{3}+m \delta\right\} \\
& \Xi_{2}^{m}=\left\{\alpha_{0}+m \delta, \alpha_{1}+\alpha_{2}-m \delta,-\alpha_{2}+m \delta, \alpha_{2}+\alpha_{3}-m \delta\right\}, \\
& \text { tells us that the principal roots are }
\end{aligned}
$$

$$
\{\alpha_{1}, \underbrace{\alpha_{0}+\alpha_{2}+\alpha_{3}}_{\delta-\alpha_{1}}, \alpha_{3}, \underbrace{\alpha_{0}+\alpha_{1}+\alpha_{2}}_{\delta-\alpha_{3}}\}
$$

Weyl group

Def. 12 (Weyl group)

The Weyl group W is defined to the subgroup of $\operatorname{GL}\left(\mathfrak{h}^{*}\right)$ generated by the even reflections r_{β} for the principal root β.

- In $\widehat{\mathfrak{s l}}(2 \mid 2)$ case, the principal roots are

$$
\begin{aligned}
& \{\alpha_{1}, \underbrace{\alpha_{0}+\alpha_{2}+\alpha_{3}}_{\delta-\alpha_{1}}, \alpha_{3}, \underbrace{\alpha_{0}+\alpha_{1}+\alpha_{2}}_{\delta-\alpha_{3}}\}, \\
& \bigcirc_{\alpha_{1}}=\bigcirc_{\delta-\alpha_{1}}^{\bigcirc}, \quad \bigcirc_{\alpha_{3}}=\bigcirc_{\delta-\alpha_{3}}^{=},
\end{aligned}
$$

- The Weyl group W for $\widehat{\mathfrak{s l}}(2 \mid 2)$ coincides with that of $\widehat{\mathfrak{s l}_{2}} \oplus \widehat{\mathfrak{s}}_{2}$.

Generalized Verma modules

Three hierarchies assoc. with a base Σ :
Root $\Sigma \rightarrow$ Algebra $\mathfrak{g}_{\Sigma}^{+} \rightarrow$ Module M_{Σ}.
Notations: For a base $\Sigma \in \mathbb{B}$,

- $\mathfrak{b}_{\Sigma}=\mathfrak{g}_{\Sigma}^{+} \oplus \mathfrak{h}$: Borel subalg. assoc. with Σ.
- $M_{\Sigma}(\Lambda)$: Verma mod. with h.w. $\Lambda \in \mathfrak{h}^{*}$ defined from \mathfrak{b}_{Σ}.
- $L_{\Sigma}(\Lambda)$: the irreducible quotient of $M_{\Sigma}(\Lambda)$.
- $\mathfrak{p}_{\Sigma ; \tau}=\mathfrak{b}_{\Sigma} \oplus \mathfrak{g}^{-\tau}$: parabolic subalg. for $\tau \in \Sigma_{\overline{1}}$.
- $\mathbb{C 1}_{\Lambda}: 1$-dim $\mathfrak{p}_{\Sigma ; \tau}-\bmod$. with $\Lambda \in \mathfrak{h}^{*}$ s.t. $(\Lambda, \tau)=0$, defined by

$$
h . \mathbf{1}_{\Lambda}=\Lambda(h) \mathbf{1}_{\Lambda}(h \in \mathfrak{h}), \quad \mathfrak{g}_{\Sigma}^{+} \mathbf{1}_{\Lambda}=\{0\}, \quad \mathfrak{g}^{-\tau} \mathbf{1}_{\Lambda}=\{0\} .
$$

Def. 13 (Generalized Verma module with (Σ, τ, Λ))

$$
N_{\Sigma}(\Lambda ; \tau) \equiv U(\mathfrak{g}) \otimes_{U\left(\mathfrak{p}_{\Sigma ; \tau}\right)} \mathbb{C} \mathbf{1}_{\Lambda}
$$

Note: $f_{\tau} \mathbf{1}_{\Lambda} \in M_{\Sigma}(\Lambda)$ is a singular vec. if $(\Lambda, \tau)=0$. Hence,

$$
M_{\Sigma}(\Lambda) / U(\mathfrak{g}) f_{\tau} \mathbf{1}_{\Lambda} \simeq N_{\Sigma}(\Lambda ; \tau)
$$

Generalized Verma modules: $\mathfrak{s l}(2 \mid 2)$ case

Difficulty:
There are two orthogonal isotropic odd roots (defects).
c.f. $\widehat{\mathfrak{s l}}(2 \mid 2)$ is the defect $=1$ case.

We are starting with the non-affine case $\mathfrak{s l}(2 \mid 2)$.

- Three types of Dynkins: $\Pi=$ OXO, $\Sigma=$ XOX, and $\Xi=X X X$.

$$
\bigcirc_{1}^{\bigcirc}-\bigotimes_{2}^{\otimes}-\bigcirc_{3}, \quad \underset{1}{\otimes}-\bigcirc_{2}-\bigotimes_{3}, \quad \underset{1}{\otimes}-\underset{2}{\otimes}-\bigotimes_{3}
$$

- List of bases for $\mathfrak{s l}(2 \mid 2)$. Principal roots are $\left\{\alpha_{1}, \alpha_{3}\right\}$.

$$
\begin{aligned}
& \Pi_{1}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \\
& \Pi_{2}=\left\{\alpha_{3},-\alpha_{1}-\alpha_{2}-\alpha_{3}, \alpha_{1}\right\} \\
& \Sigma_{1}=\left\{-\alpha_{1}-\alpha_{2}, \alpha_{1}, \alpha_{2}+\alpha_{3}\right\} \\
& \Sigma_{2}=\left\{\alpha_{1}+\alpha_{2}, \alpha_{3},-\alpha_{2}-\alpha_{3}\right\} \\
& \Xi_{1}=\left\{\alpha_{1}+\alpha_{2},-\alpha_{2}, \alpha_{2}+\alpha_{3}\right\} \\
& \Xi_{2}=\left\{-\alpha_{1}-\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3},-\alpha_{2}-\alpha_{3}\right\}
\end{aligned}
$$

Generalized Verma modules: $\mathfrak{s l}(2 \mid 2)$ case

- Weyl group: $W=W_{\mathfrak{S l}_{2}} \times W_{\mathfrak{S t}_{2}}$.
- Odd reflections:

- We are expecting the gen. Verma mods. are
- $M_{\Pi}(\Lambda) / U(\mathfrak{g}) f_{\alpha_{2}} \mathbf{1}_{\Lambda}$
- $M_{\Sigma}(\Lambda) /\left(U(\mathfrak{g}) f_{\alpha_{1}+\alpha_{2}} \mathbf{1}_{\Lambda}+U(\mathfrak{g}) f_{\alpha_{2}+\alpha_{3}} \mathbf{1}_{\Lambda}\right)$
- needs more precise calculations, comparison with [M, Molev]
- We hope to report the complete answers in the near future!

References

References

The incomplete list of the references.
K. Iohara and Y. Koga, Central extensions of Lie superalgebras, Comment. Math. Helv. 76 (2001), 110-154.
(N. Beisert, The $\mathfrak{s u}(2 \mid 2)$ dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008), 945-979.

- M and A. Molev, Representations of centrally extended Lie superalgebra $\mathfrak{p s l}(2 \mid 2)$, J. Math. Phys. 55 (2014) 091704 [arXiv:1405.3420 [math.RT]].

R- M, Drinfeld realization of the centrally extended $\mathfrak{p s l}(2 \mid 2)$ Yangian algebra with the manifest coproducts, arXiv:2208.11889[math.QA]
S. Z. Levendorskii, On generators and defining relations of Yangians, Journal of Geometry and Physics, Volume 12, Issue 1, 1993, Pages 1-11, ISSN 0393-0440.
F. Spill and A. Torrielli, On Drinfeld's second realization of the AdS/CFT su(2|2) Yangian, J. Geom. Phys. 59 (2009) 489 [arXiv:0803.3194 [hep-th]].

References

N. Beisert, W. Galleas and M, A Quantum Affine Algebra for the Deformed Hubbard Chain, J. Phys. A 45 (2012), 365206 [arXiv:1102.5700 [math-ph]].
国
I. Heckenberger, F. Spill, A. Torrielli and H. Yamane, Drinfeld second realization of the quantum affine superalgebras of $D^{(1)}(2,1 ; x)$ via the Weyl groupoid, RIMS Kokyuroku Bessatsu B 8 (2008), 171 [arXiv:0705.1071 [math.QA]].
I. Heckenberger, H. Yamane, A generalization of Coxeter groups, root systems, and Matsumoto's theorem, Mathematishe Zeitschrift, 259 (2008), 255-276, math.QA/0610823.

